<table>
<thead>
<tr>
<th>Title</th>
<th>On the origin of interface states at oxide/III-nitride heterojunction interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matys, M.; Adamowicz, B.; Domanowska, A.; Michalewicz, A.; Stoklas, R.; Akazawa, M.; Yatabe, Z.; Hashizume, T.</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Applied Physics, 120(22), 225305</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-12-14</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/67847</td>
</tr>
<tr>
<td>Rights</td>
<td>The following article appeared in Journal of Applied Physics 120, 225305 (2016) and may be found at http://aip.scitation.org/doi/10.1063/1.4971409.</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>2E4971409.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
On the origin of interface states at oxide/III-nitride heterojunction interfaces

Citation: Journal of Applied Physics 120, 225305 (2016); doi: 10.1063/1.4971409
View online: http://dx.doi.org/10.1063/1.4971409
View Table of Contents: http://aip.scitation.org/toc/jap/120/22
Published by the American Institute of Physics

Articles you may be interested in

Mechanism of yellow luminescence in GaN at room temperature
Journal of Applied Physics 121, 065104 (2017); 10.1063/1.4975116

Intragrain charge transport in kesterite thin films—Limits arising from carrier localization
Journal of Applied Physics 120, 175302 (2016); 10.1063/1.4965868

Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density
Journal of Applied Physics 35, 01A1071 (2016); 10.1116/1.4972870

Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model
Journal of Applied Physics 120, 225308 (2016); 10.1063/1.4971957
I. INTRODUCTION

AlGaN and InAlN/GaN high electron mobility transistors (HEMTs) exceed Si based devices in high voltage and high frequency microelectronics due to advantageous physical properties of nitride semiconductors, like their wide band gaps and durability at high temperatures.1–8 It was also well established that GaN-HEMTs with an insulated gate (IG) exhibit supremacy over Schottky-gate-based ones because of the lower gate leakage current, higher breakdown voltage, better thermal stability of the gate, and mitigation of current collapse.9–12 The Al\textsubscript{2}O\textsubscript{3} and SiO\textsubscript{2} IG structures are particularly attractive for the application to GaN-HEMTs because of their favorable properties, i.e., the large conduction band (CB) offset at the insulator/semiconductor interfaces.13–15 However, the electronic states existing at such interfaces may significantly influence the device performance due to uncontrolled interface charging.16–23

Despite the high importance of interface states at dielectric/III-N heterojunction interfaces, their origin and properties, in particular, the density distribution vs. energy, \(D_{\text{it}}(E)\), in the wide band gap, \(E_G\), and charge type (donor-like or acceptor-like) are still not clarified. The main reason of such a situation are the extreme obstacles in the quantitative characterization of interface states by means of the electrical methods in the case of III-N heterojunction based devices because of the presence of two interfaces and very long time constants for charge emission from the deep states at room temperature (RT).11,14 It should be highlighted that solution of the above problems is a key issue to further progress in GaN-based HEMTs technology.

In the present paper, we studied the interface states at oxide/III-N heterojunction interfaces using AlGaN/GaN metal-insulator-semiconductor heterostructures (MISHs) with Al\textsubscript{2}O\textsubscript{3} and SiO\textsubscript{2} films as insulator and Al\textsubscript{1−x}Ga\textsubscript{x}N layers with an Al content varying over a wide range (\(x\)) from 0.15 to 0.4 as well as an Al\textsubscript{2}O\textsubscript{3}/InAlN/GaN MISH structure. For all structures, it was found that: (i) \(D_{\text{it}}(E)\) is a U-shaped continuum increasing from the midgap towards the CB and VB edges and (ii) interface states near the VB exhibit donor-like character. Furthermore, \(D_{\text{it}}(E)\) for SiO\textsubscript{2}/Al\textsubscript{1-x}Ga\textsubscript{x}N structures increased with rising \(x\). It was also revealed that carbon impurities are not present in the oxide/III-N interface region, which indicates that probably the interface states are not related to carbon, as previously reported. Finally, it was proven that the obtained \(D_{\text{it}}(E)\) spectrum can be well fitted using a formula predicted by the disorder induced gap state model. This is an indication that the interface states at oxide/III-N interfaces can originate from the structural disorder of the interfacial region. Furthermore, at the oxide/barrier interface we revealed the presence of the positive fixed charge (\(Q_{\text{pol}}\)) which is not related to \(D_{\text{it}}(E)\) and which almost compensates the negative polarization charge (\(Q_{\text{pol}}\)). Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971409]
states in the entire bandgap, in particular, near the valence band (VB), which is extremely difficult to achieve electrically. In addition, we characterized the chemical composition of the interface region using the Auger electron spectroscopy (AES) combined with ion sputtering, in order to identify impurities, which can be responsible for the interface states. Finally, based on the obtained results, we discussed the properties of Dit(E) and oxide/barrier interface charges.

II. SAMPLE STRUCTURE AND FABRICATION PROCESS

In Fig. 1, we present a scheme of the studied MISH structures, i.e.:

- Al₂O₃/Al₀.2Ga₀.8N/GaN with a metalorganic chemical vapor deposition (MOCVD) grown AlGaN layer (34 nm thick);
- Al₂O₃/In₀.19Al₀.81 N/GaN with a metalorganic vapor-phase epitaxy (MOVPE) grown InAlN layer (12 nm);

The investigated heterostructures were passivated using the two-step process:24–28 (1) covered by a SiN (10 nm) protection film deposited by electron cyclotron resonance chemical vapor deposition (ECR CVD) to avoid damages of semiconductor surfaces during ohmic contact annealing and (2) after removal of the SiN film, covered with an Al₂O₃ layer (20 nm) deposited by atomic layer deposition (ALD)

- SiO₂/AlₓGa₁₋ₓN/GaN with modulation doped AlGaN layers (x = 0.15, 0.26, 0.40; 25 nm thick); SiO₂ passivation layers (22 nm) were deposited by ECR CVD.15

The electric contacts were formed as follows: (1) ohmic contacts were ring-shaped Ti/Al/Ti/Au multilayers and (2) gate contacts were Al/Au or Ni/Au circles with diameters from 200 to 500 μm. All the heterojunctions were grown on a sapphire substrate and cleaned with a HF solution before passivation. The basic parameters of the examined structures, i.e., the insulator (d_I) and barrier (d_B) thicknesses, two-dimensional (2DEG) gas density (n_{2DEG}), carrier mobility (μ), and the sheet resistance (R₀), are summarized in Table I. The details of the sample fabrication process were reported in Refs. 11, 13, 14, 25, and 27.

III. EXPERIMENT

The ΔC characteristics vs. Φ were obtained at 1 MHz using an impedance analyzer at RT. As a light source, a xenon lamp and band-pass filters (the light wavelength between 250 and 300 nm) were applied and Φ was changed from 10¹⁰ to 10¹⁵ photon/(cm² s). The value of Φ incident on the insulator surface was estimated by taking into account the effect of light reflection and transmission through a metal gate stack. We measured ΔC in the following manner (Fig. 2). First, we swept the gate voltage from depletion (V_{depl}^G) to accumulation and...
The sample current was 10 nA. Subsequently, we swept the gate voltage from \(V_G \) to \(V_{Gi} \) (Fig. 2(a), step 2), for which the total structure capacitance in the dark \(C_{dark} \) included both the dielectric \(C_{d\alpha} \) and barrier layer capacitance \(C_b \). Keeping the bias at \(V_{Gi} \), we turned on the light. Upon illumination, we observed variations of the capacitance \(C \) with time \(t \) (Fig. 2(b)). When the C signal reached the steady-state value \(C_0 \), we turned off the light. In order to achieve the initial state, we applied \(V_{accum} \) to induce accumulation. \(\Delta C \) was calculated as the difference between \(C_0 \) and \(C_{dark} \). This process was repeated at different \(\Phi \), and on this basis, we determined the \(\Phi \)-dependence of \(\Delta C \). The details of the measurement process can be found elsewhere.\(^{18,19} \) The values of \(V_{accum} \) and \(V_{depl} \) for the examined structures are shown in Table I. Furthermore, in Table I we summarized the values of the spillover-voltage \((V_{sh}) \) (where 2DEG electrons spill over the barrier accumulating at the oxide/barrier interface) and the threshold voltage \((V_{th}) \) in C-V curves. The full sets of the C-V characteristics of the studied structures can be found in our recent paper.\(^{29} \)

The photo-assisted C-V characteristics vs. \(h\nu \) were measured at 1 MHz by an impedance analyzer at different temperatures. As a light source, a xenon lamp and band-pass filters were applied. At the beginning, before illumination, we swept the gate voltage from \(V_G = 0 \) V to \(V_{accum} \) and then back to depletion in order to obtain the dark reference \(V_{sh} \). Next, we swept the gate voltage from \(V_{depl} \) to \(V_{accum} \) and held the structure at \(V_{accum} \) for 2 min to fill the interface states with electrons. At last, we swept the gate voltage from \(V_{accum} \) to \(V_G = 0 \) V and kept this bias during a period \((t_{min}) \) of about 1 h. After this time, we illuminated the structure for about 10 min and subsequently, in the dark conditions, we swept the gate voltage towards \(V_{depl} \). Due to illumination, we observed a parallel C-V curve shift towards negative gate voltages. The \(\Delta V_{sh} \) in C-V characteristics was calculated as the difference between \(V_{sh} \) after and before illumination. The above procedure was repeated at different \(T \) and for various \(h\nu \) in order to obtain \(h\nu \) and \(T \)-dependence of \(\Delta V_{sh} \).

For AES measurements, we used a Perkin-Elmer PHI 670 Scanning Auger Microprobe. The ion sputtering was performed with a differentially pumped scanning Ar\(^+ \) ion gun. The ion energy was 500 eV, incident angle was 60°, and the pressure during sputtering was 5 \(\times \) 10\(^{-9} \) Torr. The low ion energy allowed to reduce the negative artifacts induced by sputtering, i.e., atom mixing and chemical reactions. The sputtered raster area was 1 \(\times \) 1 mm\(^2 \). After each sputtering cycle (duration of 2–3 min), the AES spectrum was recorded using the primary electron beam with energy of 10 eV, which was inclined to the surface normal at an angle of about 30°. The sample current was 10 nA.

IV. ESTIMATION OF \(D_{it} \) NEAR THE VALENCE BAND FROM \(\Delta C \) MEASUREMENTS

A. Model of illuminated MISH structure

The calculations of \(\Delta C \) for MISH structures were performed using the following model (Fig. 3). Under illumination by photons with \(h\nu \) above \(E_G \) of the barrier layer, the electron-hole pairs are generated both in the barrier and GaN layers at a rate \(G(x) \) (where \(x \) is the distance from the insulator/barrier interface), which exponentially decays according to the Lambert-Beer law. We consider the situation when the MISH structure is biased by \(V_{th} < V_G < V_{Ga} \). In this case, the photo- holes in the barrier layer are repelled from the barrier/GaN interface by the positive polarization charge \((Q_{pol}^-) \) (originating from the spontaneous and piezoelectric polarization) and attracted to the insulator/barrier interface by \(V_G \), whereas electrons are repelled from the insulator/barrier interface by \(V_G \) and attracted to the barrier/GaN interface by \(Q_{pol}^- \). At the same time, electrons in GaN are attracted to the barrier/GaN interface by \(Q_{pol}^- \), whereas photo-holes are repelled by this charge. The excess holes in the barrier layer are collected near the insulator/barrier interface and subsequently are captured by the interface states changing their occupation. It should be noted that due to the negligible electron concentration \((n) \) at the insulator/barrier interface, the non-radiative recombination through the interface states is totally reduced.\(^{18,19} \)

However, the excess carriers can recombine radiatively through band-to-band transitions with a rate \(Bnp \) (where \(B \) is the band-to-band recombination coefficient and \(p \) is the photo-hole concentration) and non-radiatively through defects by the Shockley-Read-Hall (SRH) mechanism at a rate \(USRH \).

The model equations are based on the 1D Poisson’s equation and current continuity equations in a semiconductor layer and Laplace’s equation in the insulator layer. In the calculations, we assumed that the generation rate decreases exponentially versus the distance from the interface. We also considered the main bulk recombination channels, i.e., radiative band-to-band recombination and SRH recombination. The model equations were solved self-consistently using the finite element method with the following boundary conditions: (i) Neumann type boundary conditions at the insulator/barrier interface determined by the density of the interface state charge \((Q_{pol}^-) \) and at the barrier/GaN interface determined by \(Q_{pol}^- \) and (ii) Dirichlet type boundary conditions at the
contacts. In particular, the boundary conditions at the insulator/barrier interface are expressed as

$$e_0\epsilon_B E_B - e_0\epsilon_I E_I = Q_{it} + Q_{fnet},$$

(1)

where E_B and E_I are the electric field intensities of the barrier layer and insulator, respectively, ϵ_B and ϵ_I are the relative barrier and insulator permittivity, respectively. Q_{fnet} is the net fixed charge at the insulator/barrier interface including the negative polarization charge (Q_{pol}^-) and other fixed charges (Q_F) and $Q_{fnet} = Q_{pol}^- + Q_F (Q_{pol}^- = -Q_{pol}^+)$. Q_{it} can be expressed as follows:

$$Q_{it} = \int_{E_V}^{E_C} D_i(E)(1-f_{it})dE - \int_{E_C}^{E_{CNN}} D_i(E)f_{it}dE,$$

(2)

where E_V and E_C are the top of VB and the bottom of CB, respectively, E_{CNN} is the charge neutrality level and f_{it} is the occupation function of interface states expressed as

$$f_{it} = \frac{\sigma_n n_{1/B} + \sigma_p p_{1/B}}{\sigma_n n_{1/B} + \sigma_p p_{1/B} + \sigma_p p_{i/B} + \sigma_p p_{i/B}},$$

(3)

where σ_n and σ_p are the cross sections for capturing electrons and holes by interface states, respectively, and $n_{1/B}$ and $p_{1/B}$ are the concentrations of electrons and holes at the insulator/barrier interface, respectively. $n_i(E) = n_N \exp\{E_i(E) - (E_i - \mu_i)\}$, where E_0 and n_N are the effective state densities in CB and VB, respectively.

From the solution of the model equations, we obtained the depth distributions of the electric potential V, n, and p. The calculations were performed for V_G and $V_C + V_{ac}$, where V_{ac} is the numerical equivalent of an ac signal. On this basis, we calculated the total charge in the whole structure for these biases, i.e., $Q(V_G)$ and $Q(V_G + V_{ac})$ and finally ΔC using the following formula:

$$\Delta C = \frac{Q(V_G) - Q(V_G + V_{ac})}{V_{ac}} - C_{dark}.$$

(4)

During the calculation of ΔC, we assumed that Q_{it} cannot follow the fast ac voltage signal but can follow the slow gate voltage sweep (high-frequency measurement). We also assumed the materials parameters of GaN and AlGaN from Ref. 31, E_{CNN} values from Refs. 26 and 32 (for Al$_x$Ga$_{1-x}$N with $x = 0.4, E_{CNN} = E_C - 1.75$ eV; $x = 0.26, E_{CNN} = E_C - 1.6$ eV and $x = 0.15, E_{CNN} = E_C - 1.4$ eV; for In$_{0.19}$Al$_{0.81}$N, $E_{CNN} = E_C - 2$ eV) and $\sigma_I = \sigma_p$ values obtained experimentally from our previous studies.

B. ΔC of MISH structure

Since the measurements of ΔC are fundamental for the determination of $D_i(E)$, it was necessary to understand the photocapacitance effect in a MISH structure. In this order, we derived an approximate relationship of ΔC as a function of $p_{1/B}$, which explains the behavior of ΔC with Φ and impact of the insulator and barrier thicknesses (d_I and d_B), interface parameters (Q_{it} and Q_{fnet}) as well as bulk SRH life time (τ) on ΔC.

In general, C of the MISH structure under illumination, at the gate voltage of $V_{th} < V_G < V_{Gos}$, can be written as

$$C \approx \left(\frac{dQ_b}{dV}\right)^{-1} - C_{ox}^{-1},$$

(5)

where Q_b is the total charge in the barrier layer under illumination, expressed by the following relationship:

$$Q_b = q \int_0^{d_b} (p + N_d - n)dx,$$

(6)

where N_d is the concentration of ionized dopants. For low and medium Φ, we can assume that n is almost the same as in the dark; therefore, Q_b can be given as follows:

$$Q_b = q \int_0^{d_b} pdx + Q_b^{dark}.$$

(7)

where Q_b^{dark} is the total charge in the barrier layer in the dark.

In Fig. 4, we displayed the calculated in-depth distribution of p in the MISH structure under illumination, at the gate voltage of $V_{th} < V_G < V_{Gos}$, for different τ. It is clear that p in the barrier layer rapidly decreases from the oxide/barrier interface towards the barrier/GaN interface. On this basis, Q_b can be approximately expressed as

$$Q_b \approx q dB p_{1/B} + Q_b^{dark}. $$

(8)

It should be noted that dQ_b^{dark}/dV is approximately equal to the capacitance of the barrier layer ($C_B = \epsilon_B d_B$). Therefore, dQ_b/dV can be expressed as

$$\frac{dQ_b}{dV} = q dB \frac{dp_{1/B}}{dV} + C_B.$$

(9)

Taking into account that $p_{1/B} = N_I \exp\{-E_{fp}(x)/kT\}$, where E_{fp} is the hole quasi-Fermi level, we can express $dp_{1/B}/dV$ as follows:

$$\frac{dp_{1/B}}{dV} \approx \frac{q}{kT} p_{1/B}.$$

(10)

FIG. 4. Calculated depth distributions of p in the Al$_2$O$_3$/AlGaN/GaN structure with $d_b = 20$ nm, $d_B = 34$ nm under $\Phi = 10^{15}$ photon/(cm2 s) at $V_G = -4$ V, for the ideal oxide/AlGaN interface ($Q_b = 0, Q_{fnet} = 0$). Solid line corresponds to $\tau = 10^{-7}$ s and dashed line to $\tau = 10^{-9}$ s.
Therefore, after substituting Eqs. (10) and (9) in Eq. (5), we obtain that \(\Delta C = C - C_{\text{dark}} \) can be given by

\[
\Delta C \approx \left(\frac{q^2 d_B}{kT} \frac{p_{1/B} + C_B}{p_{1/B} + C_B + C_{\text{ox}}} \right) C_{\text{ox}} - C_{\text{dark}}, \tag{11}
\]

where \(C_{\text{dark}} = C_{\text{ox}} + C_{\text{B}} \).

The above equation allows to understand the dependencies of \(\Delta C \) vs. \(\Phi \) shown in Fig. 5, which were precisely calculated using the model described in Section IV A. The simulations were performed for Al_{2}O_{3}/AlGaN/GaN structure with the different \(d_B \) and \(d_I \) in the case of the ideal Al_{2}O_{3}/AlGaN interface \((Q_{it} = 0, \ Q_{fnet} = 0) \) and non-ideal interface \((Q_{it} \neq 0, \ Q_{fnet} \neq 0) \), as well as for the different \(\tau \). In the calculations, we assumed \(V_G = -4 \text{ V} \). In particular, Eq. (11) explains well the characteristic shape of \(\Delta C(\Phi) \) curves, which begin to saturate under some excitations and then approach a constant value. For example, if we take into account that \(p_{1/B} \) rises monotonically with increasing \(\Phi \), we can easily find that when \(p_{1/B} \) reaches the value corresponding to the relationship \(\Delta C = C_{\text{ox}} - C_{\text{dark}} \), then Eq. (11) can be approximated by the relationship \(\Delta C = C_{\text{ox}} - C_{\text{dark}} \). In addition, from Fig. 5 one can note that the increase of \(d_B \) caused rising of \(\Delta C \) (curve 2); however, the increase of \(d_I \) resulted in lowering of \(\Delta C \) (curve 3). The opposite influence of \(d_I \) and \(d_B \) can also be easily understood from Eq. (11). For example, in the case of the saturation \(\Delta C = C_{\text{ox}} - C_{\text{dark}} = \frac{C_{\text{ox}}}{C_{\text{B}}} \), and thus, it is evident that \(\Delta C \) decreases with increasing \(d_I \) and on the contrary, \(\Delta C \) increases with increasing \(d_B \).

Furthermore, from Fig. 5 it is evident that in the case of \(Q_{it} > 0 \) (donor-like states, curve 5) and \(Q_{fnet} > 0 \) (curve 4), the calculated dependencies of \(\Delta C \) vs. \(\Phi \) are shifted towards higher \(\Phi \) values with respect to the ideal curve. On the contrary, the \(\Delta C(\Phi) \) dependencies obtained for \(Q_{it} < 0 \) (acceptor-like states, curve 7) and \(Q_{fnet} < 0 \) (curve 6) are shifted towards lower \(\Phi \). It should be also noticed that \(Q_{fnet} \) causes parallel shifts of \(\Delta C(\Phi) \) curves from the ideal one, whereas \(Q_{it} \) induces non-parallel shifts. These opposite shifts of \(\Delta C(\Phi) \) curves can be easily understood in terms of Eq. (11). Namely, in the case of \(Q_{fnet} > 0 \), at a given \(\Phi, \ p_{1/B} \) is much lower than in the ideal case (due to repelling the free holes from the oxide/barrier interface by the positive \(Q_{fnet} \)). As a consequence, according to Eq. (11), for \(Q_{fnet} > 0 \), at a given \(\Phi, \ \Delta C \) is much lower than in ideal conditions, which leads to the shift towards higher \(\Phi \) from the ideal curve. On the other hand, for \(Q_{fnet} < 0, \ p_{1/B} \) takes the higher values compared to the ideal curve (due to attracting the free holes towards the oxide/barrier interface by the negative \(Q_{fnet} \)). As a result, for \(Q_{fnet} < 0 \) at a given \(\Phi \), \(\Delta C \) is much higher than in ideal conditions that gives the shift towards lower \(\Phi \) from the ideal curve.

In the case of \(Q_{it} \), the mechanism of shifting the \(\Delta C(\Phi) \) curves is similar like in the case of \(Q_{fnet} \). However, the shift from the ideal curve changes with \(\Phi \) due to the dependence of \(Q_{it} \) vs. \(\Phi \). In particular, for the donor-like states, \(Q_{it} \) becomes more positive with increasing \(\Phi \) (due to the shifting \(E_B \) towards \(E_V \)), and thus, the shift from the ideal curve increases vs. \(\Phi \). On the contrary, for the acceptor-like states, \(Q_{it} \) is less negative with increasing \(\Phi \), which leads to the reduced shift from the ideal curve with \(\Phi \). Additionally, from Fig. 5 it is evident that the \(\Delta C(\Phi) \) curves are almost the same for different values of \(\tau \). This is because \(\tau \) does not significantly influence \(p \) distribution in the barrier, as shown in Fig. 4, and thus, \(\Delta C(\Phi) \) curves do not change for various \(\tau \).

C. Method for determination of \(D_s(E) \)

In order to determine \(D_s(E) \) near \(E_V \), we applied the method developed by us in Ref. 19, which is based on the measurements of \(\Delta C(\Phi) \) dependencies at \(V_{th} < V_{G1} \). A such the \(V_G \) range is applied in order to obtain accumulation in GaN layer to avoid the uncontrolled increase of the GaN layer capacitance under illumination with \(h\nu > E_G \). Furthermore, in order to enhance this approach, one should use two different biases, one close to \(V_{th} \) and the second much higher than \(V_{th} \). This allows to extend the energy range of the scanned interface states. For example, in Ref. 19 for \(V_{G1} \) close to \(V_{th} \), we obtained \(D_s(E) \) distributed close to \(E_V \), whereas for \(V_{G1} \) much higher than \(V_{th} \), \(D_s(E) \) was far from \(E_V \). In our measurements of \(\Delta C(\Phi) \) dependencies, we applied \(V_{G1} = -2 \) and \(-4 \text{ V} \) for all investigated structures. The bias \(V_{G1} = -4 \text{ V} \) was chosen as a maximum value close to \(V_{th} \), which allowed to avoid the structure breakdown under illumination, whereas \(V_{G1} = -2 \text{ V} \) was much higher than \(V_{th} \) and allowed to detect the lowest \(\Delta C \) signal in the whole applied \(\Phi \) range. The measured dependencies \(\Delta C(\Phi) \) are summarized in Fig. 6.

In the first step of the method used to determine \(D_s(E) \), we calculated the set of \(\Delta C(\Phi) \) curves corresponding to the uniform distributions \(D_s(E) \), which pass through all experimental points, as shown in Fig. 6(a) for two succeeding
\[\text{points, } i \text{ and } i + 1 \quad (i = 1, 2, 3 \ldots N, \text{ where } N \text{ is the number of points at the experimental } \Delta C(\Phi) \text{ dependence). The determined } D_{it}(E) \text{ allows to calculate } Q_{it} \text{ and hole quasi-Fermi position } (E_{fp}^i) \text{ at the oxide/barrier interface for the } ith \text{ experimental point. On this basis, in the next step we calculated } D_{it}(E) \text{ using the following relationship:} \]

\[D_{it}(E) = \frac{Q_{i+1} - Q_i}{E_{fp}^i - E_{fp}^{i+1}}. \]

The obtained \(D_{it}(E) \) were distributed in the energy range from near \(E_V \) to 0.5 eV above \(E_V \), as presented in Fig. 12. It should be noted that the important advantage of the applied approach is the lack of impact of \(\tau \) on the determined \(D_{it}(E) \) because of independence of \(\Delta C \) on \(\tau \), as it was shown in Sec. IV B. Furthermore, in Ref. 19, we proved that using this method for determination of \(D_{it}(E) \) does not require the knowledge on \(Q_{\text{net}} \). In order to evaluate the charge character (donor-like or acceptor-like) of the obtained \(D_{it}(E) \), we compared the measured \(\Delta C(\Phi) \) dependencies with the calculated ideal curve (\(D_{it}(E) = 0 \)), as shown in Fig. 6. It is evident that all experimental \(\Delta C(\Phi) \) curves are non-parallel shifted by several orders of magnitude towards higher \(\Phi \) values with respect to the ideal one. This means, according to the considerations in Sec. IV B (Fig. 5) that the determined interface states are of donor-like type.

V. ESTIMATION OF \(D_{it} \) NEAR THE MIDGAP AND CONDUCTION BAND FROM \(h\nu \) AND T-DEPENDENCE OF \(\Delta V_{th} \)

In the next step, we determined \(D_{it}(E) \) from \(h\nu \) and \(T \)-dependencies of \(\Delta V_{th} \). In Fig. 7(a), we present the \(T \)-dependencies of \(\Delta V_{th} \) obtained for \(h\nu = 2 \) eV. It is obvious that for all the structures the light-induced \(\Delta V_{th} \) strongly decreased vs. \(T \). As it was shown recently, this feature can be explained as follows. Due to illumination by the photons with energy \(h\nu \) at a given \(T \), the induced \(\Delta V_{th} \) is equal to

\[\Delta V_{th} = q \int_{E_m}^{h\nu} D_{it}(E) dE/C_{\text{total}}, \]

where \(C_{\text{total}} = C_{\text{dark}} \) for \(V_G = 0 \) and the \(E_m \) value is given as follows:

FIG. 6. Experimental dependencies of \(\Delta C(\Phi) \) (points) under \(V_{G1} = -2 \) V and \(-4 \) V for different MISH structures at RT. Dashed lines correspond to the ideal interface (\(D_{it}(E) = 0 \)). Solid lines 1 and 2 (a) calculated for the uniform \(D_{it}(E) \) (inset) passing through the succeeding points \(i \) and \(i+1 \). Curve 3 (a) calculated for the determined U-shaped \(D_{it}(E) \) and \(Q_{\text{net}} = -10^{12} \text{ q/cm}^2 \) (Sec. VIII B).

FIG. 7. Experimental dependencies of \(\Delta V_{th} \) vs. \(T \) under illumination with \(h\nu = 2 \) eV (a) and \(\Delta V_{th} \) vs. \(h\nu \) at RT (full symbols) (b). Dependencies for Schottky gate structures (open circles) given for comparison.
\[E_{im} = kT \ln (v_{th} \sigma_n N_e \nu_{em}). \]

(14)

As it results from the above equations, due to an increase of T, \(E_{im} \) is shifted down on the energy scale, and thus, \(\Delta V_{th} \) is reduced. On the basis of Eqs. (13) and (14), we can determine \(D_p(E) \) from the following relationship:

\[D_p(E) = \frac{C_{total} \left(\Delta V_{th}^1 - \Delta V_{th}^2 \right)}{q(E_{im1} - E_{im2})}, \]

(15)

where the \(E_{im1} \) and \(E_{im2} \) is \(E_{im} \) for \(T_1 \) and \(T_2 \), respectively; \(\Delta V_{th}^1 \) and \(\Delta V_{th}^2 \) is \(\Delta V_{th} \) for \(T_1 \) and \(T_2 \), respectively.

In Fig. 7(a), we present the \(h\nu \)-dependencies of \(\Delta V_{th} \) obtained at RT. It is evident that \(\Delta V_{th} \) increases vs. \(h\nu \), that is caused by an increasing number of the depopulated interface states (Eq. (13)). Based on the approach proposed by Mizue et al., we can determine \(D_p(E) \) from \(h\nu \)-dependencies of \(\Delta V_{th} \) using the following formula:

\[D_p(E) = \frac{C_{total} \left(\Delta V_{th}^{h\nu 1} - \Delta V_{th}^{h\nu 2} \right)}{q(h\nu_2 - h\nu_1)}, \]

(16)

where the \(\Delta V_{th}^{h\nu 1} \) and \(\Delta V_{th}^{h\nu 2} \) is the value of \(\Delta V_{th} \) for \(h\nu_1 \) and \(h\nu_2 \), respectively.

The estimated \(D_p(E) \) from Eqs. (15) and (16) at the examined insulator/III-N heterojunction interfaces, which are distributed in the energy band gap between \(E_C \) and about 3 eV below \(E_C \), are summarized in Fig. 12. Additionally, in Fig. 12(a), we also presented \(D_p(E) \) obtained from the fitting of the C-V curve for the same Al\(_2\)O\(_3\)/AlGaN/GaN structure, as reported by Yatabe et al. in Ref. 13. It is clear that this \(D_p(E) \) is consistent with \(D_p(E) \) determined from Eq. (16), which is an independent confirmation of the reliability of the method based on the measurement of T-dependencies of \(\Delta V_{th} \).

VI. ELIMINATING THE CONTRIBUTION OF BULK TRAPS AND BORDER TRAPS TO PHOTO-ELECTRICAL MEASUREMENTS

In order to eliminate the possible distorting contribution of the bulk traps located in GaN, barrier, and oxide layers, as well as of the border traps in oxide to the obtained results concerning the oxide/barrier interface states, we performed an additional study on the behavior of photo-induced \(\Delta V_{th} \) in the examined MISH structures.

A. Bulk traps in GaN and barrier layers

First, we showed that the registered \(\Delta V_{th} \) is not related to the bulk traps in GaN and barrier layers. It is well known that (In, Al, Ga)N materials contain several types of electronic defect states in the bandgap. These states can be excited due to illumination/heating, and as a result, the \(V_{th} \) shift in C-V curves can be induced. Therefore, we performed the measurements of \(\Delta V_{th} \) vs. \(h\nu \) and T for Schottky-gated structures, whose results are summarized in Fig. 7. One can note that \(\Delta V_{th} \approx 0 \) in the wide range of \(h\nu \) and T. This indicates that deep level traps in the barrier layer and/or GaN epitaxial layers have a negligible impact on the photo-assisted C-V measurements. Furthermore, it should be also noted that the bulk parameters do not markedly influence the dependencies of \(\Delta C \) vs. \(\Phi \), as shown in Section IV B.

B. Bulk traps and border traps in oxides

Subsequently, we examined the possible contribution of bulk oxide traps to the photo-assisted C-V measurements. In the case where the bulk oxide traps are excited by illumination, the product \(\Delta V_{th} \cdot C_{total} \) would exhibit a strong dependence on the oxide thickness. Therefore, we compared the \(h\nu \) dependencies of \(V_{th} \cdot C_{total} \) registered for two different thicknesses of oxide layers, as shown in Fig. 8. It is evident that the \(h\nu \) dependencies of \(V_{th} \cdot C_{total} \) are almost the same, which means that the bulk oxide traps have the negligible impact on the photo-assisted C-V measurements.

Then, an important and complex issue was to prove that the border traps do not influence \(\Delta V_{th} \). This is because the border traps are located very close to the interface and they can behave like the interface states, as showed recently by Wu et al. In order to determine if \(\Delta V_{th} \) is induced by the interface states or by the border traps, we applied the following approach.

According to the band diagram shown in Fig. 9, the illumination of the structure by light with \(h\nu \) below the band gap of GaN, at a given \(T_1 \) and \(V_{th} < V_G \), induces the depopulation of electrons from the border traps distributed between \(h\nu \) and \(E_{im} \) (with respect to the oxide \(E_C \)) and from the interface states distributed (i) between \(h\nu \) and \(E_{im} \) (with respect to the barrier \(E_C \)) if the interface states are not at equilibrium conditions in the dark (Fig. 9(a)) (\(E_{im} \) is above \(E_f \) at the oxide/barrier interface) and (ii) between \(h\nu \) and \(E_{im} \) if these states are at equilibrium conditions in the dark (Fig. 9(b)). Therefore, the induced \(\Delta V_{th} \) can be expressed as follows:

\[\Delta V_{th} = \Delta V_{BT} + \Delta V_{IS}, \]

(17)

where \(\Delta V_{BT} \) and \(\Delta V_{IS} \) are the \(V_{th} \) shifts caused by the border traps and the interface states, respectively. These shifts are given by the following formulas, respectively:

![Fig. 8. Experimental dependencies of \(\Delta V_{th} \cdot C_{total} \) vs. \(h\nu \) for Al\(_2\)O\(_3\)/InAlN/GaN structures with \(d_j = 13 \text{ nm} \) (from Ref. 33) and \(d_j = 20 \text{ nm} \).]
where \(D_{BT}(E) \) is the energy distribution of the border trap density, and

(i) for the interface states under non-equilibrium in the dark:

\[
\Delta V_{IS} = \int_{E_{m}}^{E_{C}} D_{IS}(E) dE / C_{total};
\]

and

(ii) for the interface states under equilibrium in the dark:

\[
\Delta V_{IS} = \int_{E_{m}}^{E_{C}} D_{IS}(E) dE / C_{total}.
\]

In Fig. 10(a), we displayed the calculated dependencies of \(E_f \) at the Al\(_{2}\)O\(_3\)/AlGaN interface vs. \(T \), at \(V_G = 1 \) V and \(V_G = 0 \) in the dark. In the calculation, we assumed \(D_{IS}(E) \) (from Fig. 12(a)) and the full compensation \((Q_{pum} = 0) \). For the comparison, in Fig. 10(a) it is shown the dependence of \(E_{m} \) vs. \(T \) calculated from Eq. (14). One can note the marked shift of \(E_{m} \) in the bandgap, contrary to almost negligible changes of \(E_f \). In addition, it is clear that for \(V_G = 1 \) V, the interface states can remain at equilibrium in the wide temperature range. Therefore, it is obvious that from the measurements of \(\Delta V_{th} \) performed at \(V_G = 1 \) V and at two different \(T \) (\(T_1 \) and \(T_2 \)) we can recognize if the border traps contribute to \(\Delta V_{th} \). Namely, from Eq. (18) it is evident that \(\Delta V_{BT} \) should be lower at \(T_2 \) than at \(T_1 \) due to changing \(E_{m} \) with \(T \) (Fig. 10(a)). On the other hand, assuming that the interface states are at equilibrium at \(T_1 \) and \(T_2 \) for \(V_G = 1 \) V, we find from Eq. (20) that \(\Delta V_{IS} \) should be the same at \(T_1 \) and \(T_2 \) due to the negligible changes of \(E_f \) vs. \(T \) (Fig. 10(a)). Therefore, if the border traps contribute to \(\Delta V_{th} \), the \(\Delta V_{th} \) value at \(T_2 \) should be lower than at \(T_1 \), and, on the contrary, if the border traps do not contribute to \(\Delta V_{th} \), this value should remain the same at \(T_1 \) and \(T_2 \). In Fig. 10(b), we showed the measured \(\Delta V_{th} \) obtained at RT and 473 K, under \(h\nu = 2.2 \) eV, for \(V_G = 1 \) V and \(V_G = 0 \) for the Al\(_{2}\)O\(_3\)/AlGaN/GaN structure. One can note that \(\Delta V_{th} \) markedly decreased at higher \(T \), for \(V_G = 0 \) V, and almost did not change for \(V_G = 1 \) V. Therefore, on this basis, we can neglect the contribution of the border traps to photo-assisted C-V measurements in the case of the Al\(_{2}\)O\(_3\)/AlGaN/GaN structure. Similar results were obtained for other MISH structures from the analogous analysis.

The reason of the lack of detection of the border traps can be either their absence \((D_{BT} = 0) \) or their full depopulation of electrons (ionization) in the analyzed energy range (up to 2.2 eV, with respect to the oxide \(E_C \)). The border traps can also have the optical photoionization cross section much lower than the interface states. The latter situation means that the efficient excitation of the border traps needs illumination with stronger intensity.

Finally, we discussed the possible influence of bulk traps in oxides and the border traps on the dependencies of \(\Delta C \) vs. \(\Phi \). As discussed in Sec. IV B, \(\Delta C \) is determined by \(p \) at the oxide/barrier interface; therefore, the bulk and border traps in oxide would exhibit impact on \(\Delta C \) vs. \(\Phi \) dependencies only if the \(p \) tunneling occurs inside the oxide layer. Because the leakage currents under illumination are negligible (less than \(5 \times 10^{-8} \) A/cm\(^2\)), we could exclude the \(p \) tunneling into oxide, and thus, also contribution of the bulk oxide/border traps to \(\Delta C \).
VII. AES CHARACTERIZATION

After the photo-electrical characterization, we performed the AES profiling of the studied samples in order to determine the in-depth distribution of constituent elements, in particular, in the surface and interface regions. The registered AES spectra and variations of the element content versus the sputtering time for the SiO$_2$/AlGaN/GaN and Al$_2$O$_3$/AlGaN/GaN structures are summarized in Fig. 11. It is worth to highlight that all element peaks, i.e., C KLL, O KLL, Si KLL, Al KLL, N KLL, and Ga MNN are well resolved, and thus, based on their evolution, we could well recognize the oxide films, AlGaN barrier layer, and GaN substrate, as well as the interfacial regions (shadowed areas in Figs. 11(b) and 11(d)), i.e., the outer insulator surface, the insulator/barrier interface, and AlGaN/GaN interface. The first few AES spectra correspond to the oxide surface/subsurface regions, which are obviously non-stoichiometric with some oxygen deficiency and carbon contamination (C concentration below 20%), which totally decays at a shallow depth in both dielectric films to the AES detection level (Figs. 11(b) and 11(d)). Subsequently, with further sputtering, the concentrations of O and Si in SiO$_2$, and O and Al in the Al$_2$O$_3$ film become almost constant over the sputtered thickness that means the uniform and stoichiometric chemical composition of the fabricated oxide films. Then, the oxide/barrier interface region is well visible due to the correlated decay of oxide elements (O and Si in SiO$_2$, and O and Al in Al$_2$O$_3$ films) with gradual rising of Al, Ga, and N of the barrier layer. However, the precise determination of the transition region thickness between the oxide and AlGaN is rather difficult because of the possible ion sputtering induced artifacts, including preferential sputtering and atom mixing, which cause some widening of the interfacial region. It should be stressed that all the examined oxide layers and oxide/barrier interfaces were free of carbon contaminations. It is also evident that the element concentrations corresponding to the bulk region of AlGaN and GaN were consistent with the sample compositions.

VIII. DISCUSSION

A. Properties of $D_I(E)$

In this section, we focus on the explanation of the two following features of $D_I(E)$. Namely, from Fig. 12, it is evident that: (i) for all structures $D_I(E)$ is a typical continuous U-shaped distribution increasing towards both the CB and the VB from the midgap and (ii) $D_I(E)$ increases with x in the whole bandgap.

According to some reports, the origin of interface states at oxide/III-N interfaces can be related to C impurities near/at the interface. Choi et al. using the first principles calculations showed that C_{Al} can produce traps near/at the Al$_2$O$_3$/III-nitride interface. Based on these results as well as on the comparative electrical and photoelectric studies, Liu et al. suggested that the slow interface states at Al$_2$O$_3$/GaN interfaces originate from C impurities. Furthermore, Jackson et al. using the capacitance deep level optical spectroscopy claimed that $D_I(E)$ near VB at Al$_2$O$_3$/GaN interface is due to residual C atoms from nucleation of the ALD process. However, our AES results showed that in the investigated structures such impurities are not present in the oxide/III-N interface region at the AES detection limit (Fig. 11).
Therefore, the obtained $D_{\alpha}(E)$ can be well understood in terms of the unified disorder induced gap state model (DIGS model) proposed by Hasegawa and Ohno.41 Within this model, the interface states are induced by the disorder of bonds near the interface produced during its formation process. The U-shaped distribution of interface states is a natural consequence of the fact that the bonding states try to minimize their energy during the interface formation. Furthermore, the DIGS model predicts that the interface states decay exponentially from CB and VB toward the midgap according to the following relationship:41

$$D_{\alpha}(E) = D_{\alpha 0} \exp \left(\frac{E - E_{CNL}}{E_{\alpha 0}} \right). \quad (21)$$

where $D_{\alpha 0}$ is the minimum density, $E_{\alpha 0}$, and E_{CNL} describe the shape of the donor/acceptor branch (separated by E_{CNL}), respectively.

In Fig. 12, we showed a fit of the DIGS model expression (Eq. (21)) to the experimental spectrum $D_{\alpha}(E)$. One can note that the obtained $D_{\alpha}(E)$ can be well described by a theoretical dependence. This is a strong suggestion that the interface states at oxide/III-nitride interfaces can arise from the structural disorder of the interfacial region.41 It needs to be highlighted that the DIGS model predicts the existence of donor-like interface states below E_{CNL}, which is consistent with our findings. Furthermore, the increase of $D_{\alpha}(E)$ vs. x, according to the DIGS model, can be induced by the growing disorder with rising x that results from a gradual enhancement of strain in AlGaN films. Additionally, the DIGS model predicts that the variation of U-shaped continuum with an increasing degree of disorder should occur in the whole bang gap, i.e., for both the VB and CB side,41 which is compatible with our observations of the $D_{\alpha}(E)$ evolution vs. x.

B. Oxide/barrier interface charges

Recently, Bakeroot et al.22 showed that for the U-shaped DIGS continuum, the equilibrium E_f at the SiN/AlGaN interface would be pinned very deeply with respect to E_{CNL}, and thus, the resulting 2DEG density would be too low. This situation, according to the cited authors, can be avoided if we assume the existence of a certain positive fixed charge at the SiN/AlGaN interface besides the U-shaped DIGS which can compensate the negative polarization charge. The authors of Ref. 22 proposed that the role of the positive fixed charge can be played by a deep border trap localized inside SiN.

In the present work, for the determined U-shaped $D_{\alpha}(E)$ (Fig. 12) we found, from the calculations, that the equilibrium E_f position at the investigated oxide/barrier interfaces is also significantly below E_{CNL}. For example, in the case of the Al$_{1-x}$Ga$_x$N barrier with x of 0.2 or 0.26, for the assumed15 Q_{pol}^-, it was found that E_f at the SiO$_2$/Al$_{0.26}$Ga$_{0.74}$N interface would lie at 0.74 eV below E_{CNL} and at the Al$_2$O$_3$/Al$_{0.2}$Ga$_{0.8}$N interface at

\[Q_{pol}^- = -9 \times 10^{12} \text{q/cm}^2. \]

Therefore, Ga/Al DBs can well explain only the high-density interface states near the CB but not those close to the VB.

On the contrary, the obtained U-shape of $D_{\alpha}(E)$ can be well understood in terms of the unified disorder induced gap state model (DIGS model) proposed by Hasegawa and Ohno.41 Within this model, the interface states are induced by the disorder of bonds near the interface produced during its formation process. The U-shaped distribution of interface states is a natural consequence of the fact that the bonding states try to minimize their energy during the interface formation. Furthermore, the DIGS model predicts that the interface states decay exponentially from CB and VB toward the midgap according to the following relationship:41

$$D_{\alpha}(E) = D_{\alpha 0} \exp \left(\frac{E - E_{CNL}}{E_{\alpha 0}} \right). \quad (21)$$

where $D_{\alpha 0}$ is the minimum density, $E_{\alpha 0}$, and E_{CNL} describe the shape of the donor/acceptor branch (separated by E_{CNL}), respectively.

In Fig. 12, we showed a fit of the DIGS model expression (Eq. (21)) to the experimental spectrum $D_{\alpha}(E)$. One can note that the obtained $D_{\alpha}(E)$ can be well described by a theoretical dependence. This is a strong suggestion that the interface states at oxide/III-nitride interfaces can arise from the structural disorder of the interfacial region.41 It needs to be highlighted that the DIGS model predicts the existence of donor-like interface states below E_{CNL}, which is consistent with our findings. Furthermore, the increase of $D_{\alpha}(E)$ vs. x, according to the DIGS model, can be induced by the growing disorder with rising x that results from a gradual enhancement of strain in AlGaN films. Additionally, the DIGS model predicts that the variation of U-shaped continuum with an increasing degree of disorder should occur in the whole bang gap, i.e., for both the VB and CB side,41 which is compatible with our observations of the $D_{\alpha}(E)$ evolution vs. x.

B. Oxide/barrier interface charges

Recently, Bakeroot et al.22 showed that for the U-shaped DIGS continuum, the equilibrium E_f at the SiN/AlGaN interface would be pinned very deeply with respect to E_{CNL}, and thus, the resulting 2DEG density would be too low. This situation, according to the cited authors, can be avoided if we assume the existence of a certain positive fixed charge at the SiN/AlGaN interface besides the U-shaped DIGS which can compensate the negative polarization charge. The authors of Ref. 22 proposed that the role of the positive fixed charge can be played by a deep border trap localized inside SiN.

In the present work, for the determined U-shaped $D_{\alpha}(E)$ (Fig. 12) we found, from the calculations, that the equilibrium E_f position at the investigated oxide/barrier interfaces is also significantly below E_{CNL}. For example, in the case of the Al$_{1-x}$Ga$_x$N barrier with x of 0.2 or 0.26, for the assumed15 Q_{pol}^-, it was found that E_f at the SiO$_2$/Al$_{0.26}$Ga$_{0.74}$N interface would lie at 0.74 eV below E_{CNL} and at the Al$_2$O$_3$/Al$_{0.2}$Ga$_{0.8}$N interface at

\[Q_{pol}^- = -9 \times 10^{12} \text{q/cm}^2. \]
1.8 eV below E_{CNL}. In the case of the In$_{0.19}$Al$_{0.81}$N barrier, for the assumed $Q_{\text{pol}} = -2 \times 10^{13}$ q/cm2, it was obtained that E_F at the Al$_2$O$_3$/In$_{0.19}$Al$_{0.81}$N interface would be located at 0.61 eV below E_{CNL}. As a consequence of such a low E_F position, the 2DEG density would be evidently too low. Therefore, an additional positive fixed charge Q_F should be introduced at the oxide/barrier interface. Furthermore, we supported this statement by the calculations of V_{th} in C-V curves. For example, assuming the determined $D_{it}(E)$ and $Q_F = 0$ ($Q_{\text{net}} = Q_{\text{pol}}$), we found that V_{th} in C-V curves would be much higher (more positive) than the measured one. In particular, for the SiO$_2$/Al$_{0.26}$Ga$_{0.74}$N, Al$_2$O$_3$/Al$_{0.26}$Ga$_{0.74}$N, Al$_2$O$_3$/In$_{0.19}$Al$_{0.81}$N structures, we obtained $V_{th} = -4.4$ V, -5.8 V, and -6.2 V, respectively, which is completely different from that in Table I. This indicates that it is necessary to introduce the positive Q_F at the oxide/barrier interface in order to shift V_{th} towards much more negative values. From the fitting of V_{th} in the measured C-V curves, we determined Q_F for SiO$_2$/Al$_{0.26}$Ga$_{0.74}$N, Al$_2$O$_3$/Al$_{0.26}$Ga$_{0.74}$N, and Al$_2$O$_3$/In$_{0.19}$Al$_{0.81}$N interfaces, which amounts to 8.05×10^{12} q/cm2, 7.1×10^{12} q/cm2, and 1.1×10^{13} q/cm2, respectively. It should be emphasized that these values are close to Q_{pol}.

We also found that the obtained Q_F corresponds to the equilibrium E_F located at 0.45 eV, 0.14 eV, and 0.24 eV above E_{CNL}, respectively. Such the position of E_F should be sufficient to obtain the suitable values of the 2DEG density.

It should be noted that the net fixed charge ($Q_{\text{net}} = Q_{\text{pol}} + Q_F$) for these structures takes the negative values approximately equal to -10^{13} q/cm2. According to the considerations in Sec. IVB (Fig. 5), the negative Q_{net} can induce a significant shift of $\Delta C(\Phi)$ curves towards much lower Φ from the ideal curve, if the positive Q_{it} under illumination is less than Q_{net}. The value of Q_{it} under excitation can be estimated approximately by the total density of donor states in the bandgap (because E_{g} is close to E_F under excitation) which is in the range from 4×10^{12} to 3×10^{14} cm$^-2$ for the investigated structures (see Fig. 12). Thus, the resulting shift of $\Delta C(\Phi)$ curves from the ideal one should be in the direction of much higher Φ, which is in accordance with our observations (Fig. 6). In order to quantitatively confirm this shift, we calculated the $\Delta C(\Phi)$ dependence for Al$_2$O$_3$/Al$_{0.26}$Ga$_{0.74}$N at $V_{G1} = -4$ V with the assumption of the determined Q_{net}, $D_{it}(E)$ (approximated by exponential curves, according to Eq. (21)) and $Q_{\text{pol}} = -9 \times 10^{12}$ q/cm2. We obtained, as shown in Fig. 6(a) (curve 3), a very good approximation of the exponential $\Delta C(\Phi)$ dependence by the simulated curve, which additionally supports the validity of the independently estimated Q_{net} and $D_{it}(E)$ magnitudes. However, further studies are necessary to better understand the origin of the relevant fixed charges at oxide/III-nitride heterojunction interfaces.

IX. CONCLUSIONS

In conclusion, we determined the $D_{it}(E)$ spectrum of interface states at Al$_2$O$_3$/AlGaN, SiO$_2$/Al$_{0.26}$Ga$_{0.74}$N, and Al$_2$O$_3$/InGaN interfaces in the entire bandgap, in particular, near the VB, using the photo-assisted C-V and photo-capacitance methods. In general, for all examined structures we found that: (i) $D_{it}(E)$ is a continuous U-shaped distribution increasing towards both CB and VB from the midgap and (ii) interface states near the VB exhibited donor-like character. Furthermore, we revealed that $D_{it}(E)$ for SiO$_2$/Al$_{0.26}$Ga$_{0.74}$N/GaN structure increases with increasing x. In order to identify C impurities, which can be responsible for $D_{it}(E)$, we characterized the chemical composition of the interface region by means of AES profiling. We showed, at the AES detection limit, that such impurities are not present in the oxide/III-N interface region, which indicates that $D_{it}(E)$ is not related to carbon as it was previously claimed. Finally, we proved that the determined U-shaped $D_{it}(E)$ spectrum can be well fitted using a formula predicted by the DIGS model. This finding indicates that the interface states at oxide/III-N interfaces probably originate from the structural disorder of the interfacial region. We also revealed at the oxide/barrier interfaces the presence of the positive fixed charge, which is not related to $D_{it}(E)$ and which almost compensates the negative polarization charge.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Center in Poland within the project No. NCN 515 606 339 and the Visegrad Group (V4)-Japan Joint Research Program, the project entitled “Highly Safe GaN Metal-Oxide-Semiconductor Transistor Switch” (SAFEMOST); No. 1499/0PNN16/0072 by the National Centre for Research and Development (CNBR) in Poland.
