<table>
<thead>
<tr>
<th>Title</th>
<th>Clinical benefit of 1-year certolizumab pegol (CZP) add-on therapy to methotrexate treatment in patients with early rheumatoid arthritis was observed following CZP discontinuation: 2-year results of the C-OPERA study, a phase III randomised trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Atsumi, Tatsuya; Tanaka, Yoshiya; Yamamoto, Kazuhiko; Takeuchi, Tsutomu; Yamanaka, Hisashi; Ishiguro, Naoki; Eguchi, Katsumi; Watanabe, Akira; Origasa, Hideki; Yasuda, Shinsuke; Yamanishi, Yuji; Kita, Yasuhiko; Matsubara, Tsukasa; Iwamoto, Masahiro; Shoji, Toshiharu; Togo, Osamu; Okada, Toshiyuki; van der Heijde, Désirée; Miyasaka, Nobuyuki; Koike, Takao</td>
</tr>
<tr>
<td>Citation</td>
<td>Annals of the rheumatic diseases, 76(8), 1348-1356</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-08</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/67068</td>
</tr>
<tr>
<td>Rights</td>
<td>This article has been accepted for publication in Atsumi T, Tanaka Y, Yamamoto K, et al., Clinical benefit of 1-year certolizumab pegol (CZP) add-on therapy to methotrexate treatment in patients with early rheumatoid arthritis was observed following CZP discontinuation: 2-year results of the C-OPERA study, a phase III randomised trial, Annals of the Rheumatic Diseases 2017;76:1348-1356, following peer review and can also be viewed on the journal's website at http://ard.bmj.com.</td>
</tr>
<tr>
<td>Rights(URL)</td>
<td>http://creativecommons.org/licenses/by-nc/4.0/</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>Additional Information</td>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
<tr>
<td>File Information</td>
<td>1348.full.pdf</td>
</tr>
</tbody>
</table>
Clinical benefit of 1-year certolizumab pegol (CZP) add-on therapy to methotrexate treatment in patients with early rheumatoid arthritis was observed following CZP discontinuation: 2-year results of the C-OPERA study, a phase III randomised trial

Tatsuya Atsumi,1 Yoshiya Tanaka,2 Kazuhiko Yamamoto,3 Tsutomu Takeuchi,4 Hisashi Yamanaka,5 Naoki Ishiguro,6 Katsumi Eguchi,7 Akira Watanabe,8 Hideki Origasa,9 Shinsuke Yasuda,1 Yuji Yamanishi,10 Yasuhiko Kita,11 Tsukasa Matsubara,12 Masahiro lwamoto,13 Toshiharu Shoji,14 Osamu Togo,14 Toshiyuki Okada,15 Désirée van der Heijde,16 Nobuyuki Miyasaka,17 Takao Koike1,18

ABSTRACT

Objectives To investigate the clinical impact of 1-year certolizumab pegol (CZP) therapy added to the first year of 2-year methotrexate (MTX) therapy, compared with 2-year therapy with MTX alone.

Methods MTX-naïve patients with early rheumatoid arthritis (RA) with poor prognostic factors were eligible to enter Certolizumab-Optimal Prevention of joint damage for Early RA (C-OPERA), a multicentre, randomised, controlled study, which consisted of a 52-week double-blind (DB) period and subsequent 52-week post treatment (PT) period. Patients were randomised to optimised MTX+CZP (n=159) or optimised MTX alone.

Results 34 CZP+MTX→MTX patients and 14 PBO+MTX→MTX patients discontinued during the PT period. From week 52 through week 104, significant inhibition of total modified total Sharp score progression was observed for CZP+MTX versus PBO+MTX (week 104: 84.2% vs 67.5% (p<0.001)). Remission rates decreased after CZP discontinuation; however, higher rates were maintained through week 104 in CZP+MTX→MTX versus PBO+MTX→MTX (41.5% vs 29.3% (p=0.026), 34.6% vs 24.2% (p=0.049) and 41.5% vs 33.1% (p=0.132) at week 104 in SDAI, Boolean and DAS28 (erythrocyte sedimentation rate) remission. CZP retreated patients due to flare (n=28) showed rapid clinical improvement. The incidence of overall adverse events was similar between groups.

Conclusions In MTX-naïve patients with early RA with poor prognostic factors, an initial 1 year of add-on CZP to 2-year optimised MTX therapy brings radiographic and clinical benefit through 2 years, even after stopping CZP.

Trial registration number NCT01451203.

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by progressive inflammatory synovitis. This results in the destruction of articular cartilage and marginal bone, which is generally thought to be irreversible.1 Recent studies have demonstrated that the early treatment of patients with antirheumatic drugs is associated with a reduction in inflammation, greater inhibition of structural damage and better long-term outcomes.2,3 Furthermore, early aggressive treatment with biological disease-modifying antirheumatic drugs (bDMARDs), such as antitumour necrosis factors (TNFs), was reported to be highly effective at reducing disease progression.4 The effect of treatment discontinuation/tapering following successful inhibition of disease progression as a result of using bDMARDs early in the course of the disease has yet to be fully investigated; however, there is the possibility that the positive disease trajectory may be maintained following treatment cessation.

Certolizumab pegol (CZP) is a humanised anti-TNF antibody fragment conjugated to polyethylene glycol, approved for the treatment of inflammatory diseases, including RA. The efficacy and safety of CZP in combination with methotrexate (MTX) during the early stages of RA was assessed in the Certolizumab-Optimal Prevention of joint damage for Early RA (C-OPERA) study. This study consisted of two periods: a 52-week double-blind (DB) period during which patients received either CZP or placebo (PBO) together with MTX, and a subsequent 52-week post-PBO/CZP treatment (PT) period in which patients received MTX therapy without CZP or PBO. Results from the DB period, which showed significant inhibition of structural damage and a reduction in the severity of RA symptoms following treatment with CZP+MTX compared with PBO +MTX, have been reported.4 Here, we report the...
2-year overall results including the PT period, which investigated whether the clinical benefits of initial 1-year CZP+MTX therapy were sustained through a subsequent 1-year period where patients received MTX alone.

METHODS

for the DB period were previously described.4 Full details of the study and 1203) was a multicentre, DB, parallel-group study conducted in accordance with previously reported analyses comparing clinical efficacy included disease activity score (DAS28 on rate (ESR)), simple disease activity joint count (SJC), tender joint count and 104; mTSS was evaluated by two n accordance with previously reported criteria (Boolean remission): the number of TJC (in 28 joints), number of SJC (in 28 joints), CRP (mg/dL) and PtGADA (100 mm visual analogue scale (VAS) data converted to cm).

Safety assessments

All safety events during the PT period were recorded as adverse events (AEs) or serious AEs (SAEs). Laboratory tests (haematological, blood chemistry, urinalysis), chest radiographs and ECG were also evaluated.

Statistical analyses

Full details of the statistical analyses can be found in the online supplementary materials. In brief, the full analysis set (FAS; defined as all patients who received ≥1 dose of study drug and provided any efficacy data thereafter) was used for all efficacy measurements. Missing data were imputed using linear extrapolation for mTSS and last observation carried forward (LOCF) for all other efficacy variables. Change from baseline in mTSS at weeks 52 and 104 was analysed using an analysis of covariance (ANCOVA) model. Fisher’s exact test was used to compare rates of mTSS non-progression (mTSS change from baseline ≤0.5) and clinical remission at weeks 52 and 104, between the PBO and CZP groups.

RESULTS

Patient characteristics and disposition

Of the 316 patients who were randomised and received at least one dose of study drug (FAS population), 179 patients entered...
the PT period and 131 patients completed the study (figure 1). The proportion of patients completing the PT period (from the patients who entered the PT period) was 68.5% and 80.3% in the CZP+MTX→MTX group and the PBO+MTX→MTX group, respectively (figure 1).

Patient baseline demographics and disease characteristics at period entry (week 52) are shown in supplementary table S1. At DB baseline, disease characteristics were similar both groups, disease activity at baseline slightly lower than in the total population baseline through week 52 following P+MTX or PBO+MTX.

Geographic progression in the total

at week 52 the change from baseline in e CZP+MTX→MTX group compared to MTX group (0.36±2.70 vs 1.58±4.86, p=0.001), erosion narrowing score (0.36±4.27 vs 1.58±7.17 (p=0.002)) were lower for the CZP+MTX→MTX group compared with the PBO+MTX→MTX group using linear extrapolation for missing data imputation (figure 2A). A sensitivity analysis using an LOCF imputation method (figure 2A) confirmed the results of the primary analysis (linear extrapolation). At week 104, the proportion of patients with radiographic non-progression (ie, mTSS change from baseline ≤0.5) was higher for the CZP+MTX→MTX group compared with the PBO+MTX→MTX group (84.2% vs 70.3%, p=0.001). Furthermore, the proportion of patients with rapid radiographic progression (RRP: mTSS yearly change from baseline ≥5) at week 104 was lower for CZP+MTX→MTX group compared with the PBO+MTX→MTX group (3.2% vs 9.6%, p=0.022). Subgroup analyses revealed that high baseline mTSS, CRP or TNF was associated with poor week 104 radiographic outcomes in the PBO+MTX→MTX group. The CZP+MTX→MTX group also showed higher inhibition of radiographic progression in these populations (see online supplementary table S3). Consistent with radiographic findings, the proportion of patients with HAQ remission (HAQ ≤0.5) at week 104 was numerically higher in the CZP+MTX→MTX group than the PBO+MTX→MTX group (73.0% vs 67.7%, p=0.09). In addition, the proportion of the patients who achieved HAQ remission at week 104 was higher in patients who showed non-radiographic progression at week 104 than those who did not (76.7% vs

Graphics and patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>CZP+MTX→MTX</th>
<th></th>
<th>PBO+MTX→MTX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total patients</td>
<td>Patients entering PT period</td>
<td>Total patients</td>
<td>Patients entering PT period</td>
</tr>
<tr>
<td></td>
<td>n=159</td>
<td>DB baseline (Week 0)</td>
<td>n=108</td>
<td>DB baseline (Week 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.4±10.6</td>
<td>48.8±11.2</td>
<td>–</td>
<td>49.0±10.3</td>
<td>48.6±10.8</td>
</tr>
<tr>
<td>129 (81.1)</td>
<td>85 (78.7)</td>
<td>–</td>
<td>127 (80.9)</td>
<td>58 (81.7)</td>
</tr>
<tr>
<td>57.4±11.3</td>
<td>57.0±11.5</td>
<td>–</td>
<td>57.4±10.6</td>
<td>57.4±10.3</td>
</tr>
<tr>
<td>22.4±3.9</td>
<td>22.2±3.7</td>
<td>–</td>
<td>22.5±3.7</td>
<td>22.4±3.7</td>
</tr>
<tr>
<td>4.0±2.9</td>
<td>4.4±3.1</td>
<td>–</td>
<td>4.3±2.8</td>
<td>4.4±3.1</td>
</tr>
<tr>
<td>159 (100.0)</td>
<td>71 (100.0)</td>
<td>–</td>
<td>157 (100.0)</td>
<td>108 (100.0)</td>
</tr>
<tr>
<td>153 (96.2)</td>
<td>104 (96.3)</td>
<td>–</td>
<td>146 (93.0)</td>
<td>68 (95.8)</td>
</tr>
<tr>
<td>79 (49.7)</td>
<td>41 (47.2)</td>
<td>–</td>
<td>80 (51.0)</td>
<td>34 (47.9)</td>
</tr>
<tr>
<td>8.4±6.1</td>
<td>7.5±5.8</td>
<td>0.5±1.1</td>
<td>8.9±6.5</td>
<td>7.3±6.1</td>
</tr>
<tr>
<td>8.3±5.3</td>
<td>7.6±4.6</td>
<td>0.3±0.7</td>
<td>8.4±5.3</td>
<td>7.0±4.2</td>
</tr>
<tr>
<td>38.4±25.3</td>
<td>36.3±23.7</td>
<td>12.8±9.9</td>
<td>43.7±28.2</td>
<td>36.5±22.2</td>
</tr>
<tr>
<td>1.9±1.8</td>
<td>1.1±0.5</td>
<td>0.0±0.13</td>
<td>1.5±2.1</td>
<td>1.0±0.39</td>
</tr>
<tr>
<td>130.4±135.4</td>
<td>125.3±135.4</td>
<td>47.7±25.7</td>
<td>185.4±214.9</td>
<td>167.3±204.3</td>
</tr>
<tr>
<td>5.4±1.1</td>
<td>5.2±1.1</td>
<td>1.9±0.8</td>
<td>5.5±1.2</td>
<td>5.1±1.0</td>
</tr>
<tr>
<td>28.7±12.5</td>
<td>27.0±11.2</td>
<td>2.4±6.2</td>
<td>30.0±13.6</td>
<td>24.6±11.3</td>
</tr>
<tr>
<td>1.0±0.64</td>
<td>1.04±0.63</td>
<td>0.14±0.26</td>
<td>1.05±0.69</td>
<td>0.79±0.57</td>
</tr>
<tr>
<td>4.1±7.4</td>
<td>3.8±7.4</td>
<td>3.7±7.4</td>
<td>5.5±15.0</td>
<td>3.2±6.2</td>
</tr>
<tr>
<td>1.9±4.0</td>
<td>1.6±3.9</td>
<td>1.6±3.7</td>
<td>2.5±7.8</td>
<td>1.6±3.3</td>
</tr>
<tr>
<td>2.1±4.6</td>
<td>2.2±4.8</td>
<td>2.2±4.8</td>
<td>2.9±8.3</td>
<td>1.5±4.0</td>
</tr>
<tr>
<td>11.4±3.1</td>
<td>11.3±3.2</td>
<td>10.9±4.1</td>
<td>11.5±2.8</td>
<td>11.5±3.1</td>
</tr>
</tbody>
</table>

*ns*wise indicated. Data in DB baseline columns represent average during weeks 0–104, whereas data in PT baseline columns represent average during year-end symptoms.

miciturullated peptide; CRP, C reactive protein; CZP, certolizumab pegol; DB, double blind; ESR, erythrocyte sedimentation rate; HAQ-DI, Health Assessment Questionnaire Disability Index; MMP-3, matrix metalloproteinase-3; mTSS, modified total Sharp score; MTX, methotrexate; PBO, placebo; PT, post treatment; RA, rheumatoid arthritis; JC, swollen joint count; TJC, tender joint count.
P+MTX→MTX, and 70.8% vs 49.0% X→MTX).

total population's achieving SDAI, Boolean and DAS28 calculated throughout both the DB and the end of the DB period (week 52), were significantly higher in the CZP compared with the PBO+MTX→MTX group. Remission observed for the CZP increased during the first 16 weeks of the rate stabilised from week 68 (week 16 h week 104). The remission rates of the up during the PT period were similar to change in clinical remission observed on the end of DB to the PT period. 41.5% vs 29.3% (p=0.049) and 41.5% vs 33.1% (p=0.132) at week 104 in SDAI, Boolean and DAS28(ESR), respectively. The proportion of patients with low disease activity (DAS28(ESR) ≤3.2) was also higher in the CZP+MTX→MTX group compared with the PBO+MTX→MTX group throughout the PT period (see online supplementary figure S1).

Impact of CZP discontinuation in the CZP+MTX→MTX group

The impact of CZP discontinuation was assessed on patients who entered the PT period (PT population) from the CZP+MTX group (n=108). Of these, 74 patients (68.5%) completed the 1-year PT period with MTX therapy (figure 4A). Rates of radiographic non-progression (mTSS change from baseline ≤0.5) was compared using Fisher’s exact test. CZP, certolizumab pegol; LOCF, ward; MTX, methotrexate; PBO, placebo.

Figure 4

(A) Linear extrapolation of mean change in modified total Sharp score (mTSS) at week 104. (B) Cumulative probability plot of mTSS change from PBO+MTX→MTX and CZP+MTX→MTX groups. Change from baseline in mTSS was analysed using an analysis of actual scores were converted to rank scores, using the treatment group as a factor and baseline rank score as a n-progression (mTSS change from baseline ≤0.5) was compared using Fisher’s exact test. CZP, certolizumab pegol; LOCF, ward; MTX, methotrexate; PBO, placebo.

Clinical and epidemiological research
of patients achieving (A) SDAI remission, (C) DAS28(ESR) remission during the PT period for Early rheumatoid arthritis (RA) patients. The rates of joint damage for Early RA patients were 1352

Clinical and epidemiological research

DISCUSSION

Biological DMARDs are considered second-line therapies for patients who cannot achieve treatment targets using conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) in the management of RA. However, it has been reported that the inhibitory effect of bDMARDs on joint damage is superior to that of csDMARDs, including MTX. Although there is some evidence of bone erosion repair following treatment with bDMARDs, joint destruction in patients with RA is generally considered to be irreversible. Con sequently, prevention of significant joint damage is crucial to avoid permanent functional disability, supporting early treatment with bDMARDs.

Concerns have been raised that initiating aggressive treatment with a bDMARD may be excessive for some patients and so identifying patients who would particularly benefit from initial aggressive treatment is critical when considering it. The feasibility of bDMARD withdrawal after achieving a therapeutic target is also of importance from both safety and economical points of view. If these issues are overcome, there is the possibility of a clinical approach where RA therapy is initiated with a bDMARD in the early stage of disease, leading to improved outcomes that can be maintained even after withdrawal of the initial aggressive treatment.

C-OPERA was designed to assess the clinical benefit of CZP treatment concomitant with MTX as first-line therapy for early RA, particularly for patients who were considered to require aggressive treatment. Patients who had poor prognostic factors, including a high titre of anticyclic citrullinated peptide antibody in addition to either rheumatoid factor positivity or bone erosions, were eligible to enter the study. C-OPERA was a study composed of two periods. The results from the first year of the study demonstrated the clinical benefit of adding CZP to MTX therapy (DAS28(ESR) remission and radiographic non-progression was achieved in more than 50% and 80% of patients, respectively), suggesting that the introduction of CZP at a very early stage led to substantial therapeutic effects, despite poor prognosis. In this report, we assessed whether the clinical benefit of initial 1-year CZP+MTX treatment was observed after stopping CZP and continuing with MTX therapy for 1 year.
The PT period reported here, was that the er an initial 1 year of treatment with discontinuing CZP therapy when the optimised. Radiographic progression, extrapolation, remained lower in the CZP compared with the PBO+MTX→MTX ar extrapolation, patient withdrawal can on of mTSS change from baseline. To were repeated using LOCF imputation, of CZP co-administration. The rate of gression observed in the CZP population during the PT period was during the DB period in the same popul at joint destruction may be prevented on of CZP in patients who responded atment with CZP+MTX. These data, lower rate of RRP in the CZP compared with the PBO+MTX→MTX, ses (see online supplementary table S3) catment with CZP+MTX better those ographic progression. The rate of HAQ in patients with radiographic non-

progression compared with those with radiographic progression, suggesting that radiographic progression associates with func
tional disability even during the 2 years of the study. These results suggest that early treatment with CZP during the initial stages of the disease, when rapid joint damage may take place, could prevent long-term progression of joint damage and functional disability as previously suggested in the ‘window of opportunity’ concept.

In addition to joint damage prevention, the rates of clinical remission throughout the PT period remained higher in the CZP+MTX→MTX group compared with the PBO+MTX→MTX group. After CZP discontinuation, approximately 25% of the patients flared; however, they showed rapid response to CZP retreatment, with recovery to pre-flare disease activity levels. Although joint destruction was consistently prevented in the PT population following CZP withdrawal, clinical remission was sometimes lost. Discrepancies in clinical and radiographic efficacy have been reported for adalimumab (ADA); similar differences in the clinical and radiographic efficacies of CZP that continue following treatment discontinuation could be responsible for the results observed here. A decrease in remission rate was mainly observed during the first 16 weeks after CZP

Table 2 Summary of treatment-emergent adverse events (TEAE)

<table>
<thead>
<tr>
<th></th>
<th>CZP+MTX—MTX</th>
<th></th>
<th></th>
<th>PBO+MTX—MTX</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week 0–52</td>
<td>Week 52–104</td>
<td>Week 0–104</td>
<td>Week 0–52</td>
<td>Week 52–104</td>
<td>Week 0–104</td>
</tr>
<tr>
<td></td>
<td>n=159</td>
<td>n=108</td>
<td>n=159</td>
<td>n=157</td>
<td>n=71</td>
<td>n=157</td>
</tr>
<tr>
<td>136.2</td>
<td>87.7</td>
<td>223.6</td>
<td>116.0</td>
<td>63.4</td>
<td>179.4</td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>153 (96.2)</td>
<td>85 (78.7)</td>
<td>154 (96.9)</td>
<td>148 (94.3)</td>
<td>57 (80.3)</td>
<td>150 (95.5)</td>
<td></td>
</tr>
<tr>
<td>542.0</td>
<td>286.1</td>
<td>442.4</td>
<td>548.2</td>
<td>250.7</td>
<td>444.3</td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>13 (8.2)</td>
<td>4 (3.7)</td>
<td>17 (10.7)</td>
<td>14 (8.9)</td>
<td>4 (5.6)</td>
<td>18 (11.5)</td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>6.8</td>
<td>9.4</td>
<td>12.9</td>
<td>6.3</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- n (%) in each column indicates the proportion of patients who experienced at least one TEAE within System Organ Class/Preferred Term.
- rmir: alanine aminotransferase increased, aspartate aminotransferase increased, γ-glutamyltransferase increased, hepatic function abnormal, hepatic sis, hyperbilirubinaemia, liver disorder, liver function test abnormal; MedDRA V.14.1.
- umab pegol; MTX, methotrexate; PBO, placebo.

sulate that patients who still produce
suggest that initial aggressive treatment be a potential treatment option at the
ity for patients who have a poor
ents achieve their treatment targets, could be withdrawn. This treatment
ial to prevent irreversible joint damage, Es and be a more cost-effective way to
g term. This approach is supported by
ritary Protocol for Methotrexate
ation Therapy in Early Rheumatoid
y demonstrated minimal loss of clinical
radiographic progression after ADA
ith early RA who initiated combination
ile, The High Induction Therapy with
HARD) study showed better radio-
significant difference in disease activity
the ADA+MTX—MTX group com-
 Differences in the results of these C-OPERA suggest that the condition of
ance’ regimen may be important, w needed to identify the appropriate
quired to achieve continued disease
 withdrawal, and to identify patient
d particularly benefit from first-line
over, additional analyses are also ether this approach has significant clin-
s failing to respond to MTX therapy
s the approach currently recommended ex. similar rates of SAEs for both the CZP
+MTX—MTX groups over the 2 years
of the C-OPERA study, indicating that there are no major safety
concerns when adding CZP to optimised MTX therapy. Incidences of AEs and SAEs during the PT period were lower compared with
the initial DB period in both groups. One reason for this may be ‘survival bias’, where patients discontinued the study because of an
intolerance to the study drugs (CZP and/or MTX) in the first
period, resulting in a lower AE rate in the second. This study has several limitations. In clinical practice, only
patients failing to respond to MTX would receive CZP therapy, and so it is not known how this approach compares with initial
CZP therapy. No patients received CZP for a full 2 years or were treated with a reduced dose of CZP so it was not possible
to compare these treatment regimens with CZP discontinuation. CZP withdrawal had not been optimised; therefore, there is the
potential for further investigation regarding the appropriate treat-
targets and the timing of CZP withdrawal in different
patient populations. There were differences between the study
design of C-OPERA and current RA treatment recommendations. For example, in clinical practice, treatment recommendations for
patients with poor prognostic factors include using additional
DMARDs in addition to MTX, which was prohibited in
C-OPERA. C-OPERA was not designed as an intercontinental
global study; thus, it is not known whether these results are gen-
eralisable to ethnicities other than Japanese. In particular, the
MTX dose of 16 mg is low compared with similar RA studies
from the European Union and USA (15–17 mg/week). However, when considering differences in patient body weight and
MTX metabolism, a lower dose of MTX in this study may correspond to the doses used in those previous studies. Finally, as
non-responding patients were eligible to receive rescue treatment
from 24 weeks onwards, we cannot exclude the possibility that a proportion of the 70 PBO+MTX patients switching to rescue
therapy in the first year may have achieved clinical response if
treated for a longer period of time.
Overall, these results suggest that patients with early RA would benefit from the addition of CZP to MTX therapy during the early stages of disease, particularly with respect to the prevention of joint destruction. Although this aggressive therapeutic strategy would not be recommended for all patients, it may be a potential option for those patients with a high risk of joint destruction. How to identify these patients requires further investigation.

Clinical and epidemiological research

or acknowledge Lilia Marinova MD, PhD, UCB rdination, and Simon Foulter, PhD, and Danielle cal Consulting, Cambridge, UK, for medical writing ring this manuscript for publication, based on the B Pharma reviewed only for scienti

involved in the C-OPERA study, reviewed and the manuscript and approved the final draft. UCB Pharma funded this study and manuscript. taken part in speakers’ bureaus for Astellas, bishi-Tanabe. KY has received consultancy fees from subishi-Tanabe, Pfizer, Roche and UCB Pharma; and Abbott, Eisai, Mitsubishi-Tanabe, Pfizer, Santen d consultancy fees from AstraZeneca, Asahi Kasei, Novartis; research grants from Abbott, Astellas, BMS, nssen, Mitsubishi-Tanabe, Nippon Shinyaku, Otsuka, keda and Teijin; and has taken part in speakers’ i, Eisai, Janssen, Mitsubishi-Tanabe, Pfizer and s received consultancy fees from Abbott, Astellas, subishi-Tanabe, Pfizer, Takeda and UCB Pharma; from Abbott, Astellas, BMS, Chugai, Eisai, Janssen, a and UCB Pharma. NI has received research grants eda, Chugai, Eisai, Janssen, Kaken d has taken part in speakers’ bureaus for Abbott, ssen, Kaken, Mitsubishi-Tanabe, Otsuka, Pfizer, has received research grants from Astellas, Abbvie, itsubishi-Tanabe, MSD; has received consultancy Kasei, Astellas, AstraZeneca, Chugai, K, Janssen, Mitsubishi-Tanabe, MSD, Pfizer, and has taken part in speakers’ bureaus for tellas, AstraZeneca, Chugai, Daiichi-Sankyo, Eisai, Eli anabe, MSD, Pfizer, Quintiles, Takeda and UCB ancy fees from UCB Pharma. AW has received research grants from Daiichi-Sankyo, Dainippon-Sumitomo, Kyorin, Meiji Seika; Shionogi, Taiho, Taisho and Toyama Chemical; and has taken part in speakers’ bureaus for Daiichi-Sankyo, Dainippon-Sumitomo, GSK, Mitsubishi-Tanabe, MSD, Pfizer, Shionogi and Taisho-Toyama. HO has received consultancy fees from Astellas and UCB Pharma. SY has received research grant from BMS and taken part in speakers’ bureaus for Abbvie, Astellas, Chugai, Eisai, Pfizer, Mitsubishi-Tanabe and Takeda. YY has no competing interests to disclose. YK has received speakers’ bureaus from Astellas, Chugai and Ono. TM has received speaker honoraria from Pfizer Japan, Janssen Pharmaceutical Co., and Astellas Pharma; and research grants form Quintiles Transnational Japan K.K., Janssen Pharmaceutical Co., Takeda Chemical Industries, Daiichi Sankyo Co., Astellas Pharma, Eli Lilly Japan K.K., MSD Co., Nippon Kayaku Co., Parexel International, Pfizer Japan and Bristol-Myers Squibb. MI has received payment for lectures from Astellas, Chugai, Ono and Tanabe-Mitsubishi; has received research grants from Pfizer and a royalty fee from Chugai. TS is an employee of UCB Pharma; TO is an employee of Astellas. DvdH has received consultancy fees from Abbvie, Amgen, AstraZeneca, Augurex, BMS, Boehringer Ingelheim, Céline, Centocor, Chugai, Covagen, Daiichi-Sankyo, Eli-Lilly, Galapagos, GSK, Janssen Biologics, Merck, Novartis, Nove-Nordisk, Otsuka, Pfizer, Roche, Sanofi-Aventis, Schering-Plough, UCB Pharma and Vertex; and is the Director of Imaging Rheumatology bv. NM has received research grants from Abbott, Astellas, Chugai, Eisai, Mitsubishi-Tanabe, Pfizer and Takeda. TK has received consultancy fees from Abbvie, Astellas, BMS, Chugai, Daiichi-Sankyo, Eisai, Mitsubishi-Tanabe-Pfizer, Santen, Taisho-Toyama, Takeda, Teijin and UCB Pharma, and has taken part in speakers’ bureaus for Abbott, Astellas, BMS, Chugai, Daiichi-Sankyo, Eisai, Mitsubishi-Tanabe, Pfizer, Santen, Taisho-Toyama, Takeda, Teijin and UCB Pharma.

Ethics approval
This study was conducted after review and approval by the institutional review board designated by each study site after consideration of the ethical, scientific and medical justification for the conduct of the study.

Provenance and peer review
Not commissioned; externally peer reviewed.

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0/

REFERENCES

19 rmester GR, et al. Treating rheumatoid arthritis to recommendations of an international task force. *Ann

21 SL Jr, et al. 2015 American College of Rheumatology of Rheumatoid Arthritis. *Arthritis Rheumatol*

