Supporting Information for

Three-dimensional resistivity structure in Ishikari Lowland, Hokkaido, northeastern Japan – Implications to strain concentration mechanism

Yusuke Yamaya¹*, Toru Mogi²,³, Ryo Honda⁴, Hideaki Hase⁵, Takeshi Hashimoto³ and Makoto Uyeshima⁶

¹Renewable Energy Research Center, Fukushima Renewable Energy Research Institute, AIST, Koriyama, Japan
²Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
³Institute of Seismology and Volcanology, Faculty of Science, Hokkaido University, Sapporo, Japan
⁴Tono Research Institute of Earthquake Science, Association for the Development of Earthquake Prediction, Mizunami, Japan
⁵Geothermal Energy Research & Development Co., Ltd., Tokyo, Japan
⁶Earthquake Research Institute, The University of Tokyo, Tokyo, Japan

Contents of this file

Figures S1 to S3

Introduction

We show the calculated MT responses for the forward model assuming the presence of seawater (Figure S1). We also show the resistivity models estimated by an additional inversion analysis (Figures S2 and S3). Figure S2 shows the results of first-stage inversions with different smoothing parameters. Figure S3 shows the results of a first-stage inversion with reduced input data.
Figure S1. Apparent resistivity and impedance phase map of calculated responses using the seawater model (Figure 8a).
Figure S1. (continued)
Figure S2. Resistivity models estimated by first-stage inversion with different smoothing parameters, $\tau=2.5$, 5.0 and 10.
Figure S3. Resistivity models estimated by first-stage inversion without measured data at station ISK160. This model can be compared with the $\tau=5.0$ model in Figure S2. Because the input data is reduced, the RMS residual naturally becomes lower than that for the other inversions.