Amino acid substitutions in GyrA affect quinolone susceptibility in Salmonella typhimurium

Kongsoi, Siriporn; Changkwanyeun, Ruchirada; Yokoyama, Kazumasa; Nakajima, Chie; Changkaew, Kanjana; Suthienkul, Orasa; Suzuki, Yasuhiko

Drug Testing and Analysis, 8(10): 1065-1070

2016-10

http://hdl.handle.net/2115/67279

This is the peer reviewed version of the following article: S. Kongsoi, R. Changkwanyeun, K. Yokoyama, C. Nakajima, K. Changkaew, O. Suthienkul, Y. Suzuki. Amino Acid Substitutions in GyrA Affect Quinolone Susceptibility in Salmonella Typhimurium. Drug Test. Anal. 2016, 8, 1065, which has been published in final form at http://dx.doi.org/10.1002/dta.1910. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Type: article (author version)

There are other files related to this item in HUSCAP. Check the above URL.
Supplementary figure 1. Inhibitory activities of LVX on the supercoiling activities of S. Typhimurium DNA gyrase.

WT, wild-type. LVX, levofloxacin. R, relaxed pBR322 DNA. SC, supercoiled pBR322 DNA. Relaxed pBR322 DNA (0.3 μg) was incubated with 30 ng of each DNA gyrase in the presence of the indicated amount of LVX (μg/ml). The reaction was stopped, and the DNA product analysed by electrophoresis in 1% agarose gels.
Supplementary figure 2. Inhibitory activities of CIP on the supercoiling activities of *S. Typhimurium* DNA gyrase.

WT, wild-type. CIP, ciprofloxacin. R, relaxed pBR322 DNA. SC, supercoiled pBR322 DNA. Relaxed pBR322 DNA (0.3 μg) was incubated with 30 ng of each DNA gyrase in the presence of the indicated amount of CIP (μg/ml). The reaction was stopped, and the DNA product analysed by electrophoresis in 1% agarose gels.
Supplementary figure 3. Inhibitory activities of NAL on the supercoiling activities of *S. Typhimurium* DNA gyrase.

WT, wild-type. NAL, nalidixic acid. R, relaxed pBR322 DNA. SC, supercoiled pBR322 DNA. Relaxed pBR322 DNA (0.3 μg) was incubated with 30 ng of each DNA gyrase in the presence of the indicated amount of NAL (μg/ml). The reaction was stopped, and the DNA product analysed by electrophoresis in 1% agarose gels.