<table>
<thead>
<tr>
<th>Title</th>
<th>Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kitamura, Hidemitsu; Ohno, Yosuke; Toyoshima, Yujiro; Ohtake, Junya; Homma, Shigenori; Kawamura, Hideki; Takahashi, Norihiko; Taketomi, Akinobu</td>
</tr>
<tr>
<td>Citation</td>
<td>Cancer Science, 108(10), 1947-1952</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-10</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/67657</td>
</tr>
<tr>
<td>Rights(URL)</td>
<td>http://creativecommons.org/licenses/by-nc/4.0/</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
</tbody>
</table>
Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy

Hidemitsu Kitamura,1 Yosuke Ohno,1,2 Yujiro Toyoshima,1,2 Junya Ohtake,1 Shigenori Homma,2 Hideki Kawamura,2 Norihiko Takahashi2 and Akinobu Taketomi2

1Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University; 2Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan

Key words Cancer immunotherapy, dendritic cell, immunosuppression, interleukin-6, STAT 3

Correspondence Hidemitsu Kitamura, Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kitaku, Sapporo 060-0815, Japan.
Tel: +81-11-706-5520; Fax: +81-11-706-5519; E-mail: kitamura@igm.hokudai.ac.jp

Funding Information This work was partially supported by Grants-in-Aid for Scientific Research (C) (25460584) to H. K. and 16K10526 to N. T.) from the Japan Society for the Promotion of Science (JSPS), the Platform Project for Supporting Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (H. K.), the Japan Agency for Medical Research and Development (AMED) (A. T.), and the Joint Research Program of the Institute for Genetic Medicine, Hokkaido University (A. T.).

Received April 3, 2017; Revised July 18, 2017; Accepted July 24, 2017

doi: 10.1111/cas.13332

Since the discovery of cancer-related antigens in the 1990s, cancer immunotherapy has developed as a promising cancer treatment based on cancer-specific activation of the host immune system.1,2 To date, many basic studies and clinical trials of cancer peptide vaccines and adoptive T cell therapies have been conducted for the treatment of cancer patients.3,4 However, while some trials have reported clinical efficacy, cancer vaccine therapies are not yet a standard therapy for cancer patients. To develop more effective cancer immunotherapies, it is crucial to induce strong and persistent antitumor immune responses in the tumor microenvironment.

It has been reported that dysfunction of antitumor immunity occurs in tumor-bearing hosts. Various immunosuppressive cytokines, including interleukin (IL)-10 and transforming growth factor (TGF)-β, produced at high levels in tumor-bearing states inhibit the function of antitumor effector T cells. In addition, immune suppressive cells, such as Foxp3+CD4+ regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC), induced from immature myeloid cells in tumor microenvironments are well known to block antitumor immunity.5–7

Recently, effective immune checkpoint therapy using anti-programmed cell death protein-1, anti-programmed death-ligand 1 and/or anti-cytotoxic T lymphocyte (CTL)-associated protein-4 antibodies to activate effector T cells in cancer patients has been reported for various solid tumors.8–10 These results indicate that cancer antigen-specific T cells, which eliminate cancer cells, potentially exist in tumor microenvironments. As a result, blocking negative signals to tumor-infiltrating T cells can restore their cytotoxic function against target cancer cells. Thus, introduction of cancer antigen-specific effector T cells into the tumor microenvironment is required as the first step towards more effective cancer immunotherapy.

Dendritic cells (DC), representative antigen-presenting cells, strongly induce antigen-specific immune responses through
activation of CD4\(^{+}\) T and CD8\(^{+}\) T cells. In cancer patients, DC expressing human leukocyte antigen (HLA) class I, HLA class II and co-stimulatory molecules on their cell surface are crucial for induction of cancer-related antigen-specific T helper (Th) cells and CTL through the T cell–DC interaction.\(^{11-14}\)

Therefore, proper regulation of DC functions in tumor-bearing hosts is important to induce antitumor immunity.

Interleukin (IL)-6, a pleiotropic cytokine with various effects on cells and tissues, is produced by many different cell types, including immune cells, fibroblasts, endothelial cells and tumor cells.\(^{15,16}\) IL-6 first binds to the IL-6 receptor (IL-6R). The IL-6/IL-6R complex then associates with the signal-transducing membrane protein gp130, inducing its dimerization to initiate IL-6 signaling. Gp130 dimerization is followed by rapid activation of the Janus kinase (JAK) family and several signaling pathways, including phosphorylilinolsit-3-kinase/extracellular signal-regulated kinase/mitogen-activated protein kinase and signal-regulated kinase and co-activator of transcription 3 (STAT3).

STAT3 activation induces numerous effector genes involved in cell proliferation, differentiation and survival.

Previously, it was reported that IL-6 signaling suppresses major histocompatibility complex (MHC) class II expression on murine DC through STAT3 activation, and attenuates CD4\(^{+}\) T cell-mediated immune responses.\(^{17,18}\) Furthermore, we found that in addition to functional antibody and mononuclear IL-6R enhances T cell responses and inhibits tumor growth \textit{in vivo}.\(^{19,20}\) Next, we confirmed that IL-6 suppresses CD4\(^{+}\) T cell-mediated immunity through downregulation of MHC class II by enhanced arginase activity of DC in tumor-bearing mice. IL-6-mediated STAT3 activation appears to be a critical mechanism for induction of dysfunctional immune system responses in the tumor microenvironment through regulation of antigen-presenting cells. Thus, blockade of IL-6/STAT3 signaling cascades in DC may be a promising approach to overcome the dysfunction of antitumor immunity in cancer patients.

Some studies using murine tumor-bearing models have indicated the positive effects of IL-6 in anti-tumor immunity. A previous paper demonstrated that IL-6 produced by non-hematopoietic stromal cells acted cooperatively with soluble IL-6R\(\alpha\) and thermally induced gp130 to promote E/P-selectin-dependent and ICAM-1-dependent extravasation of cytotoxic T cells in tumors and apoptosis of tumor targets.\(^{21}\) Another paper revealed that cryo-thermal therapy induced IL-6 at acute phase and shifted the tumor chronic microenvironment from immune suppression to chronic inflammation in tumor sites.\(^{15,16}\) We investigated IL-6 production and STAT3 activation in tumor tissues of colorectal cancer patients (Fig. 1), and found strong induction of IL6 gene expression in CD11b\(^{+}\)CD11c\(^{+}\) myeloid cells of colorectal tumor tissues compared with those from peripheral blood mononuclear cells (PBMC).\(^{23}\)

Based on this information, we speculate that systemic and local production of IL-6 in cancer patients may be not only useful as promising prognosis markers but also associated with tumorigenesis and antitumor immune responses.

Inhibition of Dendritic Cells Maturation by Interleukin-6 through STAT3 Activation

A previous study has demonstrated that IL-6-deficient mice have increased numbers of mature DC, indicating that IL-6 plays a major role in blocking DC maturation \textit{in vivo}.\(^{17}\) In this study, STAT3 activation by IL-6 was involved in the suppression of TLR4 ligand and lipopolysaccharide (LPS)-induced DC maturation and activation. Furthermore, DC-mediated helper T and killer T cell responses were remarkably enhanced in IL-6-deficient mice. These findings suggest that IL-6 is a potent negative regulator of DC maturation \textit{in vivo}, and the IL-6/STAT3 signaling cascade in DC may represent a critical target for controlling T cell-mediated immune responses in the tumor-bearing state.

We further demonstrated that the IL-6/STAT3 signaling pathway suppresses MHC class II expression on DC and attenuates CD4\(^{+}\) Th cell responses through activation of lymososomal protease in a mouse model.\(^{18}\) Inhibitors of lymososomal proteases blocked the reduction of MHC class II \(\alpha\beta\)-dimer in IL-6-treated DC. In addition, gene overexpression of cathepsin S, a lymosome protease, in DC decreased intracellular MHC class II \(\alpha\beta\)-dimer levels, LPS-mediated surface expression of MHC class II, and suppressed CD4\(^{+}\) T cell activation. These data indicate that IL-6/STAT3-induced excessive activation of lymosomal proteases suppresses the functions of DC through the degradation of MHC class I/\(\alpha\beta\)-dimer in lymososome.
arginase-1, may be involved in both degradation and transcriptional downregulation of HLA class II levels in DC.

In previous reports, CD14+ HLA-DRlow cells were increased in the peripheral blood of advanced cancer patients, and these cells were defined as human MDSC. A recent study has revealed that IL-11, a member of the IL-6 cytokine family, is produced in the tumor microenvironment of colorectal cancer patients and induces MDSC in a STAT3-dependent manner. Taken together, we speculate that STAT3 activation in peripheral myeloid cells may systemically cause downregulation of the surface expression of HLA-DR. In addition to various immunosuppressive cytokines such as IL-10, IL-11 and TGF-β, IL-6 produced in the tumor microenvironment may be one of the main cytokines that control the expression of MHC/HLA class II in a STAT3-dependent manner. Therefore, IL-6/STAT3 signaling inhibits the maturation of tumor-infiltrating myeloid cells into antigen-presenting cells and attenuates subsequent T cell immune responses.

Suppressive Effects of Interleukin-6 on Dendritic Cell-mediated Th1 Cell Responses

The helper functions of antigen-specific Th1 cells, such as production of IL-2 and interferon (IFN)-γ, are essential to induce fully activated CTL in tumor-bearing hosts. A previous report has demonstrated that a cancer antigen-derived peptide-containing helper epitope induces CTL efficiently in vitro according to the helper function of antigen-specific CD4+ T cells. In fact, a cancer peptide vaccine containing a helper epitope induced CTL in an advanced cancer patient, and the patient experienced a clinical benefit. Recent studies have revealed that IL-6 produced in tumor environments suppresses the differentiation of IFN-γ-producing Th1 cells and promotes subsequent tumor formation. These results suggest that activation of Th1 cells is a crucial event for induction of anticancer immunity in cancer patients.

We demonstrated that the IL-6/STAT3 signaling pathway impairs the antigen-presenting function of human DC through downregulation of HLA class II expression, and attenuates Th1 immunity by decreasing IL-12 production from DC. IL-6-conditioned monocyte-derived DC (MoDC) reduced the activation ability to induce cancer antigen-specific cytokine production by Th cells. IL-12 is an important cytokine for induction of Th1 immunity because it activates STAT4 in CD4+ T cells, inducing subsequent IFN-γ secretion. This study showed that IL-6/STAT3 signaling attenuates IL-12 production by MoDC and actually impairs IFN-γ secretion from CD4+ T cells in vitro. In previous reports, STAT3 was shown to regulate nuclear factor-kB recruitment to the IL-12p40 promoter in murine DC and activation of STAT3 inhibited IL-12p35 gene expression in mice. In fact, IL-12p35−/− mice easily develop tumors following carcinogen exposure compared with wild-type mice. This report indicated that IL-12 is important for anticancer immunity through induction of Th1 immunity. Therefore, IL-6-mediated STAT3 activation in DC may attenuate anticancer immunity according to the Th1 immunity impaired by reduced IL-12 production (Fig. 2).

Blockade of the Interleukin-6 Signaling Cascade to Augment Dendritic Cell-mediated Antitumor Immunity

Dysfunction of the immune system in the tumor-bearing state is a critical issue for the development of effective cancer immunotherapies. A previous study has indicated that IL-6
suppresses antigen-specific CD4+ T cell responses through downregulation of MHC class II on DC in vivo. Based on these findings, we blocked IL-6 signaling by administration of a monoclonal antibody against IL-6 receptor (anti-IL-6R mAb) to enhance antitumor immunity, and confirmed its inhibitory effects on tumor growth. In this study, we found that tumor-infiltrating CD11c+ DC enhanced the arginase-1 mRNA expression level and reduced surface expression of MHC class II in parallel with an increase in serum IL-6 levels at a late stage in tumor-bearing mice. Furthermore, we demonstrated that N(ω)-hydroxy-L-arginine, an arginase-1 inhibitor, blocks the reduction in MHC class II levels on CD11c+ DC during the tumor-bearing state. In vivo injection of the arginase inhibitor at a peritumor site significantly enhanced CD4+ T cell responses and inhibited tumor growth. Therefore, IL-6-mediated arginase activation and the subsequent reduction in MHC class II expression may be involved in dysfunction of the DC-mediated immune system in tumor microenvironments. Accordingly, blockade of the IL-6-arginase cascade may represent a promising approach to overcome the dysfunction of antitumor immunity in tumor-bearing hosts (Fig. 2).

Other Aspects of Interleukin-6 for Anti-tumor Immunity and Tumorigenesis in vivo

Recent studies indicated that the generation of tumor antigen-specific effector T-helper cells was significantly attenuated, and impaired Th1 differentiation was restored by the temporal blockade of IL-6 activity at the T-cell priming phase. The researchers revealed that c-Maf activity was responsible for IL-6/sIL-6R-induced Th1 suppression and defective T-cell-mediated antitumor responses. These data suggest another mechanism for effects of IL-6 that will directly affect T cell function.

Other papers revealed that IL-6 promotes growth and epithelial–mesenchymal transition of CD133+ cells of non-small cell lung cancer, tumorigenicity of oral cancer stem cells, cell adhesion, cancer stem-like and metastatic spread of prostate tumors, the growth and metastasis of breast cancer cells, renewal of breast cancer stem cells (BCSC), and drug resistance of BCSC. Furthermore, it was reported that CD133+ cells produced IL-6, suggesting that cancer stem cells may potentially reduce anti-tumor immunity in vivo. These findings indicate that IL-6 appears to play a critical role in tumorigenesis of cancer stem cells, suggesting that blockade of IL-6 signaling will be a promising target for the treatment and prevention of recalcitrant tumors.

Future Perspective

Recent clinical trials using a chimeric anti-IL-6 mAb, situximab, have been conducted for patients with metastatic renal carcinoma, prostate cancer, advanced solid tumors and multiple myeloma. These treatments were well tolerated by the cancer patients. Serum C-reactive protein was decreased and anemia caused by chronic inflammation was improved by administration of the anti-IL-6 mAb. These data suggest that blockade of IL-6 signaling might control the status of chronic inflammation in patients with advanced cancers. Recently, a phase I trial combining therapy using an anti-IL-

6R mAb, tocilizumab, with carboplatin/doxorubicin and IFN-α2b has been conducted for patients with recurrent epithelial ovarian cancer. This study reported that immune cells in the IL-6R mAb-treated patients had reduced levels of phosphorylated STAT3 and myeloid cells produced more IL-12, while T cells were more activated and secreted higher amounts of effector cytokines including IFN-γ. Patients receiving the highest dose of tocilizumab showed increased levels of serum soluble IL-6R, which was potentially associated with a survival benefit. Based on this evidence, we speculate that IL-6 may be a promising target for cancer immunotherapy through improving the antigen-presenting function of DC and facilitating maturation of antigen-presenting cells into tumor-infiltrating effector T cells against tumor-related antigens including neo/stem antigens from killed cancer cells (Fig. 3).

It has been reported that the presence of intratumoral T cells, including Th1, Th2 and Th17 cells, Tregs, and CTL, is a good prognostic factor in colorectal cancers. We found that HLA class II expression levels of tumor-infiltrating immune cells are closely related to the invasion of CD4+ T and CD8+ T cells at tumor sites. Therefore, blockade of IL-6/STAT3 signaling to enhance HLA expression on DC combined with other cancer treatments, such as cancer peptide vaccines, immunological adjuvants, immune checkpoint therapies and anticancer drugs, may show more clinical efficacy by restoring the T cell stimulatory ability of antigen-presenting cells in cancer patients.

Previous studies demonstrated that PD-L1 expression levels on cancer cells were augmented by stimulation with IFN-γ, which was generally produced by anti-tumor effector lymphocytes based on type-1 immunity in a STAT-1 dependent manner. PD-L1-expressed cancer cells ordinarily reduce antitumor responses by PD-1-expressing effector cytotoxic T cells. IL-6-deficient condition increased Th1 and Tc1 immunity that may cause augmentation of PD-L1 expression levels on cancer cells and antigen presenting cells, including DC in vivo. Therefore, we speculate that blockade of IL-6/IL-6R signaling will facilitate immune-check point therapy using anti-PD-1/PD-L1.

TLR ligands such as poly I:C are promising tools to induce antitumor immunity by increasing IL-12 production and maturation of DC in vivo. However, it has been reported that the TLR3/TRIF/MyD88-NF-kb signaling pathway in DC generally induces IL-6 as well as IL-12. Therefore, we speculate that the IL-6-deficient condition promotes the antitumor effect of immune checkpoint therapy using poly I:C.

Based on the present data and previous reports, we speculate that blockade of the IL-6 signaling pathway may promote introduction of antitumor immunity into the tumor-bearing host. Such an approach may be a promising strategy for the development of more effective immune checkpoint blockade therapies using anti-PD-1/PD-L1 mAbs and immunological adjuvants such as poly I:C for cancer patients.

The present review proposes that maintenance of the antigen-presenting ability of DC is one of the critical issues for the induction and activation of cancer antigen-specific T cells in the tumor microenvironment. Therefore, a therapeutic strategy to improve the function of DC by inhibition of the IL-6/STAT3 signaling cascade may be effective in increasing good responses to cancer immunotherapies.

Disclosure Statement

The authors have no conflicts of interest.

References

