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PAPER

Wiener-Based Inpainting Quality Prediction∗

Takahiro OGAWA†a), Akira TANAKA†, and Miki HASEYAMA†, Members

SUMMARY A Wiener-based inpainting quality prediction method is
presented in this paper. The proposed method is the first method that can
predict inpainting quality both before and after the intensities have become
missing even if their inpainting methods are unknown. Thus, when the
target image does not include any missing areas, the proposed method es-
timates the importance of intensities for all pixels, and then we can know
which areas should not be removed. Interestingly, since this measure can
be also derived in the same manner for its corrupted image already includ-
ing missing areas, the expected difficulty in reconstruction of these missing
pixels is predicted, i.e., we can know which missing areas can be success-
fully reconstructed. The proposed method focuses on expected errors de-
rived from the Wiener filter, which enables least-squares reconstruction,
to predict the inpainting quality. The greatest advantage of the proposed
method is that the same inpainting quality prediction scheme can be used
in the above two different situations, and their results have common trends.
Experimental results show that the inpainting quality predicted by the pro-
posed method can be successfully used as a universal quality measure.
key words: quality prediction, inpainting, Wiener filter, least-squares esti-
mation

1. Introduction

Inpainting has various fundamental applications such as un-
necessary object removal [1]–[5] and error concealment [6]–
[9]. It is important to predict inpainting quality for a tar-
get image both before and after its intensities have become
missing. Specifically, if a measure representing inpainting
quality is estimated for all of the pixels within an original
image, we can know which areas within the target image
must not be removed. Furthermore, if this measure is cal-
culated for a corrupted image including missing areas, the
difficulty in reconstruction of the missing pixels, i.e., ex-
pected errors caused in the missing intensity estimation, can
be predicted. The difficulty in reconstruction of missing ar-
eas should ideally be predicted in the same manner for both
of the above different situations.

Inpainting quality can be predicted by monitoring sim-
ple statistics such as variances in small regions within a tar-
get image. However, accurate prediction becomes difficult
for regions including high-frequency components such as
textures. The simplest approach is to apply an existing in-
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painting and image completion method to artificially added
missing areas and use their errors observed from the recon-
struction results. Unfortunately, this approach cannot be
applied to the situation after intensities have been removed
from target images. Furthermore, this approach cannot pro-
vide expected errors without performing the reconstruction
procedure.

Prediction of inpainting quality is closely related to
the problem of estimating the importance of pixels within
a target image, e.g., saliency estimation. Many methods for
computing saliency of a target image have been proposed.
Koch and Ullman carried out a pioneering work in which
a computational model of visual attention was constructed
for the first time [10]. Based on this model, Itti et al. pro-
posed a bottom-up approach for generating saliency maps
that can provide salient regions within target images [11].
This method became one of the representative methods in
the research field of saliency estimation. This method has
also been improved by many researchers. Harel et al. pro-
posed a graph-based implementation of the Itti and Koch
model, Graph-Based Visual Saliency (GBVS), and achieved
improvement in performance [12]. An approach that focuses
on the Fourier domain has also been proposed for saliency
estimation. Hou et al. proposed a method that included a
spectral residual approach [13]. In recent studies, a Discrete
Cosine Transform (DCT)-based method, image signature,
has been used for highlighting sparse salient regions [14].
Several methods with approaches that are different from
those of the above-described methods have also been pro-
posed. Bruce et al. proposed a new model for saliency
computation based on an information theoretic formula-
tion dubbed Attention based on Information Maximization
(AIM) [15]. In addition, Gofeman et al. proposed detection
of “image regions that represent the scene”, which are differ-
ent from the most salient regions [16]. Navalpakkam et al.
proposed a Signal-to-Noise Ratio (SNR)-based saliency that
represents the ratio of expected salience of the target over
distractors [17]–[19]. The above-described existing meth-
ods are only a few of the many attractive methods, and good
survey reports in this research field have been published by
several researchers [20]–[22].

It should be noted that although the above-described
approaches can reveal which areas are important within tar-
get images, it is difficult to predict the difficulty in recon-
struction of missing areas within corrupted images. There-
fore, a new measure is necessary for realizing the above
goal. Some researchers have proposed inpainting quality
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assessment methods that focus on evaluating the inpainting
performance [23], [24]. However, the target of this method
is quality assessment of inpainting results, and it evaluates
how successfully the missing areas can be recovered. There-
fore, this method cannot predict inpainting quality for both
original images and their corrupted images including miss-
ing areas.

In this paper, we present a Wiener-based inpainting
quality prediction method. In terms of least-squares recon-
struction, the Wiener filter [25] is the best and most fun-
damental method since it is well known that its criterion
is for minimizing the expected mean square error (MSE).
This means that the Wiener filter is an ideal reconstruc-
tion method minimizing the expected MSE. Therefore, the
proposed method focuses on the expected MSE derived in
the Wiener filter to predict the reconstruction difficulty, this
measure hereafter being denoted as Wiener-based inpaint-
ing quality. In the proposed method, this measure can be
derived from both an original image and its corrupted image
including missing areas in the same manner. Specifically,
when the target image does not include any missing areas,
the proposed method can predict which areas should not be
missed since the importance of all of pixels is estimated. On
the other hand, when some intensities are missing within the
target image, the proposed method can predict which miss-
ing areas can be successfully reconstructed since the diffi-
culty in reconstruction of the missing pixels is estimated. In
these two situations, “the importance of the known original
pixels” and “the difficulty in reconstruction of missing pix-
els” can be commonly derived by the proposed method. To
the best of our knowledge, our method is the first method
that realizes prediction of inpainting quality that can be de-
rived in the two different situations. Interestingly, the results
of prediction in these two different situations have the same
trends.

There are several applications of the proposed method
such as improvement in image coding efficiency and error
concealment. For example, in the field of image coding,
improvement in coding efficiency can be achieved by artifi-
cially adding missing blocks to a target image in an encoder
side and recovering them in a decoder side [3], [26]–[28].
Our method enables determination of the optimal positions
of blocks that have been removed, which can be success-
fully recovered in the decoder side. Furthermore, in er-
ror concealment, since a packet loss causes missing blocks,
these blocks must be recovered or their correct packets must
be retransmitted for maintaining high image quality [6]–[9].
Therefore, for determining the optimal choice, our method
is necessary to predict image quality after the reconstruction
of missing blocks.

2. Wiener Filter

In this section, a brief explanation of the Wiener filter [25]
used in the proposed method is given. Reconstruction of
corrupted images based on the Wiener filter is shown in 2.1,
and error analysis of the Wiener filter is shown in 2.2.

2.1 Image Reconstruction Based on the Wiener Filter

Given a corrupted image including some degradations, we
focus on reconstruction of its original image based on the
Wiener filter. First, we denote all original patches within a
target image as fi (i ∈ I;I = {1, 2, · · · ,N}). Furthermore,
we denote patches including some degradations, e.g., miss-
ing areas, blurring, etc., as g j ( j ∈ J ; J ⊂ I) within its
corrupted image. Next, we define two vectors xi (i ∈ I)
and y j ( j ∈ J) whose elements are intensities in the original
patches fi and intensities in the corrupted patches g j, respec-
tively. The relationship between f j and g j ( j ∈ J) is written
as follows:

y j =M jx j + n ( j ∈ J), (1)

where M j is a matrix that represents the degradation of g j,
and n represents a noise vector that is independent of the
original vector x j. Since we focus on missing area recon-
struction in the following section, we can ignore this noise
vector hereafter. Given two correlation matrices Rx and R̂x

as

Rx =
1
|J|
∑
j∈J

x jx j
′, (2)

R̂x =
1

|I − J|
∑

k∈I−J
xkxk

′ (3)

for x j ( j ∈ J) and xk (k ∈ I − J), respectively, the ideal
reconstruction result xW

j from y j based on the Wiener filter
is obtained as follows:

xW
j = RxM j

′ (M jRxM j
′)+ y j, (4)

where (·)+ represents the calculation of a pseudo inverse ma-
trix. Furthermore, | · | in Eqs. (2) and (3) represents the num-
ber of elements that belong to a target set. Furthermore, vec-
tor/matrix transpose is denoted as a superscript ′ in this pa-
per. Unfortunately, since g j ( j ∈ J) are corrupted, the cor-
relation matrix Rx in Eq. (2) is unknown when calculating
Eq. (4). Therefore, in many cases, R̂x in Eq. (3) is adopted
instead of Rx to obtain the following result:

xW∗
j = R̂xM j

′ (M jR̂xM j
′)+ y j. (5)

Then reconstruction of the corrupted patches g j ( j ∈ J)
based on the Wiener filter becomes feasible.

2.2 Error Analysis of the Wiener Filter

Given a corrupted patch g whose corresponding original
vector and degradation matrix are denoted as x and M, re-
spectively, the mean of the expected squared errors of the
estimation result xW∗ based on Eq. (5) from the corrupted
vector of x is derived as follows:

eW =

Ex

{∣∣∣∣∣∣x − xW∗
∣∣∣∣∣∣2
}

d
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Fig. 1 (a) Relationships between fi (i ∈ I), g j ( j ∈ J), Ω and Ω j, (b) estimation of eW
Ω

for a target
area Ω based on Eq. (24), where eW

Ω
is calculated from four patches including Ω in this example, (c)

estimation of êW
j of a missing area Ω j in patch g j (“A” and “C” corresponding to missing areas Ω).

=
tr [SRxS′]

d
, (6)

where Ex {·} is an operator calculating an expectation value
of · in terms of a random vector x, xW∗ can be obtained in
the same manner as Eq. (5), tr(·) calculates a trace of a target
matrix, d is the dimension of x, and

S = Id − R̂xM′ (MR̂xM′)+M. (7)

In the above equation, Id is the d × d identity matrix.
It should be noted that if the degradation is intensity

removal, M becomes a diagonal matrix whose diagonal el-
ements are one or zero. Then, by focusing only on recon-
struction of the missing area of g, eW can be rewritten as

eW =

Ex

{∣∣∣∣∣∣ (Id −M)
(
x − xW∗

) ∣∣∣∣∣∣2
}

tr (Id −M)

=
tr [(Id −M) SRxS′ (Id −M)]

tr (Id −M)
. (8)

Before intensities within an area have become missing, we
can calculate the expected errors as shown in the above
equation. However, after the intensities have become miss-
ing, we cannot obtain Rx in Eq. (8), and we therefore use
R̂x instead of Rx and can obtain the following alternative
expected error:

êW =
tr
[
(Id −M) SR̂xS′ (Id −M)

]

tr (Id −M)
. (9)

This means that we assume the correlation matrix R̂x is the
same as Rx. If the target corrupted patch can be easily com-
plemented by the other known parts within the target image,
this assumption tends to be satisfied.

3. Wiener-Based Inpainting Quality Prediction

In this section, the method for predicting Wiener-based in-
painting quality is presented. First, in 3.1, we show the
derivation of inpainting quality for images not including
missing areas and generation of an inpainting quality map.
Next, in 3.2, derivation of inpainting quality for corrupted

images including missing areas and generation of the corre-
sponding inpainting quality map are described.

3.1 Inpainting Quality Prediction for Images Not Includ-
ing Missing Areas

First, we denote a local area (a local block) in which the in-
painting quality is predicted within the target image as Ω.
In this subsection, we derive inpainting quality representing
the importance of the target area Ω in terms of the Wiener
filter-based expected error. First, we denote a set of indices
as I = {1, 2, · · · ,N} and define a set of d-dimensional vec-
tors obtained from patches fi (i ∈ I;w× h = d pixels) within
the target image X =

{
xi ∈ Rd |i ∈ I

}
. Furthermore, patches

g j ( j ∈ J ⊂ I) include the target area Ω, and y j are defined
as vectors of patches g j ( j ∈ J), whose intensities included
within Ω are removed from x j. Thus, the following relation-
ship is satisfied:

y j =M jx j ( j ∈ J) , (10)

where M j ∈ Rd×d is a diagonal matrix, whose diagonal el-
ements are one or zero, for removing intensities within Ω.
Figure 1 (a) shows an example of the relationship between
the patches fi (i ∈ I), g j ( j ∈ J) and the target area Ω. As
shown in this figure, we denote the overlapped area included
in both Ω and g j ( j ∈ J) as Ω j.

In terms of the Wiener filter-based expected error, we
first try to predict the inpainting quality of area Ω j included
in g j ( j ∈ J). First, assuming that rank

(
M j

)
= r j < d, we

define P j ∈ Rr j×d obtained by removing zero row vectors
from M j. Furthermore, Q j ∈ R(d−r j)×d is obtained by remov-
ing rows included in P j from the identity matrix Id ∈ Rd×d.
Then, by calculating P jx j, only the known intensities within
y j can be extracted. On the other hand, by calculating Q jx j,
only the missing intensities removed from x j can be ex-
tracted. Therefore, from the above definitions,

P j
′P j +Q j

′Q j = Id (11)

and

Q jP j
′ = O(d−r j)×r j (12)
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are satisfied, where O(d−r j)×r j is the (d − r j)× r j zero matrix.
Next, as a problem for estimating x j from y j, we try to

estimate the following matrix W j:

W j = arg min
W

J (W) , (13)

where

J (W) = Ex j

[∣∣∣∣∣∣WP jy j −Q jx j

∣∣∣∣∣∣2
]
. (14)

Note that

P jy j = P jx j (15)

is satisfied, and by regarding x j as a random vector x,
Eq. (14) is rewritten as

J (W) = Ex j

[∣∣∣∣∣∣WP jx j −Q jx j

∣∣∣∣∣∣2
]

= Ex

[∣∣∣∣∣∣WP jx −Q jx
∣∣∣∣∣∣2
]

= Ex

[
tr
{(

WP j −Q j

)
xx′
(
WP j −Q j

)′}]

= tr
[(

WP j −Q j

)
Ex
{
xx′
} (

WP j −Q j

)′]

= tr
[(

WP j −Q j

)
Rx

(
WP j −Q j

)′]
, (16)

where Rx ∈ Rd×d is a correlation matrix of x and should be
defined as follows:

Rx =
1
|J|
∑
j∈J

x jx j
′, (17)

where |J| is the number of elements belonging to J .
However, when estimating intensities within Ω j, Rx is un-
known. Thus, it must be approximately estimated from xk

(k ∈ I − J) as follows:

R̂x =
1

|I − J|
∑

k∈I−J
xkxk

′, (18)

where |I−J| is the number of elements belonging to I−J .
Then Eq. (16) is rewritten as

J (W) = tr
[(

WP j −Q j

)
R̂x

(
WP j −Q j

)′]
. (19)

Based on the derivation shown in the previous section,
the solution of Eq. (13) can be obtained as follows:

W j = Q jR̂xP j
′ (P jR̂xP j

′)+ . (20)

Therefore, the estimation result of the intensities included in
Ω j within y j is obtained as

z j =W jP jy j. (21)

In the proposed method, we have to predict the inpainting
quality of the area Ω j in terms of the Wiener filter-based ex-
pected error. This means that we try to estimate the expected
error caused in the recovery of the area Ω j when its intensi-
ties are missing. Thus, for each g j ( j ∈ J), the mean of the
expected errors in Ω j can be obtained as

eW
j = Ex j

⎡⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣z j −Q jx j

∣∣∣∣∣∣2
rank
(
Q j

)
⎤⎥⎥⎥⎥⎥⎥⎦

= Ex j

⎡⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣W jP jy j −Q jx j

∣∣∣∣∣∣2
rank
(
Q j

)
⎤⎥⎥⎥⎥⎥⎥⎦

= Ex j

⎡⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣W jP jx j −Q jx j

∣∣∣∣∣∣2
rank
(
Q j

)
⎤⎥⎥⎥⎥⎥⎥⎦

= Ex j

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣ (W jP j −Q j

)
x j

∣∣∣∣∣∣2

rank
(
Q j

)
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (22)

where the third equivalence holds since Eq. (15) is satis-
fied. Furthermore, by regarding x j as a random vector x,
the above equation can be rewritten as follows:

eW
j = Ex

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣ (W jP j −Q j

)
x
∣∣∣∣∣∣2

rank
(
Q j

)
⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
Ex

[
tr
{(

W jP j −Q j

)
xx′
(
W jP j −Q j

)′}]

rank
(
Q j

)

=
tr
[(

W jP j −Q j

)
Ex {xx′}

(
W jP j −Q j

)′]

rank
(
Q j

)

=
tr
[(

W jP j −Q j

)
Rx

(
W jP j −Q j

)′]

rank
(
Q j

) . (23)

Then the Wiener-based inpainting quality of the target area
Ω is obtained as follows:

eW
Ω =

1
|J|
∑
j∈J

eW
j . (24)

This equation calculates the mean of eW
j for all Ω j ( j ∈ J)

within Ω. In this way, prediction of the inpainting quality of
intensities within the target area Ω becomes feasible.

Finally, we explain the method for calculating an in-
painting quality map for an image that does not include any
missing areas. The inpainting quality map represents the
importance of each pixel within the target image. In the pro-
posed method, we divide the target image into small blocks
(ws × hs pixels; ws < w and hs < h), and each small block is
regarded as Ω as shown in Fig. 1 (b). Furthermore, the hor-
izontal and vertical clipping intervals of patches fi (i ∈ I)
and g j ( j ∈ J) are ws and hs pixels, respectively. Then the
importance of each area Ω can be calculated as eW

Ω
by using

Eq. (24). If the importance of the area Ω is higher, the value
of eW

Ω
also becomes higher since its reconstruction becomes

difficult when its intensities are missing. Therefore, by cal-
culating eW

Ω
for all of the small areas with a size of ws × hs

pixels, an inpainting quality map of the target image can be
obtained.
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Table 1 The comparative methods used in this experiment and their notations. In this table, we also
show the MSE of the reconstruction results (Wiener, BPLP and Exemplar) obtained for the image shown
in Fig. 2.

Methods Ref. [11] Ref. [12] Ref. [13] Ref. [15] Ref. [14] Ref. [16] Proposed method

Notations Itti98 GBVS07 SR07 AIM09 SIG12 CAS12 Ours
MSE of Wiener 4.07 × 10 1.23 × 102 2.23 × 10 6.25 × 10 3.05 × 10 4.87 × 10 1.01 × 10
MSE of BPLP 1.64 × 102 4.27 × 102 8.19 × 10 2.31 × 102 1.42 × 102 3.16 × 102 2.39 × 10

MSE of Exemplar 1.16 × 102 2.76 × 102 6.32 × 10 1.36 × 102 1.11 × 102 1.35 × 102 3.60 × 10

3.2 Inpainting Quality Prediction for Corrupted Images
Including Missing Areas

In this subsection, we show inpainting quality prediction for
a corrupted image including missing areas. Given a cor-
rupted image including missing areasΩ, the inpainting qual-
ity of the sub-missing area Ω j is calculated for each cor-
rupted patch g j ( j ∈ J) as shown in Fig. 1 (c). Note that
Ω represents all of the missing areas within the target im-
age, and the definitions of fi (i ∈ I), g j ( j ∈ J) and Ω j are
the same as those shown in the previous subsection. Then
the quality measure can be derived in the same manner as
Eq. (23). Note that in Eq. (23), the correlation matrix Rx is
unknown. Thus, we introduce one assumption: Rx = R̂x.
Then the estimate of Eq. (23) is obtained as follows:

êW
j =

tr
[(

W jP j −Q j

)
R̂x

(
W jP j −Q j

)′]

rank
(
Q j

) . (25)

If the target image uniformly has similar statistical features
in all parts, the assumption Rx = R̂x tends to be satis-
fied. Then êW

j in Eq. (25) can accurately approximate eW
j

in Eq. (23). Therefore, the proposed method can derive the
inpainting quality in the same manner before and after the
intensities within the target image have become missing.

Next, we explain the method for calculating the in-
painting quality map, which is calculated for the missing
areas and represents their expected reconstruction difficulty.
In the proposed method, we clip the patches fi (i ∈ I) and
g j ( j ∈ J) in the same intervals, the horizontal and vertical
intervals being ws and hs pixels, respectively (ws < w and
hs < h), as shown in Fig. 1 (c). Then, for each patch g j, its
expected error êW

j caused in the missing area Ω j is calcu-
lated. Since the clipped patches g j are overlapped blocks,
multiple results are obtained for each pixel within the miss-
ing areas. Therefore, by averaging these multiple results
for each missing pixel, we can obtain the inpainting quality
map.

4. Experimental Results

In order to verify the performance of the proposed method,
experimental results obtained by applying the Wiener-based
inpainting quality prediction method and other existing
methods to several test images are shown in this section.
The inpainting quality obtained by the proposed method can
be utilized as two measures, importance of known original

pixels and expected difficulty in reconstruction of missing
areas. Therefore, we first show verification of the perfor-
mance of the former measure, i.e., calculation of the impor-
tance of known original pixels, of our method by comparing
with other existing methods in Sect. 4.1. Next, in 4.2, we
show verification of the performance of the latter measure
by applying our inpainting quality prediction method to sev-
eral corrupted images including missing areas. Therefore,
the experimental results presented in 4.1 and 4.2 correspond
to the methods shown in 3.1 and 3.2, respectively.

It should be noted that in the experiments, we used
missing square blocks since our target applications are im-
provement in image coding efficiency and error concealment
as shown in Sect. 1. Furthermore, our method is the first trial
that can predict the inpainting quality in the same manner
before and after intensities have become missing. Therefore,
it is most important to verify the fundamental performance
of the quality prediction based on experiments focusing on
our target applications.

4.1 Performance Verification of Inpainting Quality Predic-
tion for Images Not Including Missing Areas

This subsection shows the performance verification of our
inpainting quality prediction for images not including miss-
ing areas. In this experiment, we picked up pixels as miss-
ing regions based on our prediction method, inpainted them,
and calculated MSE against the original input image with
the inpainted image. Then we try to show that if the MSEs
of several inpainting methods are small, our proposed pre-
diction method can choose pixels to be easily inpainted by
all of the inpainting methods and vise versa.

In this experiment, we used 120 benchmark test images
that were published by Bruce et al. [15]†. Inpainting quality
maps for these test images were calculated by using the pro-
posed method. Inpainting quality maps were also generated
by using other existing methods shown in Table 1. The first
column of Fig. 2 shows an example of the inpainting quality
maps obtained by our method and the existing methods††.
From the top row to the bottom row, we show the results of
Itti98, GBVS07, SR07, AIM09, SIG12, CAS12 and Ours
shown in Table 1, respectively. It should be noted that since
a method for predicting inpainting quality before intensities
become missing has not been proposed, we performed the

†http://www-sop.inria.fr/members/Neil.Bruce/
††In this experiment, we directly used the source codes pub-

lished by the authors of the comparative methods, and their condi-
tions were based on their published papers.
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Fig. 2 Results obtained by using the comparative methods and the proposed method. From the top
row to the bottom row, we show the results of Itti98, GBVS07, SR07, AIM09, SIG12, CAS12 and Ours
shown in Table 1, respectively.

comparison with saliency estimation methods, which are ap-
proaches that are the most similar to ours. Therefore, we
used the saliency maps obtained by these methods as in-
painting quality maps.

The first, second, third and fourth columns of Fig. 2
show inpainting quality maps, corrupted images including

missing areas for which positions were determined accord-
ing to these maps, results of reconstruction by using the
Wiener filter [25] and results of reconstruction by using the
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Fig. 3 Examples of inpainting quality maps obtained by using the proposed method and the recon-
struction results of missing blocks added according to the obtained inpainting quality maps: (a)–(d)
original images, (e)–(h) inpainting quality maps of (a)–(d) obtained by the proposed inpainting quality
prediction method, (i)–(l) images including missing blocks added according to the inpainting quality
maps in (e)–(h), and (m)–(p) reconstruction results of (i)–(l) by the Wiener filter. The missing block
sizes are 4 × 4 pixels in (i) and (j) and 8 × 8 pixels in (k) and (l). The percentage of missing pixels is
16% for all examples.

exemplar-based method [4], respectively†. In this figure, the
size of missing blocks is 4 × 4 pixels, and the percentage
of missing pixels is 12%. In the proposed method, we set
w = h = 8 and ws = hs = 4. From the obtained re-
sults, the inpainting quality maps generated by our method
and other existing methods are different, but it is difficult
to know which methods can generate an optimal map that
correctly represents the importance of each area. Therefore,
in this experiment, we performed evaluation based on the
following schemes.

First, we added missing blocks to the original images

†We published supplemental materials showing the high-
resolution version of Figs. 2 and 3 in the following URL:
https://www-lmd.ist.hokudai.ac.jp/member/takahiro-ogawa/wiqp/
In these supplemental materials, the images are shown in their orig-
inal resolution. From the results, we can see that the proposed
method tends to be able to successfully remove and recover re-
gions which are simple and can be easily estimated from the other
remaining regions.

as low-priority blocks according to the inpainting quality
maps. Specifically, we iteratively removed the intensities of
the blocks in which the sum of inpainting quality values was
the smallest. If missing blocks existed in four neighboring
blocks, we did not remove the target blocks for the follow-
ing reconstruction procedures. The results obtained from
inpainting quality maps generated by our method and other
existing methods in the first column of Fig. 2 are shown in
the second column of this figure. For those images, we per-
formed reconstruction of the missing areas by using three
previously reported benchmarking methods: Wiener fil-
ter [25], BPLP (Back Projection for Lost Pixels) method [5]
and an exemplar-based method [4]. The BPLP method [5]
is different from the Wiener filter, but it is closely related to
the correlation matrix focused on in the proposed method.

The reconstruction results obtained by two methods
(Wiener filter and exemplar-based method) are shown in
the third and fourth columns of Fig. 2, respectively. Due
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Fig. 4 Results of ranking obtained for different reconstruction methods (Wiener, BPLP and Exemplar)
and different percentages of missing pixels (4%, 8%, 12% and 16%). This figure shows the results
obtained by using missing blocks with sizes of 8 × 8 pixels. The text in each caption includes the
reconstruction method, missing block size, percentage of missing pixels and results of the statistical
test. The value of the nth rank represents the number of images included up to the nth rank in each
method, i.e., the number of images included in 1st, 2nd, · · · , nth ranks.

to limitation of space, only results obtained by using these
two methods are shown in this figure. Table 1 shows the
MSEs of the reconstruction results for quantitatively evalu-
ating the obtained results. The MSE obtained from the pro-
posed method is smaller than those of other existing meth-
ods.

We also show some other examples obtained by the
proposed method. Figure 3 shows results obtained in the
same manner as that for the results shown in Fig. 2. From the
four images shown in Figs. 3 (a)–(d), we calculated their in-
painting quality maps as shown in Figs. 3 (e)–(h). According
to the obtained maps, missing blocks were added to these
test images as shown in Figs. 3 (i)–(l). For these corrupted
images including missing blocks, we performed reconstruc-
tion by using the Wiener filter as shown in Figs. 3 (m)–(p).
The results showed that successful reconstruction is feasi-
ble and also indicated that areas that should not be removed

can be successfully found by the inpainting quality maps
obtained by our method.

Next, in order to quantitatively evaluate the perfor-
mance of the proposed method, we show other results ob-
tained from the 120 test images. We added missing blocks
(8×8 pixels and 16×16 pixels) to these 120 test images with
changes in the percentage of missing pixels (4%, 8%, 12%
and 16%) according to the inpainting quality maps obtained
by our method and other comparative methods. Then the
corrupted test images were recovered by using the Wiener
filter, the BPLP method and the exemplar-based method.
For each test image, we performed ranking of our method
and other comparative methods according to MSE calcu-
lated from the reconstruction results as shown in Table 1.
The first rank corresponds to the method for which MSE is
lowest, and the lowest rank corresponds to the method for
which MSE is highest.
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Fig. 5 Results of ranking obtained for different reconstruction methods (Wiener, BPLP and Exemplar)
and different percentages of missing pixels (4%, 8%, 12% and 16%). This figure shows the results
obtained by using missing blocks with sizes of 16 × 16 pixels. The text in each caption is the same as
that shown in Fig. 4.

Figures 4 and 5 show the results of the ranking obtained
for the different reconstruction methods (Wiener, BPLP and
Exemplar), different missing block sizes (8 × 8 pixels and
16 × 16 pixels) and different percentages of missing pixels
(4%, 8%, 12% and 16%). In these figures, the value of the
nth rank in each method represents the number of images
that are included up to the nth rank, i.e., the number of im-
ages included in 1st, 2nd, · · · , nth ranks. From Fig. 4, it can
be seen that for almost all test images, the proposed method
achieves the first rank when using the Wiener filter and the
BPLP method. Even when the exemplar-based method was
used, the proposed method gave much better results than the
results of comparative methods. The results obtained by the
Wiener filter are quite natural since we used Wiener-based
inpainting quality. On the other hand, the BPLP method and
the exemplar-based method also gave better results when us-
ing the proposed inpainting quality prediction method. Fig-
ure 5 shows the results for missing blocks with sizes of

16×16 pixels. As shown in this figure, the proposed method
also outperforms the comparative methods for all patterns.
The results shown in these figures indicate that the proposed
method is optimal for estimating which areas should not be
missed.

In order to justify the superiority of the proposed
method, we also performed a statistical test. Figures 4 and
5 show the ranking of the MSE calculated from the images
reconstructed by the Wiener filter, the BPLP method and
the exemplar-based method. We performed Welch’s t-test to
confirm the significance of the difference between the MSE
of the proposed method and those of the conventional meth-
ods. We assumed the null hypothesis “The mean value of
MSE obtained from the 120 images by our method and that
obtained by the comparative method are equal”, where the
significance level was set as α = 0.01. From the results ob-
tained by this statistical test (p-values shown in Figs. 4 and
5), the superiority of our method can be almost confirmed.
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Fig. 6 Relationship between mean of Wiener-based inpainting quality and MSE of the reconstructed
image when using missing blocks with sizes of 8 × 8 pixels. The text in each caption includes the
reconstruction method, missing block size and percentage of missing pixels. The dots shown in each
graph represent results for 120 images, and the line is the regression line obtained from the 120 samples.
The horizontal and vertical axes are the mean value calculated from the proposed inpainting quality map
and MSE calculated between the reconstructed image by Wiener, BPLP and Exemplar and its original
image, respectively.

Table 2 Subjective evaluation results (average and standard deviation of rating scores). Given a
significance level α = 0.01, it was confirmed that our method is superior to the other comparative
methods by Welch’s t-test with p < 0.01.

Methods Itti98 GBVS07 SR07 AIM09 SIG12 CAS12 Ours
Scores 2.96 ± 1.26 2.22 ± 0.893 3.25 ± 1.24 3.69 ± 0.934 2.74 ± 0.989 2.50 ± 1.25 4.04 ± 1.08

Note that p-values were obtained between our method and
the next best method.

Next, we show results of subjective testing. In this ex-
periment, we randomly selected 20 images from the 120
images and performed the same experiments to obtain re-
construction results by the Wiener filter that correspond to
the third column of Fig. 2, where the percentage of removed
pixels was set to 16% for enhancing the difference between
the seven methods shown in Table 1. The size of missing
blocks was randomly selected from 4 × 4 pixels, 8 × 8 pix-

els or 16 × 16 pixels. Seventeen subjects participated in this
experiment, and each subject performed rating for the recon-
struction results with rating scores ranging from 1 (bad) to 5
(good). Since 20 test images were used, each subject rated
140 (20 × 7) images totally. The results of the subjective
evaluation are shown in Table 2. From the obtained results,
we can see that the average score of the proposed method
is higher than those of the other comparative methods. Fur-
thermore, we found that our method was statistically supe-
rior to the other comparative methods by Welch’s t-test as
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Fig. 7 Relationship between mean of Wiener-based inpainting quality and the MSE of the recon-
structed image when using missing blocks with sizes of 16× 16 pixels. The details of this figure are the
same as those in Fig. 6.

shown in the caption of Table 2. Therefore, the effective-
ness of the proposed inpainting quality prediction was also
confirmed in this experiment.

4.2 Performance Verification of Inpainting Quality Predic-
tion for Corrupted Images Including Missing Areas

In this subsection, we show verification of the performance
of expected reconstruction difficulty predicted for missing
areas by using the proposed method. We performed the in-
painting quality prediction for missing areas within given
images, inpainted them, and calculated MSE against their
original images with the inpainted images. Then we try to
show that if the correlation between the inpainting quality
prediction results and MSEs of every inpainting methods is
high, our method can find whether the target images includ-
ing missing areas can be easily inpainted or not by all of the
inpainting methods and vise versa.

In this experiment, we used the same 120 test images

shown in the previous subsection. We randomly added miss-
ing blocks with sizes of 8 × 8 pixels and 16 × 16 pixels to
these test images. The missing block size corresponds to
ws × hs pixels, and the patch size (w × h pixels) was set to
twice its size. For these corrupted images, we calculated
the inpainting quality map, i.e., the reconstruction difficulty
map shown in 3.2.

From the corrupted images, we performed reconstruc-
tion of the missing areas by using the Wiener filter, the
BPLP method and the exemplar-based method. Figures 6
and 7 show the relationship between the mean of Wiener-
based inpainting quality and MSE of the reconstructed im-
age. Note that the mean of Wiener-based inpainting quality
can be obtained by calculating the mean of the inpainting
quality map. The line shown in each graph is the regression
line obtained from the 120 samples, i.e., the 120 test images.

From the results shown in these figures, we can see pre-
dicted quality by the proposed method and MSE of the re-
construction results have a strong correlation. Pearson and
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Table 3 Correlation coefficients (Pearson correlation) between mean of
Wiener-based reconstruction difficulty and MSE of the recovered image by
each reconstruction method.

Block size Percentage Wiener BPLP Exemplar

8 × 8 pixels 4% 0.964 0.960 0.972
8 × 8 pixels 8% 0.961 0.969 0.979
8 × 8 pixels 12% 0.947 0.970 0.975
8 × 8 pixels 16% 0.912 0.972 0.963

16 × 16 pixels 4% 0.881 0.888 0.913
16 × 16 pixels 8% 0.917 0.908 0.920
16 × 16 pixels 12% 0.901 0.917 0.912
16 × 16 pixels 16% 0.846 0.913 0.910

Table 4 Correlation coefficients (Spearman correlation) between mean
of Wiener-based reconstruction difficulty and MSE of the recovered image
by each reconstruction method.

Block size Percentage Wiener BPLP Exemplar

8 × 8 pixels 4% 0.961 0.970 0.962
8 × 8 pixels 8% 0.956 0.976 0.972
8 × 8 pixels 12% 0.940 0.973 0.969
8 × 8 pixels 16% 0.920 0.975 0.961

16 × 16 pixels 4% 0.892 0.921 0.901
16 × 16 pixels 8% 0.903 0.923 0.598
16 × 16 pixels 12% 0.883 0.931 0.897
16 × 16 pixels 16% 0.806 0.930 0.888

Spearman correlation coefficients calculated from the results
in Figs. 6 and 7 are shown in Tables 3 and 4, respectively.
The correlation coefficients are very high for all of the re-
construction methods.

5. Conclusions

In this paper, we have proposed Wiener-based inpainting
quality prediction for missing intensity estimation. Since the
expected errors caused in the reconstruction can be derived
by using the Wiener filter, the proposed method defines the
inpainting quality from the derived expected errors. Then
the importance of each pixel, i.e., which areas should not
be missed, can be estimated from the target image. Fur-
thermore, by calculating our novel measure for its corrupted
image including missing areas, the expected difficulty in re-
construction of these missing areas can be also predicted.
In the experiments, it was verified that the proposed method
has good performance for prediction of inpainting quality,
and it would be useful in several applications.

Finally, we show limitations and future directions of
our method. As shown in 3.2, we assume that Rx = R̂x

to derive Eq. (25). However, if this assumption is not sat-
isfied in a given image, it becomes difficult to successfully
estimate Eq. (25), and this phenomenon will be significant
when missing areas Ω become larger. Furthermore, there
are some regions in which the proposed method fails to esti-
mate the corrupted image, e.g., edges of the picture hanged
on the wall in Fig. 2. We guess that since the inpainting
quality prediction model shown in the proposed method is
closely related to the positions of missing pixels from its
definition but does not consider structure components of tar-

get images, the proposed method incorrectly selects regions
including edges. Therefore, it may be useful in our method
to collaborate with some visual saliency estimation meth-
ods.

In this study, we derived the inpainting quality by using
MSE. However, in several studies on image quality assess-
ment [29], [30], it has been shown that several different mea-
sures can reflect human perceptual qualities more success-
fully than MSE-based measures. Therefore, by replacing
MSE with such better quality measures, perceptually opti-
mized inapinting quality prediction will become feasible.
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