<table>
<thead>
<tr>
<th>Instructions for use</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Size distributions of sprays produced by violent wave impacts on vertical sea walls</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Watanabe, Y.; Ingram, D. M.</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings of the royal society a-mathematical physical and engineering sciences, 472(2194): 20160423</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-10-12</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/67295</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>RSPA_dropstats_f_YW_DMI.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Size distributions of sprays produced by violent wave impacts on vertical sea walls

Y. Watanabe1 and D. M. Ingram2

1Hokkaido University, Graduate School of Engineering, North 13 West 8, Sapporo, Japan
2School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom

When a steep, breaking wave, hits a vertical sea wall, in shallow water, a flip-through event may occur, leading to the formation of an up-rushing planar jet. During such an event, a jet of water is ejected at a speed many times larger than the approaching wave’s celerity. As the jet rises the bounded fluid sheet ruptures to form vertical ligaments which subsequently break up to form droplets, creating a polydisperse spray. Experiments in the University of Hokkaido’s 24m flume measured the resulting droplet sizes using image analysis of high-speed video. Consideration of the mechanisms forming spray droplets shows that the number density of droplet sizes is directly proportional to a power p of the droplet radius: where $p=-5/2$ during the early breakup stage, and $p=-2$ for the fully fragmented state. A result confirmed by the experimental observations. Here we show that the recorded droplet number density follows the lognormal probability distribution with parameters related to the elapsed time since the initial wave impact. This statistical model of the polydisperse spray may provide a basis for modelling droplet advection during wave overtopping events. Allowing the atmospheric processes leading to the enhanced fluxes of mass, moisture, heat and momentum in the spray-mediated marine boundary layer over the coasts to be described.

© The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
1. Introduction

Sea sprays have important roles for meteorological and environmental processes; Examples include the exchanges of gases, moisture and heat, transport of chemical materials [21] and the dynamics of the marine atmospheric boundary layer [15]. The contributions of sea sprays to particular atmospheric processes depend on the size distributions of the spray. This in turn defines the total surface area, where mass exchanges occur via dissolution and evaporation, and the concentration and residence time in the atmosphere, which modify momentum transport between air and water as additional drag forces. In the surf zone, there is a variety of size ranges of the spray each determined by the multitude of primary spray production mechanisms. These range from the finest (sea spray aerosol) created by bubble-bursting at the sea surface [17], through larger spume droplets created by the tearing of wave crests by the wind [1,29], to the largest droplets that are fragmented from finger jets formed by vorticity instability in plunging waves [26,34]. Furthermore, during storm events, when large ocean waves impact on breakwaters and coastal cliffs, sea sprays rising several tens of meters into the air have been often observed in coasts (see Figure 1 left). In this case, further downwind transport of the sea sprays and longer residence time, depending on the size distributions, from higher source levels may largely affect the atmospheric dynamics in a thicker spray-mediated boundary layer. However, the spray size distribution associated with violent wave overtopping events has not yet been identified.

The free-surface dynamics of overtopping water waves was discussed in Watanabe and Ingram [33] and may be summarised as follows: When a shoaling wave crest approaches a vertical wall, the wall prevents the forward flow of water causing the water level at the wall to rise rapidly. The water surface between the rising wave trough and advancing crest converges rapidly resulting in the violent ejection of a sheet, the so-called flip-through event [7,8]. Large and small scale experiments [5] and computer simulations [14] have shown that the velocity of the up-rushing jet can be eight to ten times the inshore wave celerity. As the sheet of water rises it evolves cusp like formations which are amplified to producing finger jets and ligaments subsequently fragmented into droplets (see Figure 1 right). The instability modes and mechanical processes causing this fragmentation are described in the companion paper [33]. This paper focuses on the question of which probability-density-function (PDF) best describes the spray droplet distribution in the polydisperse spray during this violent wave overtopping event.

Polydisperse sprays occur in many engineering applications including fuel injection, agricultural irrigation, the application of pesticides and herbicides, painting and coating surfaces,
spray drying etc. One approach to modelling the spray is to use a PDF to represent the probable number of droplets with certain diameters and velocities in a given region [12,13,16,28,32]. The Rosin-Rammler distribution was suggested [35] and has been found to be appropriate for many types of atomisation spray [2]. However, Eggers and Villermaux [10], and Villermaux et al. [31] suggests that the Gamma distribution is more appropriate for cases were droplets are torn from fluid ligaments in a gas stream. In cases where there are multiple droplet collisions the lognormal distribution has been suggested [9,11] to be appropriate. The lognormal distribution applies in situations where the interactions of positive random variables are multiplicative rather than additive. Recent work has shown that the lognormal can also apply to additive, positive, random scalar fields such as those found in turbulence [20].

While the Rossin-Rammler, Gamma and lognormal PDFs have all been proposed as models of spray sizes in polydisperse sprays the formation mechanisms for the polydisperse sprays are different from those in present case. Watanabe and Ingram [33] found that two distinct mechanisms govern the breakup of the rapidly ascending liquid sheet formed during a flip-through event: Initial amplification of undulations in the sheet thickness resulting in the formation of ligaments which fragment into droplets; and transverse deformations of the rim bounding the liquid sheet form finger jets which, due to capillary instability, also break up to form droplets. The reader is referred to the supplementary video accompanying [33] which shows the breakup of the liquid sheet following a flip-through event. In this paper, the kinematic and geometric features of droplets fragmented from the unstable rim and sheet system is discussed and an appropriate PDF identified to describe the polydisperse spray formed by the wave impact. The results presented here continue the analysis presented in the companion paper and are based on the same set of experiments. Here we consider the resulting spray, where Watanabe and Ingram [33] describes the breakup of the up rushing sheet-rim system.

The paper is organised as follows. In Section 2, the experimental setup and conditions are explained. Section 3 discusses the kinematic and geometric features of the droplets fragmented from the unstable rim and sheet system observed experimentally following the wave impact. The probability density function describing the droplet size distribution is identified. Finally, the results are summarised in Section 4.

2. Experiments

This section briefly explains the fundamentals experimental methods and conditions used to study the flip-through events. The experimental set-up is described in detail in our companion paper [33] to which the reader is referred for more detail.
The experiments were conducted in the 24 m long wave flume at the University of Hokkaido. The 0.6 m wide, 1.0 m deep, flume is fitted with a piston type wave maker with active wave absorption. A transparent, acrylic, rectangular, box 0.2 m long and 0.6 m wide with a height of 1.0 m was installed on the 1/20 slope beach to form a breakwater with a vertical seaward face (see Figure 2). The model breakwater was weighted and anchored to the beach to achieving a stationary wall.

The water in the flume was coloured using the fluorescence dye, Uranine (Sodium Fluorescein), to enhance contrast of the liquid region. Uranine excites with blue light (absorb wavelength of 436 nm) and fluoresces with a green light (wavelength of 530 nm). A rectangular blue light-emitting-diode (LED) panel (200mm × 100 mm) was set on the back of the transparent front wall of the model breakwater and used to illuminate the dyed water passing over it. An 8-bit high-speed video camera recorded the illuminated area using a 45° angled reflector (see Figure 2). A low-pass optical filter (≤ 450 nm) was fitted to the camera, to eliminate the fluorescent emissions from liquid and allow only the blue component, from the back light, to be recorded (see Figure 4). The concentration of the dye, 0.11 mg l⁻¹, was chosen to ensure that there would be no light transmission across a 0.25 mm thick fluid film. The 8-bit, 1280 × 1024 pixel images were recorded at 500 Hz with an exposure time of 0.125 ms and were stored on a PC connected to the camera as uncompressed bitmaps. We define the coordinate system for the experiment with the origin at the point of wave breaking in the horizontal shoreward x axis, the nearside of the flume in the transverse, y, axis and at the still water level in the vertical z axis. The still water depth at the origin x = 0 was 100 mm. Throughout the experiments monochromatic waves with the incident wave height of 146 mm and a wave period of 1.9 s were used.

The resulting wave impact pressure is very sensitive to the incident wave shape at the impact [22], and consequently the surface behaviour of the vertical jets also depends strongly on the surface shape of the wave face (or local wave steepness). In general, progressive waves with mild steepness reflect off the wall and behave like standing waves at the wall, while steeper waves produce more violent impacts causing highly accelerated thin up-rushing fluid jets (see Figure 3). The post breaking wave impact provides more complex fluid flows involving entrained air bubbles and induced turbulence. During the experiments the model breakwater was located at x = -300, -200, -100 mm (in the pre-breaking region), 0 mm (for the flip-through mode), and 200 mm (for post-breaking region). The region illuminated by the LED panel was also traversed vertically from 50 mm above the still water level to +800 mm at 50 mm intervals to allow the vertical evolution of the jets to be examined. The 20 trials of the experiments were performed at each level to allow a statistical analysis of the results.

Noise on the acquired images was reduced using a median filtering operation. Image coordinates were transformed to real coordinates using a linear image transformation, providing quantitative measures of the liquid surface on images at 0.10 mm/pixel resolution.

Each frame from the video was post processed using the energy fitting algorithm level-set method [6]. This allows the detection of both the boundaries of the liquid jet and individual spray droplets. In the present results droplets are defined as regions having a closed boundary while
the jet boundary must intersect the edge of the image (see Figure 4). Liquid which is out of the focal plane of the camera and which has the maximum absolute gradient of image intensity along the liquid boundaries lower than a given threshold, is removed from ensemble statistics. This approach allows us to distinguish between the liquid jet and the spray droplets and, in this paper, concentrate our attention on the spray.

3. Results

The features of the ascending planar jet and those of the resulting spray population depend strongly on the relative position of the vertical sea wall to the point at which the wave breaks. As the jet rises, undulations in the thickness of the fluid sheet are rapidly amplified and ruptured into an array of vertical ligaments. While lateral undulations of the rim lead to the formation of finger jets that subsequently break up to form droplets and spray. The underlying processes are described in detail in our companion paper [33]. In this section we describe impact of wall location on the spray velocity and droplet population. A consideration of the processes leading to droplet formation are then described, characterising the spray size distributions observed following a flip-through event. Finally several of the probability density functions suggested as descriptions of polydisperse sprays are considered and an appropriate model identified.

(a) Spray velocity and population

The spray formation depends strongly on whether the sea wall is impacted by a pre-breaking, breaking, or broken wave. No spray was observed in the wall location $x < -100$ mm. In this region a vertical planar sheet is stretched from crest of a standing wave as it runs up on the wall (see Figure 3 (a), also Fig. 8 (a) and (b) in Watanabe & Ingram [33]). In shallower locations, the spray population increases with relative wall distance x (see Figure 5 left), as the rim and sheet of the ascending jet successively breakup into droplets. In the flip-through case ($x = 0$), the initial high acceleration of the jets enhances both sheet stretch and the unstable surface behaviours, resulting in large number of spray droplets ascending at higher velocity (see Figure 5 right). A parabolic increase of the spray population with vertical measurement level is observed in this case (Figure 5 left). The maximum population of spray droplets is achieved in the post breaking case ($x = 200$ mm) where complex shaped jets are initially blow out by the collapse of an air pocket squeezed between the overturning jet and sea wall, and the additional spray production is enhanced through the bubble-bursting. In all cases where sea sprays are formed, the fragmented
Figure 5. Spray population (left) and the ensemble mean rise velocities of the ascending jets (solid line) and sprays (broken line) (right) with respect to the relative wall distance from the breaking location.

spray rises much faster than the jet at each measurement level (Figure 5 right); An analysis of the video images shows this is in the region of 1.3 to 1.5 times faster for \(x = -100 \) and 0 mm and between 1.6 and 2.7 times faster for \(x = 200 \) mm.

Whilst a study of the post-breaking spray, where the maximum population is achieved, would be interesting, the mechanical parameters affecting the breakup of the jet, beyond capillary dynamics are unknown. Since the post breaking waves entrap an air pocket and entrain air bubbles before the impact [22,34], the bubble-bursting may become an additional mechanism for the spray production, which is beyond the scope of this study. We have therefore left this case for future investigation and will focus on the flip-through case to identify the statistical features of the spray breakup resulting from consecutive unstable surface deformation described by Watanabe & Ingram [33].

(b) Spray size

In this section, we discuss the breakup mechanisms of the flip-through jets during the unstable deformation of the rim-sheet system.

At the beginning of a flip-through event, as the sheet is ejected, a rim is formed at the leading edge of the jet (Figure 6 top). This rim deforms transversally, forming finger jets during retraction process when the sheet is vertically stretched beneath the rim. Transverse undulations in sheet thickness are amplified, causing the sheet to rupture (Figure 6 middle). As the holes in the sheet extend, multiple vertical ligaments connected to the deformed rim form a rim-ligament system of jets (Figure 6 bottom). Finally, capillary instabilities cause the sequential breakup of the ligaments into droplets. This process is illustrated in Figure 7.

According to Watanabe and Ingram [33], the maximum unstable growth appears in the low wave-number range at the early stage of the flip-through event. As the flip-through event develops the unstable dimensionless wave-number, \(\kappa_{\text{max}} = k_{\text{max}} a_i \), shifts toward higher wave-number, approaching 0.7, which corresponds to Rayleigh-Plateau mechanism. Here the dimensional wave-number \(k_{\text{max}} = 2\pi/l_{\text{max}} \) and \(a_i \) is the initial rim radius. The most unstable (dimensional) wavelength, \(l_{\text{max}} \), which governs the transverse spacings of the ligaments (see Figure 7 left), is therefore a function of rim acceleration \(\ddot{v}_r \). It can be described using the transitional unstable wave-number \(\kappa_{\text{max}}(\ddot{v}_r) \),

\[
l_{\text{max}} = \frac{2\pi}{\kappa_{\text{max}}} a_i.
\]
Figure 6. Transverse surface forms of the flip-through jet (left) and spray size distributions (right), defined by number of spray droplets per m3 in a bin radius 1 μm versus spray radius for 20 trials; vertical level z = 50 mm (top), z = 150 mm (middle) and z = 250 mm (bottom). The red and blue lines represent -5/2 and -2 slopes, respectively.

The number of ligaments in a transverse length L, n_{lf}, can be written by

$$n_{lf} \sim L/l_{max} \approx L \frac{\kappa}{2\pi} a_i^{-1}. \tag{3.2}$$

It can be assumed that the droplets are successively formed at frequency f_d from a single ligament during the initial ligament breakup (see Figure 7 right) following the analogy of the capillary breakup of a cylindrical jet [18]. The transitional number of the droplets formed along the ligament, n_d, in the elapsed time t since the start of the breakup, is given by

$$n_d \sim f_d t \approx \sigma_{max} t, \tag{3.3}$$

the maximum growth rate σ_{max} for the capillary instability is

$$\sigma_{max} = C_d \left(\gamma/\rho b_i \right)^{1/2}, \tag{3.4}$$

where γ, ρ and b_i are the surface tension, liquid density and the initial ligament radius, respectively. For the Rayleigh-Plateau instability on a cylindrical liquid jet, the constant C_d is numerically approximated as $C_d \approx 0.12$ [18].

We can now write the steady-state droplet population, n_{df}, due to breakup at the most unstable (dimensional) wavelength $\lambda_{max} = C_d b_i$, with ligament length M in the fully fragmented stage (see Figure 7 right) as

$$n_{df} \sim M/\lambda_{max} \approx M C_{df}^{-1} b_i^{-1}, \tag{3.5}$$

where the constant C_{df} for an unstable cylindrical jet is numerically estimated to be 9.02 [18]. Equating this with equation (3.3) temporally integrated from the inception of breakup to the time achieving fully fragmented state, we find the droplet formation occurs in the range
Figure 7. Schematic illustration of the deformation and breakup of the flip-through jets; (a) a deformed rim connected to vertical ligaments, resulted from instabilities of the rim-sheet system, and (b) breakup of the ligaments owing to capillary instability.

\[0 \leq t \leq (2M)^{1/2} \left(C_d C_{df} \nu_c \right)^{-1/2}\] of the breakup period, where capillary velocity \(u_c = \sqrt{\gamma / \rho_i} \). Furthermore, the integrated number of droplets formed in the rim-ligament system until \(t \) in the early stages of the breakup process, \(N_e \), can be estimated as

\[N_e \sim n_{df} n_d t^2 / 2 \approx C_e a_i^{-1} b_i^{-3/2} t^2 \approx C_e a_i^{-5/2} t^2, \] (3.6)

assuming identical rim and ligament radii \(a_i \approx b_i \), where \(C_e \) is the constant. The temporal increase of \(N_e \) is consistent with the observed parabolic increase of the spray population with measurement level, shown in Figure 5 (left). When the ligaments are fully fragmented into droplets, the total number of the droplets formed in the rim-ligament system at the steady state, \(N_s \), may be approximated as

\[N_s \sim n_{df} n_d f \approx C_s a_i^{-1} b_i^{-1} \approx C_s a_i^{-2}, \] (3.7)

where \(C_s \) is the constant.

Rutland and Jameson [24] used theory to predict the volumes of the main and satellite droplets fragmented from a liquid jet with radius \(a_i \) and compared this with measured droplet sizes. They found the theoretical droplet size associated with the most unstable wave-number, \(r = 1.89 a_i \). As the radius \(r \) can be assumed to be proportional to \(a_i \) for equations (3.6) and (3.7), the total droplet numbers are therefore related to the drop radius;

\[N_e \propto r^{-5/2}, \] (3.8)

\[N_s \propto r^{-2}. \] (3.9)

Figure 6 shows the droplet size distributions plotted on log-log axes as number density, \(N_d \), (representing the number of droplets per m\(^3\) in each 1\(\mu\)m radius bin) against the equivalent radius of droplet area detected on the experimental images, \(r_d \), together with the transverse surface forms of the flip-through jet at the corresponding level from \(z = 50 - 250 \) mm.

While there is active deformation of the unstable surface of the jet at the early stage of the flip-through event, the observed size distributions are similar, in a larger range than the radius with the maximum density, at all three measurement levels with \(\ln N_d \) decaying with \(\ln r_d \), while the dispersions increase with \(r_d \). The plots show that the number densities in the larger radius range are well approximated by a \(-5/2\) slope (denoted by a solid red line) and a \(-2\) slope (a solid blue line). A result which is consistent with our estimates of the total droplet numbers given
Figure 8. Transverse surface forms of the flip-through jet (left) and spray size distributions (right), defined by number of spray droplets per m3 in a bin radius 1 μm versus spray radius for 20 trials; vertical level $z = 350, 450, 600, 800$ mm from top to bottom. The red and blue lines represent -5/2 and -2 slopes, respectively.

by equations (3.8) and (3.9). The observed dispersion may be associated with nonlinear growth of the unstable deformations, formations of the satellite drops [24] and variable ligament sizes, all of which are neglected in our linear stability analysis of the rim-sheet system [33]. There are large changes in the exponential gradient of the experimental droplet sizes in the small size range ($r_d < 0.4mm$), suggesting breakup of the small droplets is governed by dynamics, other than those described above, during sequential breakup process from larger droplets into smaller ones. The formation of smaller droplets is therefore likely to break the assumption made in the current droplet number models. Consequently the models are only applicable to the large droplets ($r_d > 0.4$ mm).

As the rim and sheet continue to disintegrate they are successively fragmented into spray (Figure 8). The spray then continues to ascend but no further breakup behaviour is observed. By $z = 800$ mm, it is clear that the breakup process has been terminated before spray arrives at this level as no ligaments from either the fragmented rim, or the sheet are observed. In this fully fragmented state, the steady size distribution (3.9) provides a more appropriate approximation of the observed spray than the transitional model (3.8).
Figure 9. Probability density functions of the normalised spray size; $z = 200$ mm (left), $z = 400$ mm (middle) and $z = 600$ mm (right).

Figure 10. Quantile-quantile plots for the experimental spray size distributions against the $\Gamma(n = 2)$ (left) Weibull (middle) and lognormal (right) distributions.

While the larger ranges of the size distribution, which can be approximated by equations (3.8) and (3.9), are unchanged over measurement levels, the droplet radius associated with the maximum number density decreases with level because of successive breakup below the level $z = 600$ mm. The following droplet radii are observed in the experimental data: 0.29 mm at $z = 200$ mm, 0.27 mm at $z = 400$ mm, and finally 0.20 mm at $z = 600$ mm.

We find a decrease in the population of the small size range at $z = 800$ mm, while the population of larger droplets remains unchanged, resulting in relative increase of the maximum and mean drop radius from the lower level. Since the drag forces acting on the ascending fragmented droplets are size-dependent, they have a variety of rise velocities depending on the local size distribution at this stage. As smaller droplets may be decelerated more than larger ones and fall at lower levels, the relative number of smaller droplets is reduced to be recorded at a high measurement level where new production of small droplets due to breakup has been terminated. Evaporation may also have a small effect to the observed distribution, but this is left for future investigations.

(c) Probability Distribution

While the models above apply only to the larger droplet sizes, statistical probability density functions (PDFs) can be used to describe the number density distribution over the whole range of droplet sizes. Several different PDFs have been suggested.
Villermaux et al. [31] found that the Γ distribution provides a good model for the PDF of the size of spray droplets fragmented from ligaments torn off from the liquid jet in gas stream. The same distribution also been shown to provides a good model for the fragment sizes for liquid sheets resulting from the oblique collision of two cylindrical jets [4] and for an axisymmetric expanding sheet formed by impact of steady gravity-driven circular jet and droplet onto a horizontal upper surface of a solid cylinder [3,30]. The Γ distribution is

$$p_{\Gamma}(x = d/\bar{d}) = \frac{n^n}{\Gamma(n)} x^{n-1} \exp(-nx)$$

(3.10)

where d is the spray diameter, \bar{d} is the mean diameter. A parameter n is chosen for reflecting the initial configuration of the ligaments. $n \sim 4$ to 5 is suggested in Bremond et al. [3].

Roisman et al. [25] proposed the Weibull distribution as an empirically approximation for the PDF of secondary droplets generated through the rim instability of crown splashes.

$$p_W(x) = \left(\frac{x}{\alpha}\right)^{\beta-1} \exp\left(-\left(\frac{x}{\alpha}\right)^\beta\right)$$

(3.11)

where the parameters α and β are again estimated empirically. Another alternative is the lognormal distribution,

$$p_{ln}(x) = \frac{1}{x\lambda\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\lambda^2}\right)$$

(3.12)

where the logarithmic average μ and standard deviation λ are determined by fitting procedures.

Figure 9 shows the pdfs for Γ, Weibull and lognormal distributions fitted to the experimental data. The Γ distribution with $n = 2$, $n = 3$ or $n = 5$ provides a poor fit to the data, while the Weibull distribution models performs well for large droplet sizes with $d/\bar{d} > 2$ but performs poorly for smaller droplets. In contrast the lognormal distribution fits the data well across the whole d/\bar{d} range. The deviation from the Γ and Weibull distributions indicates that the underlying spray formation mechanisms are different from those discussed by [3] and [25]. There are major differences between the initial unstable behaviours in the flip-through events [33], undulating liquid sheet [3] and crown splashes [25] which lead to different droplet size distributions. The dynamics of the coupled rim-sheet, leading to the transitional rim-ligament system, discussed in (b), defines the distinct initial conditions for the number density of the droplets fragmented from the system.

Our initial investigation of which the three proposed PDFs fits the data begins by examining quantile-quantile (QQ) plots of the measured and modelled spray size distributions. QQ plots plot the ranked experimental data against the equivalent quantiles of the theoretical distribution. If the distribution provides a good fit for the data the observations will lie on the 45° line. It should be noted that even in the case of a good fit, the extreme values will often lie off the line. Figure 10 shows quantile-quantile (QQ) plots for the experimental spray size measurements against the $\Gamma(n = 2)$ (left) Weibull (middle) and lognormal (right) distributions. The QQ plots for the $\Gamma(n = 2)$ and Weibull distributions clearly show that the quantiles of the distributions do not fit with those of the experimental data. In both values above the medians lie far from the line, indicating a poor fit. The QQ plots provide strong, graphical, evidence that neither the $\Gamma(n = 2)$ or Weibull distributions provide good models for the probability density function of the spray size. The lognormal QQ plot, in contrast, shows good agreement between the model and experimental distributions with very little deviance from the straight line at any of the three elevations. This analysis indicates that the mechanisms for the breakup of the spray proposed by [31] and [25] are different from that associated with the flip-through case and suggests that the lognormal distribution may provide a good model for the spray size PDF.

Stronger statistical evidence of the goodness of fit is obtained by performing the, well-known, non-parametric, Kolmogorov-Smirnov test for the fit of a distribution. The Kolmogorov-Smirnov tests the null hypothesis that the specified distribution fits the data against the alternate hypothesis that it does not, if the calculated p-value is smaller than 0.05 then there is significant
statistical evidence to reject the hypothesis that the data fits the distribution. The test was performed using the R statistics package [23].

The calculated p-values from the tests for fitting the lognormal distribution at the three elevations are: \(P_{z=200} = 0.2132 \), \(P_{z=400} = 0.2649 \), and \(P_{z=600} = 0.6444 \). In all three cases the p-value is greater than 0.05 so we conclude that at the 5\% significance level there is insufficient statistical evidence to reject the hypothesis that the lognormal distribution fits the spray size data.

Trietsch and Baker [27] report that while the normal distribution is usually a good representation of the interaction of \(n \), independent, random variables (due to the central limit theorem) it is inadequate for strictly positive variables, since there is a finite probability of having a negative value. They note that in such cases the lognormal distribution may be appropriate. Mouri [20] shows that the lognormal is also good approximation for small \(n \). Since droplet size must be strictly positive and in the formation of the spray droplet collisions are likely to occur it seems likely that the conditions noted by Trietsch and Baker [27] and Mouri [20] are met. The lognormal distribution is widely accepted to describe populations of observed atmospheric aerosol particles including sea spray aerosol which exhibits multiple lognormal modes [19,36], which provides a consistent analogy with the present analysis, although the size range reported is orders of magnitude smaller than those involved in this study.

In order to provide a general representation of the empirical parameters for the droplet size PDF during the fragmentation process we introduce the dimensionless time

\[
t^* = \frac{t_i}{\tau_c},
\]

where \(t_i \) is the arrival time of the jet at the vertical level \(z \) from the time to start the flip-through and \(\tau_c \) is the capillary time for the rim deformation, \(\tau_c = \sqrt{\frac{\rho_i c_i^3}{\gamma}} \). The normalised time \(t^* \) thus provides a relative measure of the evolution of the capillary deformation. Least-squares estimates for the lognormal parameter \(\mu \) and \(\lambda \) are shown in Figure 11. In all cases linear relationships provide a good fit between the scaled time and the distribution parameters.

The least-squares approximations for the free parameters of lognormal distribution are:

\[
\lambda = 0.0074 t^* + 0.73 \tag{3.13}
\]
\[
\mu = -0.0068 t^* - 0.24 \tag{3.14}
\]

indicating that there is a small decreases in mean droplet diameter with increasing time while the standard deviation increases. The temporal variations of \(\mu \) and \(\lambda \) interpret the statistical features

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{log_normal_distribution}
\caption{Evolution of the optimal parameters of the lognormal distribution.}
\end{figure}
that the maximum spray number density increases and the prominent spray becomes finer due to
the successive breakup of the rims and ligaments into smaller droplets during the up rush stage
of flip-through jet.

The present analysis provides a physical basis for a statistical model of sea sprays produced
by violent wave impacts on sea walls, and other sheer vertical surfaces, along the coastline. The
model may lead to further understanding of coastal atmospheric processes, occurring at the nexus
of the natural and built environment in the marine boundary layer.

4. Conclusions

The fragmentation into spray of the water jet created by flip-through events when a breaking
wave impacts on vertical walls has been characterised using image analysis to measure droplet
sizes during wave impact experiments and the resulting spray size distributions examined.

A theoretical consideration of the rim-ligament system created by instabilities in the rim-
sheet system created by the wave impact [33], shows that for larger droplet sizes the number
distribution decays with an exponential -5/2 slope for the early transitional stage of the flip-
through and -2 slope in the steady, fully fragmented, stage. These estimates are consistent with
the experimental data collected.

A comparison of the probability density functions (PDFs) proposed for modelling polydisperse
sprays (Γ, Weibull and lognormal) shows that the lognormal distribution provides a good
statistical fit for sprays resulting from flip-through events. The deviation from the Γ and Weibull
distributions is due to different underlying spray formation mechanisms from those for crown
splashes and undulating liquid sheets for which the first two distributions are proposed.

Furthermore, linear fits for the mean and standard deviation of the lognormal distribution as
functions of rise time have been produced. These fits provide a statistical model that gives a good
description of the spray size distribution resulting from a flip-through event.

Coastal sea sprays affect both the dynamics within the marine boundary layer and the
downwind environment. Sea sprays produced by violent wave impacts on sea walls, especially
during storm events, may rise high into the air resulting in significant downwind transport of the
spray aerosols and high residence times. Such high spray concentrations and long residence times
may modify the dynamics of the atmospheric boundary layer. The present statistical model may
provide useful, physically-rational, descriptions of spray aerosols along the coast, caused by wave
impacts on both man made structures and vertical sea cliffs, leading to improved understanding
of coastal atmospheric processes and sea spray transport.

Authors’ contributions. Y.W. and D.I. conceived of the research, carried out the analyses, drafted the
manuscript and approved the study for publication.

Data accessibility. This article is supported by the identical experimental image data used in the
companion paper [33] containing the supplementary movie file of the original image data (Movie S1) at
http://rspa.royalsocietypublishing.org/content/471/2182/20150397.figures-only.

Acknowledgements. The authors thank S. Ishizaki for his help in conducting experiments.

Funding. This research was supported by JSPS Grant-in-Aid for Scientific Research (15H04043).

Competing interests. The authors declare that no competing interests exist.

References

1. Anguelova M, Barber Jr. RP, Wu J. 1999 Spume drops produced by the wind tearing of wave
2. Beck JC, Watkins AP. 2003 On the development of a spray model based on drop-size moments,
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Science
459, 1365–1394.
18. Lewis ER, Schwartz SE 2004,SEA salt aerosol production, American Geophysical Union.
19. Mouri H. 2013 Log-normal distribution from a process that is not multiplicative but is additive, Physical Review E 88(4), 042124.

