Three-day regimen of oseltamivir for postexposure prophylaxis of influenza in wards

Journal of hospital infection, 94(2): 150-153

2016-10

http://hdl.handle.net/2115/67230

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

type: article (author version)

Three-day regimen of oseltamivir for post-exposure prophylaxis of influenza in wards

N. Ishiguro a,*, R. Oyamada a, Y. Nasuhara b, T. Yamada a,c, T. Miyamoto a,c, S. Imai a,c, K. Akizawa a,d, T. Fukumoto a,d, S. Iwasaki a,d, H. Iijima e, K. Ono e

a Infection Control Team, Hokkaido University Hospital, Sapporo, Japan
b Division of Hospital Safety Management, Hokkaido University Hospital, Sapporo, Japan
c Division of Pharmacy, Hokkaido University Hospital, Sapporo, Japan
d Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
e Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan

* Corresponding author. Address: Infection Control Team, Hokkaido University Hospital, North-14 West-5, Sapporo 060-8648, Japan. Tel: +81-11-706-5703. E-mail address: nishigur@med.hokudai.ac.jp (N. Ishiguro).

Keywords: Influenza, Post-exposure prophylaxis, Oseltamivir
Inpatients who had close contact with influenza patients were given oseltamivir (75 mg capsule once daily for adults or 2 mg/kg (maximum of 75 mg) once daily for children) for 3 days as post-exposure prophylaxis (PEP). The index influenza patients were prescribed a neuraminidase inhibitor and were immediately discharged or transferred to isolation rooms. Protective efficacy of oseltamivir for 3 days was 93% for all influenza patients (95% CI, 53%-99%; P=0.023) and it was 94% for patients with influenza A (95% CI, 61%-99%; P=0.017), which are comparable to those of oseltamivir for 7 to 10 days as PEP. (98 words)
Introduction

Influenza is a common respiratory disease that results in death of about 30,000 to 49,000 people in the United States every year. A number of nosocomial influenza outbreaks in hospitals have been reported. Therefore, prevention of nosocomial transmission of influenza is important. Post-exposure prophylaxis (PEP) using oseltamivir was shown to be effective for reducing secondary spread of influenza in families and in pediatric wards. Oseltamivir as a 75 mg capsule once daily for adults and at a dose of 2 mg/kg (maximum of 75 mg) once daily for children for 7 to 10 days has generally been used for PEP.

In this study, index cases in which influenza developed during hospitalization were immediately discharged or transferred to isolation rooms, and persons who were in close contact with the index influenza patients were administered oseltamivir for 3 days as PEP. The purpose of this study was to analyze the effectiveness of a 3-day regimen of oseltamivir for PEP.

Methods

Hokkaido University Hospital is a 936-bed tertiary care hospital in Sapporo, Japan. Patients hospitalized in Hokkaido University Hospital between December 2005 and March 2015 were included in this study. Index patients were defined as patients who developed flu-like symptoms (e.g., fever, cough, and fatigue) with a positive immunochromatographic test (ICT) during hospitalization. ICTs used to diagnose influenza were BD Flu Examen (Nippon Becton, Dickinson and Company,
Tokyo, Japan) from December 2005 to January 2007, Espline influenza A&B-N (Fujirebio Inc., Tokyo, Japan) from February 2007 to February 2013 and BD Veritor System Flu A + B (Becton, Dickinson and Company, Sparks, MD, USA) from March 2013. The index patients who developed influenza during hospitalization were prescribed a neuraminidase inhibitor and were immediately discharged or transferred to isolation rooms. All inpatients with a positive immunochromatographic test were reported to the infection control team. Patients hospitalized for treatment of influenza were excluded from this study.

Persons in close contact with the index patients were defined as persons sharing a room within 48 hours of illness onset of index cases. Persons in close contact were immediately listed and recommended PEP using oseltamivir: a 75 mg capsule once daily for adults or 2 mg/kg (maximum of 75mg) once daily for children for 3 days. For patients with creatinine clearance of 10 to 30ml/min, the same dose of oseltamivir was prescribed on the first and third days. The costs of PEP were paid by the hospital for preventing further nosocomial infection. Written informed consent was obtained for the administration of oseltamivir. Close contacts who refused PEP were separated into isolation rooms. Those persons, regardless of whether they accepted or refused PEP, were monitored for influenza-like symptoms for 7 days after identification. Close contacts who received PEP were incorporated into the PEP group and those who refused PEP were incorporated into the non-PEP group.

Statistical analysis was performed using JMP software version 12.1.0 (SAS Institute, Cary, NC, USA). For demographic variables, continuous variables were analyzed using Student’s t-test. Frequency analysis was performed by the chi-square test. The difference in prevalence between the PEP and non-PEP groups was tested by
Fisher’s exact test at the level of significance of 5%. Protective efficacy and its 95% confidence interval (CI) were also computed by calculating relative risk and its 95% CI first and then subtracting each of them from 1. Ethical approval for this study was obtained from the Institutional Review Board of Hokkaido University Hospital for Clinical Research.

Results

A total of 86 index patients were identified among the hospitalized patients. Forty-six (53.5%) of the 86 index patients developed flu-like symptoms within 3 days of admission, suggesting that they had been infected with influenza virus outside the hospital. After diagnosis of each index case, a total of 227 close contacts were identified. Of the 227 close contacts, 212 received oseltamivir as PEP and 15 did not because of concerns about side effects of oseltamivir. The mean ages +/- standard deviations were 48.4 +/- 22.9 years for the PEP group and 31.1 +/- 29.0 years for the non-PEP group (P=0.006 for the t-test). The male-to-female ratios were 125: 87 for the PEP group and 9: 6 for the non-PEP group (P=0.937 for the chi-square test). The mean duration between onset of flu-like symptoms of the index cases and oral administration of oseltamivir for the close contacts in the PEP group was 1.0 +/- 1.2 days, whereas the mean duration between onset of flu-like symptoms of the index cases and separation of the index cases for the non-PEP group was 0.8 +/- 0.7 days (P=0.3827 for the t-test).

Seventy-nine index patients were diagnosed as having influenza A, and the incidence of influenza in the PEP group (2 of 200, 1.0%) was lower than that in the non-PEP group (2 of 12, 16.7%) (protective efficiency, 94%; 95% CI, 61%-99%; P = 0.017)
Two patients for whom PEP failed to prevent influenza A infection had impaired renal function (creatinine clearance of 10 to 30 ml/min): one patient took oseltamivir only on the first day and developed influenza on the following day, and the other patient took oseltamivir on the first and third days and developed influenza on the fifth day. Seven index patients were diagnosed as having influenza B, and none of the close contacts, both those who received PEP and those who did not, became infected (Table 1). The overall protective efficacy of the 3-day regimen of oseltamivir for PEP was 93% (95% CI, 53%-99%; P = 0.023) (Table 1).

Discussion

Several studies have been conducted on the effectiveness of PEP with oseltamivir using 7 to 10-day regimens. In our hospital, patients who developed influenza during hospitalization have been separated into a private room immediately after diagnosis for preventing influenza transmission. This led us to the idea that the period for administration of PEP with oseltamivir could be shortened to less than 7-10 days. In the 2004/05 influenza season, we started PEP with oseltamivir using a 5-day regimen. Fifty-two inpatients who were in close contact with influenza patients received PEP with oseltamivir for 5 days and none of them had flu-like symptoms. This encouraged us to start a 3-day regimen from the 2005/06 influenza season. The results have been evaluated annually and we became convinced that a 3-day regimen of oseltamivir as PEP was effective. The subtypes of influenza A viruses detected in Japan from 2005-2006 to 2014-2015 seasons and the numbers of contacts with or without PEP in our hospital are summarized in Table 2. The data shown in Table 2
suggest that oseltamivir was effective in preventing onset of influenza A after exposure to three subtypes of influenza A viruses.

In previous studies, protective efficacy of oseltamivir was shown to be 89% \(^4\) and 68% \(^3\) in households and 89% \(^5\) in pediatric wards. Protective efficacy of oseltamivir in this study was 93% for all of the influenza patients and 94% for the patients with influenza A, indicating the effectiveness of the 3-day regimen of oseltamivir for PEP.

PEP with oseltamivir for two patients in this study who had impaired renal function failed to prevent influenza infection. Although an every-other-day schedule of oseltamivir has been recommended for patients with impaired renal function \(^8\), prescription of oseltamivir on the first and third days might not be sufficient for the 3-day regimen of oseltamivir for PEP. Additionally, because virus shedding occurs at 1-2 days before onset of influenza \(^9\), it is difficult to calculate the true interval between exposure to influenza virus and oral administration of oseltamivir for the close contacts. This makes it difficult to determine the causes of failure to prevent influenza by PEP.

Further studies are necessary.

There are limitations in this study. Our study was not a randomized placebo-controlled study, because we could expect effectiveness of PEP from previous studies \(^3, 4\). It is known that younger people are more frequently affected than elderly people by influenza \(^10\). Therefore, the effectiveness of PEP might be potentially overestimated because the persons in the non-PEP group were younger than those in the PEP-group. Because there was a more than 10-fold difference in the numbers of patients in the PEP and non-PEP groups, there might be potential biases including vaccine status, which was not investigated in this study.
In conclusion, protective efficacy of the 3-day regimen of oseltamivir for PEP in preventing nosocomial transmission of influenza is comparable to that of 7 to 10-day regimens, provided that index cases are immediately separated from contacts. The 3-day regimen of oseltamivir has an advantage over 7 to 10-day regimens in terms of economics of health care.

Acknowledgements

We thank Stewart Chisholm for proofreading the manuscript and Yoshihiro Sakoda for helpful advice.

References

180. *JAMA* 2001; **285**: 748-54.

Table 1. Results of post-exposure-prophylaxis using oseltamivir for persons in close contact with influenza patients

<table>
<thead>
<tr>
<th>Influenza A+B</th>
<th>Index cases (n)</th>
<th>Close contacts (n)</th>
<th>PEP*</th>
<th>Disease/Contacts</th>
<th>Protective Efficacy (95% CI)</th>
<th>P**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A+B</td>
<td>86</td>
<td>227</td>
<td>yes</td>
<td>2/212 (0.9%)</td>
<td>93% (53%-99%)</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>2/15 (13.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza A</td>
<td>79</td>
<td>212</td>
<td>yes</td>
<td>2/200 (1.0%)</td>
<td>94% (61%-99%)</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>2/12 (16.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza B</td>
<td>7</td>
<td>15</td>
<td>yes</td>
<td>0/12 (0.0%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>0/3 (0.0%)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*PEP: post-exposure-prophylaxis, **Fisher’s exact test.
<table>
<thead>
<tr>
<th>Series</th>
<th>Influenza A virus subtype</th>
<th>Contacts with PEP (disease)</th>
<th>Contacts without PEP (disease)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AH1pdm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/2006</td>
<td>0 (0.0%)</td>
<td>1375 (28.7%)</td>
<td>3424 (71.3%)</td>
<td>4799 (100.0%)</td>
</tr>
<tr>
<td>2006/2007</td>
<td>0 (0.0%)</td>
<td>633 (20.9%)</td>
<td>2396 (79.1%)</td>
<td>3029 (100.0%)</td>
</tr>
<tr>
<td>2007/2008</td>
<td>0 (0.0%)</td>
<td>3819 (87.5%)</td>
<td>544 (12.5%)</td>
<td>4363 (100.0%)</td>
</tr>
<tr>
<td>2008/2009</td>
<td>9732 (60.8%)</td>
<td>3607 (22.6%)</td>
<td>2661 (16.6%)</td>
<td>16000 (100.0%)</td>
</tr>
<tr>
<td>2009/2010</td>
<td>22264 (99.3%)</td>
<td>0 (0.0%)</td>
<td>168 (0.7%)</td>
<td>22432 (100.0%)</td>
</tr>
<tr>
<td>2010/2011</td>
<td>6250 (61.9%)</td>
<td>0 (0.0%)</td>
<td>3849 (38.1%)</td>
<td>10099 (100.0%)</td>
</tr>
<tr>
<td>2011/2012</td>
<td>15 (0.3%)</td>
<td>0 (0.0%)</td>
<td>5145 (99.7%)</td>
<td>5160 (100.0%)</td>
</tr>
<tr>
<td>2012/2013</td>
<td>163 (3.1%)</td>
<td>0 (0.0%)</td>
<td>5044 (96.9%)</td>
<td>5207 (100.0%)</td>
</tr>
<tr>
<td>2013/2014</td>
<td>3494 (66.8%)</td>
<td>0 (0.0%)</td>
<td>1736 (33.2%)</td>
<td>5230 (100.0%)</td>
</tr>
<tr>
<td>2014/2015</td>
<td>12 (1.0%)</td>
<td>0 (0.0%)</td>
<td>1150 (99.0%)</td>
<td>1162 (100.0%)</td>
</tr>
</tbody>
</table>

Table 2. Subtypes of influenza A viruses detected in Japan from 2005-2006 to 2014-2015 seasons and numbers of contacts with or without PEP in our hospital.