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Preface 
 
We welcome all the participants to the conference: Mathematical Analysis 

for Stability in Nonlinear Dynamics – in honor of Professor Vladimir 
Georgiev on his 60th birthday.  This volume is intended as the proceeding of 
this conference, held for the period of August 24 26, 2016 in Sapporo. 

Mathematics is supposed to have a potential power to integrate different 
disciplines. Since the origin of partial differential equations goes back to 
observations of various phenomena in our world, it would play a central role 
in that respect. In particular, nonlinear dynamics is of special importance 
from the theoretical point of view, as well as from the viewpoint of possible 
applications to different fields. Such stream in scientific research motivated 
us to organize this conference for promoting mutual communications among 
active participants based on the lectures given by strong leaders from the 
wide range of subjects of nonlinear analysis. Professor Vladimir Georgiev 
has been making a significant contribution to these subjects for several 
decades. We hope this conference would provide a nice opportunity to 
recognize his notable achievement in academic activity. 

We wish you enjoy the conference “Mathematical Analysis for Stability in 
Nonlinear Dynamics” and your stay in Sapporo.  

Organizers:  
Hideo Kubo (Hokkaido University) 
Tohru Ozawa (Waseda University)  
Hiroyuki Takamura (Future University Hakodate) 
 
Scientific Committee: 
Takayoshi Ogawa (Tohoku University)  
Hideo Takaoka (Hokkaido University)  
 
Steering Committee: 
Hideo Kubo (Hokkaido University)  
Kyohei Wakasa (Muroran Institute of Technology)  
Borislav Yordanov (Hokkaido University)  
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Program 
Aug. 24 (Wed.) 

13:20-13:30 Opening 

13:30-14:15 YYoshihiro Shibata (Waseda University) 
On some free boundary problem for the viscous fluid flow 

14:30-15:15 AAtanas Stefanov (University of Kansas) 
Scattering of small solutions of the cubic NLS with short range potential 

15:45-16:30 LLuis Vega (University of the Basque Country UPV/EHU) 
Shell interactions for Dirac operators 

16:45-17:45 Poster Session 

 

Aug. 25 (Thu.) 

10:00-10:45 GGustavo Ponce (University of California) 
Unique continuation results for some evolution equations 

11:00-11:45   JJean-Claude Saut (Université Paris-Sud) 
Full dispersion water wave models 

13:30-14:15   YYoshio Tsutsumi (Kyoto University) 
Existence of global solutions and global attractor for the third order 
Lugiato-Lefever equation on TT 

14:30-15:15   MMaria J. Esteban (University of Paris-Dauphine) 
Nonlinear flows and optimality for functional inequalities 

15:45-16:15   SSandra Lucente (Università Degli Studi di Bari) 
Breaking symmetry in focusing NLKG equation 

16:15-16:45   NNicola Visciglia (Università Degli Studi di Pisa) 
On the growth of Sobolev norms for NLS on 2D and 3D compact manifolds 

18:00-        Banquet 

 

Aug. 26 (Fri.) 

10:00-10:45 MMasahito Ohta (Tokyo University of Science) 
Strong instability of standing waves for nonlinear Schrödinger equations with a 
harmonic potential 

11:00-11:45   AAndrew Comech (Texas A&M University and IITP, Moscow) 
On spectral stability of the nonlinear Dirac equation 

13:30-14:15   TTokio Matsuyama (Chuo University) 
Decay estimates for wave equation with a potential on exterior domains 

14:30-15:15   PPiero D'Ancona (Università "La Sapienza" di Roma) 
Global existence of small equivariant wave maps on rotationally symmetric 
manifolds 

15:15-15:25   Closing 
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On some free boundary problem for the viscous fluid flow

Yoshihiro SHIBATA ∗

Department of Mathematics and Research Institute of Science and Engineering,

Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan.

e-mail address: yshibata@waseda.jp

1 Free Boundary Problem for the Navier-Stokes equations

In this talk, I will consider a free boundary problem for the Navier-Stokes equtions. Let Ω be a domain
in R

N with boundary Γ, which assumed to be suitably smooth. Let x = ϕ(ξ, t) be a smooth functions
defined on Ω which gives one to one correspondence from Ω onto Ωt, where Ωt = {x = ϕ(ξ, t) | ξ ∈ Ω}.
The equation for the mass conservation is

ρt + div (ρu) = 0 in Ωt, (1)

where ρ = ρ(x, t) is a mass density and u = u(x, t) = �(u1, . . . , uN ), where �M stands for the transposed
M , is a velocity field. Let J = J(ξ, t) is the Jacobian of the transformation x = ϕ(ξ, t) for each t ≥ 0, and

then we hve the Reynolds formula:
∂J

∂t
= (div xũ(x, t))J , where ũ(x, t) = ∂tϕ(ξ, t) with x = ϕ(ξ, t). By

the Reynolds formula and (1) we
d

dt

∫
Ωt

ρ dx =

∫
Γt

ρ(ũ− u) · nt dσ, where nt stands for the unit outer

normal to Γt. Assuming that
(ũ− u) · nt = 0 on Γt (2)

we have
d

dt

∫
Ωt

ρ dx = 0, which implies the conservation of mass. The formula (2) is called a kinematic

condition. Let F = F (x, t) be a function such that Γt is locally represented by F (x, t) = 0, and then the
condition (2) is equivalent to the condition:

Ft + u · (∇xF ) = 0 on Γt. (3)

In this talk, we assume that ρ is a positive constant, so that divu = 0 in Ωt. From the mass
conservation, we have |Ωt| = |Ω|. Here and hereafter, |D| stands for the Lebesgue measure of Lebesgure
measurable set D in R

N .
Let T ∈ (0,∞]. Free boundary problem is to find unknowns Ωt, u and p, which satisfy the

Navier-Stokes equation with free boundary condition given by⎧⎪⎨⎪⎩
ρ(ut + u · ∇u)−Div (μD(u)− pI) = 0, divu = 0 in Ωt for 0 < t < T ,

(μD(u)− pI)nt = σH(Γt)nt on Γt for 0 < t < T ,

u|t=0 = u0, Ωt|t=0 = Ω

(4)

with kinemtic condition (3). Here, μ is a positive constant denoting the viscosity coefficient, σ ≥ 0 a
constant denoting the coefficient of the surface tension, D(u) = ∇u+�∇u, I the N×N identity matrix,
and H(Γt) the doubled mean curvature of Γt given by H(Γt)nt = ΔΓtx for x ∈ Γt with Laplace-Beltrami
operator ΔΓt on Γt. As for the remaining notations, for any N ×N matrix valued function K = (Kij)

DivK denotes an N -vector with ith component
∑N

j=1 ∂jKij , ∂j = ∂/∂xj , and for any N -vector of

functions v = �(v1, . . . , vN ) and w = �(w1, . . . , wN ), v · ∇w denotes an N -vector with ith component∑N
j=1 vj∂jwi. In this talk, we only consider the case μ > 0.
∗Partially supported by JSPS Grant-in-aid for Scientific Research (S) # 24224004 and Top Global University Project.
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2 Lagrange description of problem (4)

Let x = x(ξ, t) be a unique solution of the Cauchy problem:

dx

dt
= u(x, t) (t > 0), x|t=0 = ξ ∈ Ω. (5)

Let X(ξ, t) = ξ + x(ξ, t), and v(ξ, t) = u(X(ξ, t)). The Lagrange transformation is given by

x = ξ +

∫ t

0

v(ξ, s) ds ≡ Xv(ξ, t). (6)

Let

Γt = {x = ξ +

∫ t

0

v(ξ, s) ds | ξ ∈ Γ}, Ωt = {x = ξ +

∫ t

0

v(ξ, s) ds | ξ ∈ Ω}. (7)

Let ∫ T

0

‖v(·, s)‖W 1∞(Ω) ds ≤ σ. (8)

Choose σ > 0 so small that the map x = Xv(ξ, t) is one to one for t ∈ [0, T ], so that Xv(·, t) gives a
bijection from Ω onto Ωt and from Γ onto Γt. This expresses the fact that the free surface Γt consists for
all t > 0 of the same fluid particles, which do not leave it and are not incident on it from Ωt. Moreover,
if F (x, t) is a function such that Γt is represented locally by F (x, t) = 0, then (3) is a necessary condition
for (7).

Let us discuss the Lagrange description of problem (4). Let A be the inverse matrix of the Jacobi ma-
trix of the transformation: x = Xv(ξ, t), that is the inverse matrix of the matrix whose (j, k) components
are

∂xj

∂ξk
= δjk +

∫ t

0

∂vj
∂ξk

ds,

and then ∇x = A∇ξ, where A = I+V0(∇
∫ t

0
v(ξ, s) ds) with some matrix V0 = V0(w) of polynomials

with respect to w = (wij | i, j = 1, . . . , N), where V0(0) = 0.
Let p(Xv(ξ, t), t) = q(ξ, t), and then problem (4) is transformed to the following equations:⎧⎪⎨⎪⎩

∂tv −Div (μD(v)− qI) = F(u), divv = G1(v) = divG2(v) in Ω× (0, T ),

(μD(v)− qI) +H(v))nt − σH(Γt)nt = 0 on Γ× (0, T ),

v|t=0 = u0 in Ω.

(9)

Here nt is given by nt =
TA−1n|TA−1n|−1, n being the unit outer normal to Γ, and F(v), G1(v), G2(v)

and H(v) are nonlinear functions of the forms:

F(v) = −V0(

∫ t

0

∇v ds)∂tv +V2(

∫ t

0

∇v ds)∇2v +
(
V3(

∫ t

0

∇v ds)

∫ t

0

∇2v ds
)
∇v,

G1(v) = V4(

∫ t

0

∇v ds)∇v, G2(v) = V5(

∫ t

0

∇v ds)v, H(v) = V6(

∫ t

0

∇v ds)∇v

(10)

with some matrices Vj = Vj(w) of polynomials with respect to w such that Vj(0) = 0 for j = 0, 2, 4,
5, and 6.

Linearization principle for the boundary condition in the σ > 0 case. First, we drive the
equivalent boundary conditions to the boundary condition:

(μD(v)− qI+H(v))nt − σH(Γt)nt = 0 on Γ for t > 0. (11)

Let Πtd = d− < d,nt > nt and Π0d = d− < d,n > n, and then we have

Lemma 1. If nt · n 	= 0, then for arbitrary vector d, d = 0 is equivalent to

Π0Πtd = 0 and n · d = 0. (12)
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By Lemma 1, the boundary condition (11) is equivalent to

Π0Πt(μD(v) +H(v))nt = 0, (13)

n · (μD(v)− qI+H(v))nt − σn ·ΔΓt(ξ +

∫ t

0

v ds) = 0, (14)

where we have used the fact that H(Γt)nt = ΔΓtXv(ξ, t) = ΔΓt(ξ +
∫ t

0
v ds). The condition (13) is

equivalent to

Π0μD(v)n = Π0(Π0 −Πt)μD(v)nt +Π0μD(v)(n− nt)−Π0ΠtH(v)nt. (15)

On the other hand, the formula (14) is written as follows:

n · (μD(v)− qI)n+ σ(m−ΔΓ)

∫ t

0

n · v ds

+ σ
[
(ΔΓn) ·

∫ t

0

v ds+ n · (ΔΓ −ΔΓt)

∫ t

0

v ds+ n · (ΔΓ −ΔΓt)ξ
]

=σm

∫ t

0

n · v ds+ n · (μD(v)− qI)(n− nt)− n ·H(v)nt + σH(Γ)− σ << ∇Γn,

∫ t

0

∇Γv ds >>,

(16)

where m has been chosen so large positive number that (m−ΔΓ)
−1 exists. Let

K(v) = (ΔΓn) ·
∫ t

0

v ds+ n · (ΔΓ −ΔΓt)

∫ t

0

v ds+ n · (ΔΓ −ΔΓt)ξ,

η =

∫ t

0

n · v ds+ (m−ΔΓ)
−1K(v).

(17)

Then, setting q = (1− n · (n− nt))
−1p, by (15), (16) and (17) we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tv −Div (μD(v)− pI) = F(v) +∇
(

n·(n−nt)p
1−n·(n−nt)

)
in Ω× (0, T ),

divv = G1(v) = divG2(v) in Ω× (0, T ),

∂tη − n · v = (m−ΔΓ)
−1∂tK(v) on Γ× (0, T ),

(μD(v)− pI)n+ (σ(m−ΔΓ)η)n = σH(Γ)n+ I(v) on Γ× (0, T ),

(v, η)|t=0 = (u0, η0) in Ω× Γ,

(18)

which are equivalent to (9). Here, H(Γ) is the doubled mean curvature of Γ.

3 Linearized equations

The linearized equations for problem (18) are formulated by⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu−Div (μD(u)− qI) = f , divu = fd = div fd in Ω× (0, T ),

∂tη − n · u = g in Γ× (0, T ),

(μD(u)− qI)n+ σ(m−ΔΓ)η)n = h in Γ× (0, T ),

(u, η)|t=0 = (u0, η0) on Ω× Γ.

(19)

The assumption of the domain Ω is

• Ω is a C3 uniform domain.

• The weak Dirichlet problem: (∇u,∇ϕ)Ω = (f ,∇ϕ) for ϕ ∈ Ḣ1
r′,0(Ω), admits a unique solution

u ∈ Ḣ1
r,0(Ω) for any f ∈ Lr(Ω)

N with r = q and r = q′ = q/(q − 1), where

Ḣ1
r,0(Ω) = {u ∈ Lr,loc(Ω) | ∇u ∈ Lq(Ω)

N , u|Γ = 0}.
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The example of Ω is a bounded domain, half space, perturbed half-space, layer, perturbed layer, straight
tube and an exterior domain. By Shibata [2, 3], we know the following theorem.

Theorem 2 (Maximal Lp-Lq regularity theorem). Let T > 0, 1 < p, q < ∞. Let u0 ∈ B
2−2/p
q,p (Ω),

η0 ∈ W 3−1/p−1/q and

f ∈ Lp((0, T ), Lq(Ω)
N ), fd ∈ Lp((0, T ), H

1
q (Ω)) ∩H1

p ((0, T ),W
−1
q (Ω)),

fd ∈ H1
p ((0, T ), Lq(Ω)

N ), g ∈ Lp((0, T ),W
2−1/q
q (Γ)),

h ∈ Lp((0, T ), H
1
q (Ω)

N ) ∩H1
p ((0, T ),W

−1
q (Ω)N ),

where W−1
q (Ω) is the set of all u ∈ L1,loc(Ω) such that ιu ∈ W−1

q (RN ) with some suitable extension

operator ι from Ω into R
N . Assume that the compatibility conditions:

divu0 = fd|t=0 in Ω, Π0μD(u0)n = Π0h|t=0 on Γ provided that 2/p+N/q < 1 (20)

are satisfied. Then, problem (19) admits unque solutions u, q and η with

u ∈ Lp((0, T ), H
2
q (Ω)

N ) ∩H1
p ((0, T ), Lq(Ω)

N ), q ∈ Lp((0, T ), H
1
q (Ω) + Ḣ1

q,0(Ω)),

η ∈ Lp((0, T ),W
3−1/q
q (Γ)) ∩H1

p ((0, T ),W
2−1/q
q (Γ)).

4 Local Well-Posedness

Theorem 3. Let 2 < p < ∞ and N < q < ∞. Assume that 2/p+N/q < 1. Let u0 ∈ B
2−2/p
q,p (Ω) which

satisfies the compatibility condition:

divu0 = G1(u0) in Ω, Π(μD(u0)− I(u0)) = 0 on Γ, (21)

and let η0 ∈ W
3−1/p−1/q
q,p (Γ). Assume that ‖H(Γ)‖

W
2−/q
q (Γ)

< ∞. Then, there exists a time T > 0 such

that problem (18) admits unique solutions v, q and η with

v ∈ Lp((0, T ), H
2
q (Ω)

N ) ∩H1
p ((0, T ), Lq(Ω)

N ), q ∈ Lp((0, T ), H
1
q (Ω) + Ḣ1

q,0(Ω)),

η ∈ Lp((0, T ),W
3−1/q
q (Γ)) ∩H1

p ((0, T ),W
2−1/q
q (Γ)).

5 Global Well-Posedness

To obtain the global well-posedness, so far we can not use the Lagrange coodinate. We have to start with
the formulation of problem. In what follows, Ω is assumed to be a bounded domain with C3 compact
boundary Γ. Let BR = {x ∈ R

N | |x| < R} and SR = {x ∈ R
N | |x| = R}. We assume that

(A.1) the initial surface Γ is given by Γ = {x = y + h0(y)(y/|y|) | y ∈ SR} with some given function h0.

Let Γt = {x = y + h(y, t)(y/|y|) + ξ(t) | y ∈ SR}, where h is a unknown function with h|t=0 = h0

and ξ(t) = 1
|Ω|

∫
Ωt

x dx, which is also unknown. Let H̃(y, t) be a solution to the Dirichlet problem:

(1−Δ)H̃(·, t) = 0 in BR and H̃(·, t)|SR = R−1h(·, t). Let
Ωt = {x = y +H(ξ, t)y + ξ(t) | y ∈ BR}.

Let x = eh(y, t) := y + H(y, t)y + ξ(t) and let u(ξ, t) = v ◦ eh and q(ξ, t) = p ◦ eh − (N−1)σ
r . Then,

problem (4) is transformed to the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu−Div (μD(u)− qI) = F (u, q, H) in BR × (0, T ),

divu = Fd(u, H) = divFd(u, H) in BR × (0, T ),

Π0(μD(u)n) = G′(u, h) in SR × (0, T ),

n · (μD(u)n)− q− σBh = gn(u, h) in SR × (0, T ),

∂th− n · Pu = Gkin(u, h) on SR × (0, T ),

(u, h)|t=0 = (u0, h0) on BR × SR.

(22)
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Here, Pu = u− |BR|−1
∫
BR

u dξ, n = y/|y| ∈ S1, B = R−2(N − 1+Δ0), and Δ0 is the Laplace-Beltrami
operator on S1. We assume that

(A2) |Ω| = |BR|.

(A3)

∫
Ω0

x dx = 0, that is ξ(0) = 0.

The assumptions (A2) and (A3) lead the following compatibility conditions for h0:

(A4)
N∑

k=1

NCk

∫
|ω|=R

h0(ω)
k dω = 0.

(A5)
N+1∑
k=1

N+1Ck

∫
|ω|=R

ωih0(ω)
k dω = 0 (i = 1, . . . , N).

Theorem 4 ([4]). Let p and q be real numbers such that 2 < p < ∞, N < q < ∞ and 1/p+(N +1)/q <

1. Then, there exists a small number ε ∈ (0, 1) such that for any initial data u0 ∈ B
2−2/p
q,p (BR) and

h0 ∈ B
3−1/p−1/q
q,p (SR) satisfying the smallness condition:

‖u0‖B2−2/p
q,p (BR)

+ ‖h0‖B3−1/p−1/q
q,p (SR)

≤ ε, (23)

the compatibility conditions:

divu0 = fd(u0, h0) = div fd(u0, h0) in BR, Π0(μD(u0)ω) = g′(u0, h0) on SR, (24)

and orthogonal condition: (v0,p�)Ω = 0 (� = 1, . . .M), where {p�}M�=1 is the orthogonal base of the rigid
space: Rd = {u | D(u) = 0} = {Ax + b | A + A� = 0}, as well as (A4) and (A5), problem (30) with
T = ∞ admits unique solutions u, q and h with

u ∈ H1
p ((0,∞), Lq(BR)) ∩ Lp((0,∞), H2

q (BR)), q ∈ Lp((0,∞), H1
q (BR)),

h ∈ H1
p ((0,∞),W 2−1/q

q (SR)) ∩ Lp((0,∞),W 3−1/q
q (SR)),

which exponentially decay at t = ∞.

Remark 5. The global well-posedness in the σ = 0 case can be treated in the Lagrange formulation (cf.
Shibata [1]).

References

[1] Yoshihiro Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal
Lp-Lq regularity class, J. Differential Equations 258 (2015), 4127-4155.

[2] Yoshihiro Shibata, On the R-bounded solution operators in the study of free boundary problem for the
Navier-Stokes equations, Submitted to proceedings of“ International Conference on Mathematical
Fluid Dynamics, Present and Future”.

[3] Yoshihiro Shibata, Local well-posedness of free surface problems for the Navier-Stokes equations in a
general domain, Discrete and Continuous Dynamical Systems Series S, 9 (1) (2016), 315–342.

[4] Yoshihiro Shibata, Global well-posedness of unsteady motion of viscous incompressible capillary liquid
bounded by a free surface, submitted.

－9－



－10－



SCATTERING OF SMALL SOLUTIONS OF THE CUBIC NLS WITH SHORT

RANGE POTENTIAL

VLADIMIR GEORGIEV, ANNA RITA GIAMMETTA, AND ATANAS STEFANOV

Abstract. We consider 1-D Hamiltonian Schrödinger equation with cubic nonlinearity |u|2u and
even short range potential. Under the (crucial) assumption for absence of eigenvalue and resonances
at zero, we show that small odd data gives rise to global solutions , which scatter at infinity at the
rate of the free solution. This solves an outstanding open problem in the area and improves upon
an earlier result in [2], where the authors have obtained scattering for the problem with nonlinearity
|u|p−1u, p > 3.

1. Introduction

We consider the nonlinear Schrödinger (NLS) equation with gauge invariant nonlinearity

(1.1) i∂tψ −Hψ = F (|ψ|2)ψ,
where the Hamiltonian H = −∂2

x+V (x) can be considered as a real – valued potential perturbation
of the free hamiltonian H0 = −∂2

x on the real line x ∈ R. This model is standard in quantum theory.
It is very well - known (see [9], [6], [4], [1]) that in the case of free Hamiltonian on the real line

the cubic nonlinearity

(1.2) i∂tψ −H0ψ = ±ψ|ψ|2

scatters, if the initial data ψ(0, x) = ψ0(x) is small in certain weighted norms. In any case, we
assume, at the very least, that

(1.3) ψ(0, x) = ψ0(x) ∈ H1(R).

We consider F : R → R such that

(1.4) F ∈ C1(R), F (u) = Cu+O(uq) 1 < q < 2, for 0 < u < 1

so that we can consider the prototypical example

F (|ψ|2) = C|ψ|2 + C1|ψ|2q, 1 < q < 2,

when the nonlinearity is gauge invariant, but the scale invariance of (1.2) is broken. In order to
simplify our presentation, we will henceforth take F (u) = u, but our results will hold, if F is a
reasonably smooth function with the property (1.4).

1.1. Decay and spectral assumptions on V . The presence of the potential V also breaks the
translation invariance of the NLS. In this work we consider only potentials decaying sufficiently
rapidly at infinity, namely we require

(1.5)

∫
R
〈x〉γ |V (x)|dx <∞, γ ∈ (3/2, 2).

Date: July 9, 2011.
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2 V. GEORGIEV, A. R. GIAMMETTA, AND A. STEFANOV

Note that under this assumption, the operator H := −∂2
x + V is self-adjoint and σess(H) =

σess(−∂2
x) = [0,∞) and there are no embedded eigenvalues in (0,∞). We require

(1.6) V : R → R, V (x) = V (−x).

This allows the solution to preserve at least the reflection symmetry. That is, if the initial data in
(1.3) are odd function

ψ(0, x) = ψ0(x) ∈ Hs
odd(R) = {f ∈ Hs(R); f(−x) = −f(x)} ,

then the solution flow preserves this symmetry, i.e. ψ(t, x) = −ψ(t,−x) for any time interval, where
the solution flow of (1.1) is well - defined.

We assume that there is no spectrum outside of (0,∞). That is, there are no eigenvalues in
(−∞, 0) and also, zero is neither eigenvalue nor resonance for H. Characterizing such potentials is
rather tricky. Note that due to the assumption (1.5), this is equivalent to H ≥ 0, in addition to
the requirement that zero is neither eigenvalue nor resonance for H.

For the purpose we use a suitable characterization of the fact that V generates a non-negative
Schrödinger operator appeared only recently in [5]. In it, it was shown that for potentials with
reasonable decay at ±∞, such as (1.5), we have

(1.7) H = −∂2
x + V ≥ 0 ⇐⇒ V (x) = w′(x) + w2(x) = Miura(w).

1.2. Main result. The following is the main result of this work.

Theorem 1. Assume the potential satisfies the assumptions (1.5), (1.6) and for some δ > 0,
(1 + δ)V = Miura(w). Then, there exists constants C > 0 and ε > 0 so that whenever the odd
initial data ψ0 ∈ H1

odd, xψ0 ∈ L2(R) with

‖ψ0‖H1
odd(R) + ‖xψ0‖L2(R) ≤ ε,

the unique global solution ψ ∈ C([0,∞), H1
odd(R))∩L∞

t,x(R×R) to the Cauchy problem (1.1) satisfies

(1.8) sup
t>0

(1 + t)1/2‖ψ(t, ·)‖L∞ ≤ Cε.

2. Some reductions

Our next result establishes the equivalence of the Sobolev spaces H1
V (R) ∩ L2

odd and H1
odd(R),

under the assumptions put forward in Theorem 1.

Lemma 1. Assume that V satisfies (1.5) and (1+ ε)V = Miura(w). Then, there exists a constant
C, so that for all odd Schwartz functions f ,

(2.1)
1

C
‖f ′‖L2 ≤ ‖

√
Hf‖L2 ≤ C‖f ′‖L2 .

In other words, ‖f‖H1
V (R)∩L2

odd
∼ ‖f‖H1(R).

2.1. Some reductions and plan of the proof. We give a rough the idea of the proof. For
simplicity, we consider only the case F (u) = u, but all the arguments go through for higher order
terms.

One can make a time translation and assuming the initial data is given at t = 1, define ψ(t) as
a solution to the integral equation

(2.2) ψ(t) = e−i(t−1)Hψ0 − i

∫ t

1
e−i(t−s)Hψ(s)|ψ(s)|2ds, t > 1.

The existence of global solutions when the initial data are in H1(R) and then in L2(R) are clear.
Our main goal is control the decay of the L∞ norm of the solution provided we have small initial
data. Making the transformation

(t, ψ) =⇒ (T,Ψ),
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SCATTERING FOR THE GAUGE INVARIANT NLS 3

where

(2.3) t =
1

T
, Ψ(T, x) = ψ

(
1

T
, x

)
.

We can rewrite (2.4) as follows

(2.4) Ψ(T ) = ei(H/T−H/1)ψ0 ± i

∫ 1

T
ei(H/T−H/S)Ψ(S)|Ψ(S)|2dS

S2
.

The key point now is the construction of appropriate isometry

B(T ) : L2(R) → L2(R),

so that

Φ(T ) = B(T )Ψ(T ),

satisfies the integral equation

(2.5) Φ(T ) = U(T, 1)B(1)
(
ψ0

)± i

∫ 1

T
U(T, S)Φ(S)|Φ(S)|2dS

S
.

To be more precise, we choose

(2.6) U(T, S) = B(T )eiH/T e−iH/SB∗(S),

where B(T ) is defined by

(2.7) B(T ) = M(T )σT ,

with

(2.8) M(T )f(x) = eix
2/(4T )f(x), σT (f)(x) = T−1/2f(T−1x).

The proof of Theorem 1 is reduced to the proof of the following estimate.

Theorem 2.1. Suppose the conditions (1.6), (1.5) are fulfilled, the operator H has no point spec-
trum, 0 is not a resonance for H and Φ(T ) is the solution to the integral equation (2.5) with small
initial data ψ0. Then we have the estimate

‖Φ(T, ·)‖L∞(R) ≤ Cε.

3. Some ideas for the proof

The main task is to define appropriate leading term and the modified profile for the solution
Φ(T ) to the integral equation

(3.1) Φ(T ) = U(T, 1) (ψ1)± i

∫ 1

T
U(T, S)Φ(S)|Φ(S)|2dS

S
,

where

(3.2) ψ1(x) = M(1)ψ0(x) = eix
2/4ψ0(x).
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4 V. GEORGIEV, A. R. GIAMMETTA, AND A. STEFANOV

3.1. Modified profile for the perturbed Hamiltonian: idea for remainder estimates. The
requirement T2 < T1 implies that we need appropriate modification of the approach followed in the
unperturbed case. If we can justify the existence of the strong limits

(3.3) U(0, 1)f = lim
ε→0

U(ε, 1)f

and

(3.4)

∫ 1

0
[U(0, S)− I]Φ(S)|Φ(S)|2dS

S
= lim

ε→0

∫ 1

ε
[U(ε, S)− I]Φ(S)|Φ(S)|2dS

S

exist, then we can set

Φ0 = U(0, 1)
(
B(1)ψ0

)± i

∫ 1

0
[U(0, S)− I]Φ(S)|Φ(S)|2dS

S
, ψ1 = B(1)ψ0,

we can go further and we can define the leading term Φlead(T ) of the solution Φ(T ) as in (??), i.e.

(3.5) Φlead(T ) = Φ0 ± i

∫ 1

T
Φlead(S)|Φ(S)|2dS

S
.

One can set

(3.6) Θ(T ) =

∫ 1

T
|Φ(S)|2dS

S

and find

(3.7) Φlead(T ) = Φ0e
±iΘ(T ).

Our goal is to prove some a priori bounds for the remainder

Φrem(T ) = Φ(T )− Φlead(T ).

Taking the difference between the equation (3.1) and the equation (3.5) for the leading term, we
find

Φrem(T ) = U(T, 1)ψ1 − U(0, 1)ψ1 ± i[U(T, 0)− I]

∫ 1

T
U(0, S)Φ(S)|Φ(S)|2dS

S
∓

∓i

∫ T

0
[U(0, S)− I]Φ(S)|Φ(S)|2dS

S
± i

∫ 1

T
Φrem(S)|Φ(S)|2dS

S
.

3.2. Decay of the Sobolev norms of the remainder. The plan is to obtain our main a-priori
estimate (for some small δ)

(3.8) ‖Φ(T )− Φlead(T )‖Hα
odd(R)

≤ CεT δ/N .

Our approach is based on the following key Lemmas.

Lemma 3.1. The perturbed group U(T, S) satisfies the estimates

(3.9) ‖[U(T1, T2)− I] g‖Hα(R) ≤ C|T1 − T2|θ/4 ‖g‖Hα+θ(R)

provided

(3.10) α ∈ [0, 3/4), θ ∈ [0, 1],
4α

3
+ θ < 1, 0 ≤ T2, T1 ≤ 1.

Lemma 3.2. If Θ(x) is a real valued function and

Θ ∈ Hs(R), f ∈ Hs
odd(R) ∩ L∞

odd(R),

for some s ∈ [0, 1), then

(3.11)
∥∥eiΘf∥∥

Hs(R)
≤ C‖f‖Hs

odd(R)
+ C‖Θ‖Hs(R)‖f‖L∞

odd(R)
.
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Note: By Sobolev embedding ( for s > 1
2 , ‖f‖L∞ ≤ Cs‖f‖Hs),

(3.12)
∥∥eiΘf∥∥

Hs(R)
≤ C(1 + ‖Θ‖Hs(R))‖f‖Hs

odd(R)

Finally,

Lemma 3.3. If Φ(T ) is a solution to the integral equation (3.1), i.e.

(3.13) Φ(T ) = U(T, 1) (ψ1)± i

∫ 1

T
U(T, S)Φ(S)|Φ(S)|2dS

S
,

then for any s ∈ (1/2, 3/4) we have

(3.14) ‖Φ(T )‖Hs(R) ≤ C‖ψ1‖Hs(R) + C

∫ 1

T
‖Φ(S)‖Hs(R)‖Φ(S)‖2L∞(R)

dS

S
.

3.3. Final energy estimate. One realizes that we need an estimate for a quantity in the form

|||Φ|||α,θ = sup
T∈(0,1]

(
T θ/32‖Φ(T )‖Hα+θ

odd (R)

)
+ ‖Φ‖L∞((0,1]×R),(3.15)

and we show

(3.16) |||Φ|||α,θ ≤ C‖ψ1‖Hα+θ
odd (R) + C|||Φ|||2α,θ

(
1 + |||Φ|||3α,θ

)
which for small initial data, implies the requires bounds.
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SHELL INTERACTIONS FOR DIRAC OPERATORS

NAIARA ARRIZABALAGA, ALBERT MAS, LUIS VEGA

Abstract. The self-adjointness of H + V is studied, where H = −iα · ∇ + mβ is the
free Dirac operator in R

3 and V is a measure-valued potential. The potentials V under
consideration are given by singular measures with respect to the Lebesgue measure, with
special attention to surface measures of bounded regular domains.

We are interested in the free Dirac Operator in R
3: H = −iα·∇+mβ, with m = mass > 0,

where

α = (α1, α2, α3) =

((
0 σ̂1
σ̂1 0

)
,

(
0 σ̂2
σ̂2 0

)
,

(
0 σ̂3
σ̂3 0

))
,

is the vector of the 4× 4 complex Dirac matrices and

σ̂1 =

(
0 1
1 0

)
; σ̂2 =

(
0 −i
i 0

)
; σ̂3 =

(
1 0
0 −1

)
the Pauli matrices. They satisfy the well known properties:

β =

(
I2 0
−I2 0

)
=⇒

{
α2
i = β2 = Id i = 1, 2, 3

{αi, β} = {αi, αj} = 0 i 	= j,

so that H2 =
(−Δ+m2

)
Id, and H is the first order symmetric differential operator intro-

duced by Dirac in 1928 as a local version of
√−Δ+m2.

We will considered the so called electrostatic shell interactions associated to Ω ⊂ R
3 a

bounded smooth domain with σ the corresponding surface measure on ∂Ω and N the outward
unit normal vector field on ∂Ω.

We define the electrostatic shell potential Vλ = λδ∂Ω:

λ ∈ R, Vλ(ϕ) =
λ

2
(ϕ+ + ϕ−)

with
ϕ± = non–tangential boundary values of ϕ : R3 −→ C

4

when approaching from Ω or R3\Ω.
Accordingly we define the electrostatic shell interaction ofH as H+Vλ, with a ∈ (−m,m).
Let us also consider the fundamental solution of H − a:

φa(x) =
e−

√
m2−a2|x|

4π|x|
[
a+mβ +

(
1−

√
m2 − a2|x|

)
iα · x

x2

]
.
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Then the domain of H + Vλ is given by [AMV1]

D (H + Vλ) =
{
ϕ : ϕ = φ0 ∗ (Gdx+ gdσ, G ∈ L2((R)3)4, g ∈ L2(∂Ω)4,

λ
(
φ0 ∗ (Gdx)

)∥∥
∂Ω

= −(1 + λC0
∂Ω)g,

}
where Ca

∂Ω(g)(x) = limε→0

∫
|x−y|>ε φ

a(x− y)g(y)dσ(y) , x ∈ ∂Ω.

It is proved in [AMV1] and [AMV2] that if λ 	= ±2 then H + Vλ is self–adjoint on
D(H + Vλ). Previous results where obtained in a more general setting by [P] and [PR], and
in the specific case of the ball in [DES].

We will focus in the study of the point spectrum on (−m,m) for H + Vλ following the so
called Birman–Schwinger principle: a ∈ (−m,m), λ ∈ R\0,

ker (H + Vλ − a) 	= 0 if and only if ker

(
1

λ
+ Ca

∂|Omega

)
	= 0,

so that a problem in R
3 is reduced to a problem in ∂Ω.

We will need the following properties of Ca
∂Ω, a ∈ [−m,m]:

(a) Ca
∂Ω is a bounded self–adjoint operator in L2(∂Ω)4;

(b) [Ca
∂Ω (α ·N)]2 = −1

4
Id, with α ·N =

3∑
j=1

αjNj a multiplication operator.

It is proved in [AMV1] that

ker

(
1

λ
+ Ca

∂Ω

)
	= 0

⎧⎪⎨⎪⎩
(a)
=⇒ |λ| ≥ λl(∂Ω) > 0 and λl(∂Ω) ≤ 2

(b)
=⇒ |λ| ≤ λu(∂Ω) < +∞ and λu(∂Ω) ≥ 2.

Therefore, ker (H + Vλ − a) 	= 0 implies that |λ| ∈ [λl(∂Ω), λu(∂Ω)] .
We want to address the following questions:

1.- How small can [λl(∂Ω), λu(∂Ω)] be?
2.- Is there an isoperimetric–type statement w.r.t. Ω?
3.- Which are the optimizers?

The examples we have in mind are: if Ω ⊂ R
3 is a bounded smooth domain then

• Isoperimetric inequality: Vol (Ω)2 ≤ 1

36
Area (∂Ω)3.

• Pólya–Szegö inequality: If

Cap (Ω) =

(
inf
ν

∫∫
dν(x)dν(y)

4π|x− y|
)−1

,

with ν a probability Borel measure with supp ν ⊂ Ω, then (Pólya, Szegö, 1951)

Cap (Ω) ≥ 2(6π2Vol (Ω))1/3.

In both cases, the identity holds if and only if Ω is a ball.

We have the following result [AMV3].

Theorem 0.1. Take Ω ⊂ R
3 a bounded smooth domain. If

m
Area (∂Ω)

Cap (Ω)
>

1

4
√
2
,
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then
λ(a) := sup {|λ| : ker(H + Vλ − a) 	= 0 for some a ∈ (−m,m)}

≥ 4

(
m
Area (∂Ω)

Cap (Ω)
+

√
m2

Area (∂Ω)2

Cap (Ω)2
+

1

4

)
and

inf {|λ| : ker(H + Vλ − a) 	= 0 for some a ∈ (−m,m)}

≥ 4

(
−m

Area (∂Ω)

Cap (Ω)
+

√
m2

Area (∂Ω)2

Cap (Ω)2
+

1

4

)
.

In both cases, the identity holds if and only if Ω is a ball.

The main ingredients of the proof are:

(1) The monotonictiy of λ(a) reduces the problem to take a = ±m.
(2) The quadratic form inequality relates

sup {|λ| : ker(H + Vλ − a) 	= 0 for some a ∈ (−m,m)}
with the optimal constant of an inequality involving the single layer potential K
and a Singular Integral Operator (SIO). (It is in this step where the constant 1/4

√
2

appears as a sufficient condition).
(3) Isoperimetric type statement for K in terms of Area (∂Ω)\Cap|, (Ω).

Sketch of the proof:

(1) If

ker

(
1

λ(a)
+ Ca

∂Ω

)
	= 0

then

Ca
∂Ωga =

1

λ(a)
ga , ‖ga‖ = 1

and
1

λ(a)
=

1

λ(a)
〈ga, ga〉 = 〈Ca

∂Ωga, ga〉.

Also, if we understand Ca
∂Ω as (H − a)−1 then

d

da
Ca
∂Ω behaves as (H − a)−2 and

d
da

(
1

λ(a)

)
as 〈(H − a)−2ga, ga〉 = ‖(H − a)−1ga‖2 ≥ 0, assuming ga is independent of

a.
(2)

Kf(x) =
1

4π

∫
f(y)

|x− y|dσ(y), compact positive operator

Wf(x) =
1

4π
lim
ε→0

∫
|x−y|>ε

i · σ̂ · x− y

|x− y|3 f(y)dσ(y), SIO

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭Ca
∂Ω =

(
2mK W
W 0

)
.

Recall that

σ̂ = (σ̂1.σ̂2, σ̂3) =

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
.
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Then,

(1) [Cm
∂Ω(α ·N)]2 = −1

4
=⇒

⎧⎪⎨⎪⎩
{(σ̂ ·N)K, (σ̂ ·N)W} = 0

[(σ̂ ·N)W ]2 = −1

4
.

(3)

ker

(
1

λ
+ Cm

∂Ω

)
	= 0 =⇒ Cm

∂Ωg =
1

λ
g with g =

(
μ
h

)

=⇒

⎧⎪⎪⎨⎪⎪⎩
2mKμ+Wh = = − 1

λ
μ

Wμ = − 1

λ
.

Multiplying by g, integrating on ∂Ω and after using (1) we obtain the quadratic form(
4

λ

)2 ∫
∂Ω

|Wf |2 + 8m

λ

∫
∂Ω

Kf · f︸ ︷︷ ︸
≥0

=

∫
∂Ω

|f |2,

which is decreasing for λ > 0.
As a consequence we have:

λΩ = inf

{
λ > 0 :

(
4

λ

)2 ∫
∂Ω

|Wf |2 + 8m

λ

∫
∂Ω

Kf · f ≤
∫
∂Ω

|f |2 ∀ f ∈ L2(∂Ω)2

}
.

Our second result is the following one [AMV3]:

Theorem 0.2. (a)

4

(
m‖K‖∂Ω +

√
m2‖K‖2∂Ω +

1

4

)
≤ λΩ ≤ 4

(
m‖K‖∂Ω +

√
m2‖K‖2∂Ω + ‖W‖2∂Ω

)
.

(b) If λ > 0 and ker

(
1

λ
+ Cm

∂Ω

)
	= 0 =⇒ λ ≤ λΩ.

(c) If λΩ > 2
√
2

(
↪→ 1

4
√
2

)
, equality is attained and minimizers are related to the fact

that ker
(

1
λΩ

+ Cm
∂Ω

)
	= 0.

Notice that

• We are looking for an isoperimetric–type result for λΩ.
• Parts (b) and (c) ensure that

λΩ = sup {|λ| : ker (1/λ+ Cm
∂Ω) 	= 0} .

• We can use the monotonicity of λ(a) to replace “for some a ∈ (−m,m)” by a = m.

Let us say a few words about the isoperimetric question. If Ω is a ball then ‖W‖2∂Ω =
1

4
.

The opposite implication is proved in [HM-OMP-ET]. Then λΩ = 4
(
m‖K‖∂Ω +

√
m2‖K‖2∂Ω + ‖W‖2∂Ω

)
.
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For a general Ω we have

‖K‖∂Ω = sup
f 
=0

1

‖f‖2∂Ω

∫
∂Ω

Kf · f
(f=1)

≥
∫∫ inf D

dσ(y)

4π|x− y|
dσ(x)

σ(∂Ω)
≥ Area (∂Ω)

Cap (Ω)
.
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∂tu+ 3u∂xu− ∂t∂
2
x = 2∂xu∂

2
xu+ u∂3

xu, t, x ∈ R,

∂tu+ ∂3
xu+ uk∂xu = 0, t, x ∈ R, k ∈ Z

+,

∂tu−H∂u
x + uk∂xu = 0, t, x ∈ R, k ∈ Z

+,

H

Hf(x) =
1

π
p.v.

1

x
∗ f(x) = −i( (ξ)f̂(ξ))∨(x),

i∂tu+Δu = V (x, t)u, t ∈ R, x ∈ R
n,

∂tu+Δu+ V (x, t)u = 0, t ∈ R, x ∈ R
n.

u ∈ H2
loc(R

n)

Δu+ V (x)u = 0, x ∈ R
n,

V ∈ L∞(R)
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∫
Rn

ea|x|
4/3 |u(x)|2dx <∞, a > 0,

u ≡ 0.

V
4/3

1

T > 0 s > 3/2

u ∈ C([0, T ] : Hs(R))

u0(x) = u(x, 0) α ∈ (1/2, 1)

|u0(x)| ∼ o(e−x), |∂xu0(x)| ∼ O(e−αx) x ↑ ∞
t1 ∈ (0, T ]

|u(x, t1)| ∼ o(e−x), x ↑ ∞,

u ≡ 0

uc(x, t) = c φ(x− ct), c > 0,

φ(x) = e−|x|.

e−|x| /∈ H3/2(R)
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Full dispersion water waves models
Jean-Claude Saut

Laboratoire de Mathématiques
Université de Paris-Sud

By ”Full dispersion models” we mean models of water waves, in various asymptotic regimes,
which keep the original dispersion of the full water waves system. The aim is to obtain ”good”
models on larger frequency ranges. In usual water waves models (Korteweg-de Vries, Boussinesq,
Kadomtsev- Petviashvili, Davey-Stewartson, nonlinear Schrödinger,...) the original dispersion is
Taylor expanded at a given frequency, yielding local equations or systems with nice dispersive
properties. Full dispersion models are nonlocal and in some sense only weakly dispersive, making
their mathematical analysis in general delicate, in particular by the lack of useful dispersive
estimates. Many examples of those models can be found eg in [2, 4, 3, 6, 1] but the same idea
can be applied in nonlinear optics for instance (see [5]).

A typical example is the full dispersion Kadomtsev-Petviashvili equations (FDKP) introduced
in [9] and studied in [10]:

∂tu+ cWW (
√
μ|Dμ|)(1 + μ

D2
2

D2
1

)1/2ux + μ
3

2
uux = 0, (1)

where cWW (
√
μk) is the phase velocity of the linearized water waves system, namely

cWW (
√
μk) =

(
tanh

√
μk√

μk

)1/2

and

|Dμ| =
√

D2
1 + μD2

2, D1 =
1

i
∂x, D2 =

1

i
∂y.

h = a typical depth of the fluid layer, a = typical amplitude of the wave, λx and λy = typical
wave lengths in x and y respectively, the relevant regime here is:

μ ∼ a

h
∼
(
λx

λy

)2

∼
(

h

λx

)2

	 1.

When adding surface tension effects, one has to replace (1) by

∂tu+ c̃WW (
√
μ|Dμ|)(1 + μ

D2
2

D2
1

)1/2ux + μ
3

2
uux = 0, (2)

with

c̃WW (
√
μk) = (1 + βμk2)

1
2

(
tanh

√
μk√

μk

)1/2

,

where β > 0 is a dimensionless coefficient measuring the surface tension effects,

In the one dimensional case, the FDKP reduce to theWhitham equation that displays challenging
properties (see [8, 7]):
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ut + μuux + Tμux = 0, Tμ =

(
(1 + βμD2)

tanh
√
μD√

μD

)1/2

. (3)

Moreover, it reduces formally to the usual KP equations in the long wave limit and is reminiscent
of the Full dispersion KP equations in the high frequency regime :

ut + uux −Dα
xux + ε∂−1

x uyy = 0, in R
2 × R+, u(·, 0) = u0, −1 < α (4)

where ε = 1 corresponds to the fKP II equation and ε = −1 to the fKP I equation. Here
Dα

x denotes the Riesz potential of order −α in the x direction, i.e. Dα
x is defined via Fourier

transform by
(
Dα

xf
)∧

(ξ, η) = |ξ|αf̂(ξ, η).
This equation can be thought as a two-dimensional weakly transverse version of the fractionary
KdV equation (fKdV)

ut + uux ±Dα
xux = 0 (5)

that has been studied in [11, 13]. In particular (4) is the very relevant KP version of the
Benjamin-Ono equation when α = 1.

When−1 < α < 1, the fractionary KdV equation is a useful toy model to understand the effects
of a weak dispersive perturbation on the hyperbolic Burgers equation.

We will present recent and on going results on the Cauchy problem and solitary wave solutions,
based on [10, 12] for the nonlocal KP equations above.

If time allows we will also discuss some results and open questions ([14, 15]) related to a very
relevant full dispersion surface wave model derived under a small steepness assumption on the
wave.
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Existence of Global Solutions and
Global Attractor for the Third Order

Lugiato-Lefever Equation on T

Yoshio Tsutsumi

Department of Mathematics, Kyoto University

1 Introduction and Main Theorems

We consider the third order Lugiato-Lefever equation:

∂tu− ∂3
xu+ iα∂2

xu+ u+ i|u|2u = f, t > 0, x ∈ T, (1)

u(0, x) = u0(x), x ∈ T, (2)

where α is a real constant such that 2α/3 
∈ Z. In (1), all the parameters
are normalized except for α. The case α > 0 is called focusing and the
case α < 0 is called defocusing. In the physical context, the third order
Lugiato-Lefever equation includes the detuning term iθu (θ ∈ R) on the
left hand side, but we omit the detuning term because it does not matter
in this paper. Recently the generalized Lugiato-Lefever equation has been
attracting a great interest especially in the field of nonlinear optics (see, e.g.,
[3] and [12]). An increasing attention among theoretical and experimental
physicists in that field has been paid to the role of third order dispersion, i.e.
the third order derivative in (1) (see [11], [12] and [16]).

In this note, we present the results on the global well-posedness in L2(T)
of the Cauchy problem (1) and (2) and the existence of the global attractor in
L2 for flows generated by the third order Lugiato-Lefever equation (1), which
have recently been obtained in collaboration with Miyaji Tomoyuki, Meiji
Institute for Adv. Stud. Math. Sci., Meiji University. To prove the former,
we use the Strichartz estimate and to prove the latter, we take full advantage
of the smoothing effect of the cubic nonlinear interaction. Without damping
and forcing the solution u of (1) and (2) formally satisfies the following three
conservations, that is, the mass, the momentum and the energy conservations
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for t > 0 (see [16, lines 7 to 10 on page 2326]).

‖u(t)‖L2 = ‖u0‖L2 , (3)

Im (∂xu(t), u(t))) = Im (∂xu0, u0), (4)

β‖∂xu(t)‖2L2 + Im (∂2
xu(t), ∂xu(t))− 1

2
‖u(t)‖4L4

= β‖∂xu0‖2L2 + Im (∂2
xu0, ∂xu0)− 1

2
‖u0‖4L4 , (5)

where (·, ·) denotes the scalar product of L2(T). The energy functional de-
fined as in (5) is neither positive definite nor negative definite, because it
includes the L2 scalar product of the second and the first derivatives of the
solution. This suggests that the energy is not useful for controlling the global
behavior of the solution. Therefore, we need to consider the global solution
in L2 and as a result, we need to construct the global attractor in L2 instead
of the H1 global attractor. The construction of global attractor in L2 causes
a serious problem on the compactness of orbit.

In this paper, we prove the following two theorems concerning the well-
posedness of the Cauchy problem (1) and (2) and the global attractor.

Theorem 1.1. (i) (Local existence) Assume that u0 ∈ L2 and f ∈ C([0,∞);L2).
Then, there exists a positive constant T such that the Cauchy problem (1) and
(2) has a unique solution u on [0, T ] satisfying

u ∈ C([0, T ];L2)
⋂

L4([0, T ]×T).

(ii) (Global existence and a priori estimate) The solution given by part
(i) can be extended to any positive times and satisfies the following identity

‖u(t)‖2L2 = e−2t‖u0‖2L2 + 2

∫ t

0

e−2(t−s)Re
(
u(s), f(s)

)
ds, t > 0.

Theorem 1.2. Assume that 2α/3 
∈ Z and that f is a time-independent
function in L2(T). The third order Lugiato-Lefever equation (1) has the
global attractor in L2(T).

Remark 1.3. (i) In Theorem 1.1, the external forcing term f is a function
of variables t and x, while f is a time-independent function in Theorem 1.2.
This is because equation (1) should be autonomous as we consider the global
attractor in Theorem 1.2.

(ii) Theorem 1.1 holds for all α ∈ R, while our proof of Theorem 1.2
requires the assumption that 2α/3 
∈ Z. It is an interesting problem what
influence the resonance of the third and second order dispersion coupling has
on the regularity and the global behavior of the solution for (1).
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To show the global well-posedness in L2(T), we prove the space-time in-
tegrability of solution for the linear inhomogeneous third order Schrödinger
equation, which is called the Strichartz estimate. We now consider the follow-
ing inhomogeneous linear Schrödinger equation with third order dispersion
on one dimensional torus T = R/2πZ.

∂tu− ∂3
xu+ iα∂2

xu = f, t ∈ R, x ∈ T, (6)

u(0, x) = u0(x), x ∈ T, (7)

where α is a real constant. We have the following L4 space-time integrability
estimate of solution for (6) and (7). Theorem 1.1 is an immediate consequence
of the Strichartz estimate.

Theorem 1.4. Let T > 0 and let 1/2 > b > 1/3. Then, we have

‖u‖L4((−T,T )×T) ≤ CT 1/2T −b
[‖u0‖L2(T) (8)

+T 1/2T −b‖f‖L4/3((−T,T )×T)

]
,

where T = min{T, 1} and C is a positive constant dependent only on b.

The proof of Theorem 1.4 follows from the argument by Kenig, Ponce
and Vega [9].

Remark 1.5. Theorem 1.4 holds valid for all α.

To show the existence of the global attractor, we prove a kind of the
smoothing effect, which is not the same as that of the parabolic equation.
Instead of the original equation (1), we consider the so-called reduced equa-
tions resulting from the removal of terms which have “bad” effects on the so-
lution. In [4], Erdoğan and Tzirakis use the smoothing effect of the Duhamel
term to construct the global attractor for the KdV. However, the whole of
the Duhamel term can not become more regular than the initial datum in
the case of the third order Lugiato-Lefever equation (1), which is in sharp
contrast to the KdV equation.

Remark 1.6. . We should mention the difference between the proofs of our
Theorem 1.2 and the result by Molinet [14]. In [14], Molinet shows the global
attractor in L2 of the cubic nonlinear Schrödinger equation with damping
and forcing terms. The new ingredient of his proof is the application of the
argument by Ball [1] to the weak limit equation keeping the same structure
as the original equation. It would be possible to apply the proof by Molinet
[14] to our problem for 2α/3 
∈ Z. But the smoothing property we proved for
Theorem 1.2 is stronger than that in the paper [14]. Furthermore, it seems
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difficult to apply Molinet’s proof to the case 2α/3 ∈ Z\{0} for the same
reason as in our proof. Indeed, when 2α/3 ∈ Z\{0}, the reduced equation is
written as follows.

∂tv̂(t, k) +
(
i(k3 − αk2) + 1

)
v̂(t, k) (9)

+i
∑

k1+k2+k3=k
(k1+k2)(k2+k3)�=0
k3+k1 �=2α/3

v̂(t, k1)ˆ̄v(t, k2)v̂(t, k3)− i|v̂(t, k)|2v(t, k)

+i
∑

k1∈Z v̂(t, k1)v̂(t, 2α/3− k1)ˆ̄v(t, k − 2α/3)

= f̂(k)e−
i
π

∫ t
0 ‖v(s)‖2

L2 ds, t > 0.

The last term on the left hand side of (9) prevents us from applying not only
our proof but also the proof by Molinet [14].
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NONLINEAR FLOWS AND OPTIMALITY FOR FUNCTIONAL

INEQUALITIES

MARIA J. ESTEBAN

Work done in collaboration with Jean Dolbeault and Michael Loss

This talk consists of two parts. Firstly, we introduce the method of linear and
nonlinear flows to prove rigidity results on a sphere. Then, we will present several
rigidity results for nonnegative solutions of semilinear elliptic equations on infi-
nite cylinder-like domains or in the Euclidean espace and as a consequence, about
optimal symmetry properties for the optimizers of the Caffarelli-Kohn-Nirenberg
inequalities. All the results will be stated in the simpler case of spherical cylinders.
Similar, but less precise, results can also be stated and proved for general cylinders
generated by any compact smooth Riemannian manifold without a boundary.

Other consequences from the results below are optimal estimates for the principal
eigenvalue of Schrödinger operators on infinite cylinders

1. Linear and nonlinear flows to prove rigidity for interpolation

inequalities on spheres

On the d-dimensional sphere, let us consider the interpolation inequality

(1.1) ‖∇u‖2L2(Sd) +
d

p− 2
‖u‖2L2(Sd) ≥

d

p− 2
‖u‖2Lp(Sd) ∀u ∈ H1(S, dμ) ,

where the measure dμ is the uniform probability measure on S ⊂ R
d+1 correspond-

ing to the measure induced by the Lebesgue measure on R
d+1, and the exponent

p ≥ 1, p 
= 2, is such that p ≤ 2∗ := 2 d
d−2 if d ≥ 3.

The case p = 2 d
d−2 corresponds to the Sobolev inequality (equivalent via the use

of the stereographic projection).∫
Rd

|∇v|2 dx ≥ S

(∫
Rd

|v| 2 d
d−2 dx

) d−2
d

∀u ∈ H1(Rd) ,

Bidaut-Véron and Véron proved in 1991 ([2]) the above optimal inequality and
the fact that for 2 < p < 2∗, the optimizers are the constant functions. They did
it by using a PDE rigidity method. Beckner used harmonic analysis to prove the
same result in 1993 (see [3]). Later, in [1], Bakry and Ledoux used the carré du
champ method to prove the same result by using a flow method, which applied

only in the case 2 < p ≤ 2# := 2 d2+1
(d−1)2 < 2∗. Even if this result is less general, the

method is very interesting and we outline it below.
Let us define ρ = |u|p. Then, (1.1) can be written as∫

Sd

|∇ρ
1
p |2 dω ≥ d

p− 2

[(∫
Sd

ρ dω

) 2
p

−
∫
Sd

ρ
2
p dω

]
.
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If we define the functionals Ep and Ip respectively by

Ip[ρ] :=
∫
Sd

|∇ρ
1
p |2 dω , Ep[ρ] := 1

p− 2

[(∫
Sd

ρ dω

) 2
p

−
∫
Sd

ρ
2
p dω

]
if p 
= 2 ,

then the above inequality amount to Ip[ρ] ≥ d Ep[ρ]. To establish such inequali-

ties, Bakry and Ledoux used the linear heat flow ∂ρ
∂t = Δρ , where Δ denotes the

Laplace-Beltrami operator on Sd. We have d
dt

(∫
Sd

ρ dω
)
= 0

If p ≤ 2#,
d

dt
Ep[ρ] = −Ip[ρ] and

d

dt
Ip[ρ] ≤ − d Ip[ρ] ,

that is,
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0 .

It is not difficult to prove that ρ converges to a constant as t→ +∞ and

lim
t→+∞

(
Ip[ρ]− d Ep[ρ]

)
= 0 .

and hence the nonnegativity of Ip[ρ]− d Ep[ρ] is proved for all ρ.
What happens if 2# < p < 2∗? The result below shows that the strategy based

on the linear heat equation cannot work.

Lemma 1.1 ([7]). When 2# < p < 2∗, one can find a function ρ0 such that ρ

solution of ∂ρ
∂t = Δρ , ρ(t = 0) = ρ0 , and

d

dt

(
Ip[ρ]− d Ep[ρ]

)∣∣∣
t=0

> 0 .

But in [7] it was also proved that if we consider instead the nonlinear flow
d ρ
dt = Δρm , for a well-chosen m 
= 1, the same strategy can be followed. The

computations are much more involved, but the idea is “more or less” the same.
And note that this result covers also the case p ∈ (1, 2). In the critical case p = 2,
similar results can be found for a log-Sobolev inequality on the sphere (see [7]).

2. Rigidity results

The main result presented in this talk is the following rigidity theorem, which is
contained, with its proof, in [6]. Many references about previous works and related
topics can be found in that article.

Theorem 2.1. For d ≥ 2 define 2∗ = 2d/(d − 2) if d ≥ 3, 2∗ = +∞ if d = 2.
And consider the cylinder C1 := R× S

d−1. For all p ∈ (2, 2∗) and 0 < Λ ≤ ΛFS :=
4 d−1

p2−4 , any positive solution ϕ ∈ H1(C1) of
(2.1) − ∂2

s ϕ− Δω ϕ+ Λϕ = ϕp−1 in C1
is equal to ϕΛ, up to a translation in the s-direction, where

(2.2) ϕΛ(s) =
(
p
2 Λ

) 1
p−2

(
cosh

(
p−2
2

√
Λ s

))− 2
p−2

.

By using the Endem-Fowler transformation

(2.3) v(r, ω) = ra−ac ϕ(s, ω) with r = |x| , s = − log r and ω =
x

r
,

it can be easily seen that Theorem 2.1 is equivalent to the following result
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Theorem 2.2. Assume that d ≥ 2. If either a ∈ [0, (d− 2)/2) and b > 0, or a < 0
and b ≥ bFS(a), with

(2.4) b < bFS(a) :=
d (ac − a)

2
√
(ac − a)2 + d− 1

+ a− ac ,

then any nonnegative solution v of

(2.5) − ∇ · (|x|−2 a∇v
)
= |x|−b p |v|p−2 v in R

d \ {0}
which satisfies

∫
Rd

|v|p
|x|b p dx < ∞, is equal to v� up to a scaling, with

v�(x) =
(
1 + |x|(p−2) (ac−a)

)− 2
p−2 ∀x ∈ R

d .

Next pick n and α such that n = d−b p
α = d−2 a−2

α + 2 = 2 p
p−2 . Then, defining

v(r, ω) = w(rα, ω) ∀ (r, ω) ∈ R
+ × S

d−1, it can again be easily seen that the two
above theorems are equivalent to

Theorem 2.3. Assume that d ≥ 2. If 0 < α < αFS :=
√

d−1
n−1 , then any nonnega-

tive solution w(x) = w(r, ω) (r ∈ R+, ω ∈ Sd−1) of

(2.6) − α2 w′′ + α2 n− 1

r
w′ +

Δw

r2
= wp−1 in R

d \ {0} ,
which satisfies

∫
Rd |x|n−d |w|p dx < ∞, is equal to w� up to a scaling, and multipli-

cation by a constant, with

w�(x) =
(
1 + |x|2)−n ∀x ∈ R

d .

Notice that if n is an integer, then, (2.6) is the Euler-Lagrange equation associ-

ated with the so-called critical Sobolev equation −α2 Δw = w
n+2
n−2 in R

n .
Notice also that the above definitions imply the equivalence of the above three

conditions

0 < Λ ≤ ΛFS := 4
d− 1

p2 − 4
; 0 < α < αFS :=

√
d− 1

n− 1
;

a < (d− 2)/2) and b > 0, or a < 0 and b ≥ bFS(a)

Finally, let us remark that the above three results are optimal, since as it is
proved in [8, 5], when the above conditions are not satisfied, there are nonnegative
solutions of the corresponding equations that are not radially symmetric.

3. Consequence: optimal symmetry result for optimizers of the

critical Caffarelli-Kohn-Nirenberg inequalities

The Caffarelli-Kohn-Nirenberg inequalities

(3.1)

(∫
Rd

|v|p
|x|b p dx

)2/p

≤ Ca,b

∫
Rd

|∇v|2
|x|2 a

dx ∀ v ∈ Da,b

have been established in [4], under the conditions that a ≤ b ≤ a + 1 if d ≥ 3,
a < b ≤ a+ 1 if d = 2, a+ 1/2 < b ≤ a+ 1 if d = 1, and a < (d− 2)/2, where the
exponent

(3.2) p =
2 d

d− 2 + 2 (b− a)
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is determined by the invariance of the inequality under scalings. Here Ca,b denotes
the optimal constant in (3.1) and the space Da,b is defined by

Da,b :=
{
v ∈ Lp

(
R

d, |x|−b dx
)
: |x|−a |∇v| ∈ L2

(
R

d, dx
)}

.

Note that, up to scaling and multiplication by a constant, any optimal solution for
the above inequality is a nonegative solution of (2.5). It was proved in [8] (see also [5]
for a partial result) that whenever a < 0 and b < bFS(a), the optimizers of (2.5) are
never radially symmetric. What Theorem 2.2 implies is that whenever b ≥ bFS(a)
or a ∈ [0, ac), the optimizers, which can be taken as nonnegative functions, thus
yielding an optimal symmetry result.

4. Outline of the proof

Let us now quickly present the main ideas of the proof of the above results in the
case d ≥ 3. We will explain it for in the context of Theorem 2.3. Let us introduce
some notation:

(4.1) u
1
2− 1

n = |w| ⇐⇒ u = |w|p with p =
2n

n− 2

and notice that, up to a multiplicative constant, the r.h.s. in (3.1) is transformed
into a generalized Fisher information
(4.2)

I[u] :=
∫
(0,∞)×Sd−1

u |Dp|2 dμ where p =
m

1−m
um−1 and m = 1− 1

n
,

with Dp =
(
α ∂p

∂r ,
1
r ∇ωp

)
, while the l.h.s. in (3.1) is now proportional to a mass,∫

(0,∞)×Sd−1 u dμ, where the measure dμ is defined as rn−1 dr dω on (0,∞)× Sd−1.

Here p is the pressure function, as in [9, 5.7.1 p. 98]. If we replace m by 1− 1
n , we

get that

(4.3) p = (n− 1)u− 1
n .

Let us next introduce the fast diffusion flow

(4.4)
∂u

∂t
= Lum , m = 1− 1

n
,

with

Lw := −D∗ Dw = α2 w′′ + α2 n− 1

r
w′ +

Δw

r2
, ′ = d/dr ,

and assume that it is well defined for all times. It is immediate to verify that
d
dt

∫
(0,∞)×Sd−1 u dμ = 0 . Moreover, long calculations, the study of the regularity of

the solutions of (2.1) at ±∞ and the use of the Bochner-Lichnerowicz-Weitzenböck
formula

1
2 Δω (|∇ωf |2) = ‖Hessf‖2 +∇ω(Δωf) · ∇ωf +Ric(∇ωf,∇ωf) ,

among others, allow us to prove the following proposition.

Proposition 4.1. With the notations defined by (4.3) if u is a smooth minimizer
of I[u] under a mass constraint, with α ≤ αFS, then there exists a positive constant
ζ� such that

d

dt
I[u(t, ·)] = − 2 (n− 1)n−1

∫
(0,∞)×Sd−1

k[p(t, ·)] p(t, ·)1−n dμ ,
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with

k[p] = α4

(
1− 1

n

)[
p′′ − p′

r
− Δω p

α2 (n− 1) r2

]2
+2α2 1

r2

∣∣∣∣∇ωp
′ − ∇ωp

r

∣∣∣∣2+ 1

r4
kM[p]

and∫
Sd−1

kM[p] p1−n dω ≥ (n− 2)
(
α2
FS − α2

) ∫
Sd−1

|∇ωp|2 p1−n dω

+ ζ� (n− d)

∫
Sd−1

|∇ωp|4 p1−n dω .

Therefore, if α ≤ αFS, the Fisher information I[u] is nonincreasing along the
flow defined by (4.4). But actually we do not need to study the flow’s properties,
and we only use it as a guide for a complete rigorous results of Theorem 2.3. This
can be done as follows. Let u be a critical point of I[u] under the mass constraint.
Then, by Proposition 4.1, taking u[0] = u, and assuming α ≤ αFS,

0 = I ′[u] · Lum =
d

dt
I[u(t)]|t=0 ≥ ζ� (n− d)

∫
(0,∞)×Sd−1

|∇ωp|4 p1−n dμ ,

and hence, if α ≤ αFS, ∇ωp ≡ 0 and therefore, u is radially symmetric, since it
does not depend on the angular variables. The precise shape of u is given by

p′′ − p′

r
− Δω p

α2 (n− 1) r2
≡ 0 .
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BREAKING SYMMETRY IN FOCUSING NLKG EQUATION

VLADIMIR GEORGIEV AND SANDRA LUCENTE

Abstract. Let u : Rt × R
d → C. We consider the nonlinear Klein Gordon equation

(1)

⎧⎨⎩
utt −Δu+m2u = V (x)|u|p−1u
u(0, x) = u0(x) ∈ H1(Rd)
ut(0, x) = u1(x) ∈ L2(Rd).

where
m 
= 0 , V (x) > 0 , d ≥ 3.

for subcritical p > 1. We will discuss the global existence and blow up of the solution
according to the size of initial data with respect to the ground energy.

1. Introduction.

Let u : Rt × R
d → C. We consider the nonlinear Klein Gordon equation

(2)

⎧⎨⎩ utt −Δu+m2u = V (x)|u|p−1u
u(0, x) = u0(x) ∈ H1(Rd)
ut(0, x) = u1(x) ∈ L2(Rd).

where

m 
= 0 , V (x) > 0 , p > 1 , d ≥ 3.

For m = 0, V (x) = 1 and p = 2∗ = 2d
d−2

, Kenig and Merle in [KM08] establish a dichotomy

between scattering or blow up according with the size of the Ḣ1 of u0 with respect to the
Ḣ1 norm of the ground state of the equation.
In [IMN14] the authors consider the case m 
= 0, V (x) = 1 and p = 2∗ = 2d

d−2
. They give a

similar dichotomy result by using the ground state of the wave equation. For the case d = 2,
they take a different nonlinear term.

Here we broke the symmetry by taking m 
= 0, V (x) 
= 1 and we aspect that the dichotomy
is preserved by using the ground states of nonlinear Klein Gordon equation with potential
when p is a subcritical where the critical exponent depends on the singularity of V .

We deal with a radial potential V (x) = V (|x|) and we impose the assumptions

(3) V (r) ∼ r−b as r →∞,

(4) V (r) ∼ r−a as r → 0

for some constants

0 < a < b < 2.

We require that the potential satisfies the properties

(5) V ∈ C1(0,∞), V > 0, V strictly decreasing.
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Our next assumption seems rather technical, but it is crucial to deduce the uniqueness of
ground state. More precisely we assume

(6)
the function rV ′(r)

V (r)
is a constant or strictly decreasing

−b < rV ′(r)
V (r)

< −a for any r > 0.

Typical example is d ≥ 3 and

(7) V (x) =
1

|x|a + |x|b
with 0 < a < b < 2. Further we can notify that this potential belongs to the weak Lebesgue
space

(8) V ∈ Ld/b,∞ ∩ Ld/a,∞.

The same property holds in the general case when (3) and (4) are fulfilled.

The required Gagliardo-Nirenberg inequality is the following.

Lemma 1. If d ≥ 3, q > 1 and V ∈ Lq,∞. Suppose in addiction that

1 < p ≤ 1 +
4q − 2d

q(d− 2)

then there exists C > 0 such that for any u ∈ H1(Rd), we have

(9)

∫
Rd

V |u|p+1 ≤ C‖u‖θL2‖∇u‖p+1−θ
L2 ,

where

θ = d

(
1− 1

q

)
− (d− 2)(p+ 1)

2
∈ [0, p+ 1]

In particular for q = d
a
with 0 < a < 2, the relation (9) holds for

1 < p ≤ 1 +
4− 2a

d− 2
θ = d− a− (d− 2)(p+ 1)

2
∈ [0, p+ 1]

Definition 1. We call GN exponent the value

pGN = 1 +
4− 2a

d− 2

which appears in Lemma 1.

2. Main results

First we prove a uniqueness result for the stationary equation.

Lemma 2. If d ≥ 3 and the assumptions (3), (4), (5) and (6) are satisfies, then for any
p > 1, satisfying

(10) 1 < p ≤ pGN

and for any ω > 0 the equation

(11) −ΔQ+m2Q− ωV (x)Qp(x) = 0

has at most one positive, radial solution Q(x), decaying exponentially to 0 as r →∞.

Hence we consider the existence of ground states
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Theorem 1. Suppose that d ≥ 3, the assumptions (3), (4), (5) and (6) are satisfies and

(12) 1 < p < 1 +
4− 2a

d− 2
.

Let μ > 0, and let us consider the minimization problem

(13) inf
g∈N(μ)

(
1

2
‖∇g‖2L2(Rd) +

m2

2
‖g‖2L2(Rd)

)
= I(μ),

where N(μ) is the constraint determined by the nonlinear term

(14) N(μ) =

{
g ∈ H1(Rd);

∫
Rd

V (x)|g(x)|p+1dx ≥ μ

}
.

For any μ > 0 one can find unique Q = Qμ ∈ N(μ), radial, positive, decaying exponentially
to 0 as r →∞, which solves the problem (13), that is

(15) I(μ) =
1

2
‖∇Q‖2L2(Rd) +

m2

2
‖Q‖2L2(Rd) .

In addiction

(16)

∫
Rd

V (x)|Q(x)|p+1dx = μ .

Moreover the function Qμ satisfies the equation

(17) −ΔQ+m2Q− ω(μ)V (x)Qp(x) = 0 ,

where w(1) := c0 and ω(μ) = c0μ
p/(p+1).

Moreover there exists a unique μ0 > 0 such that ω(μ0) = 1 so that Q = Qμ0 ∈ N(μ0) is
the unique radial, positive, decaying exponentially to 0 as r →∞ solution of the equation

(18) −ΔQ+m2Q− V (x)Qp(x) = 0.

Finally the energy functional

(19) Ẽ[g] =
1

2
‖∇g‖2L2(Rd) +

m2

2
‖g‖2L2(Rd) −

1

p+ 1

∫
Rd

V (x)|g(x)|p+1dx

satisfies

(20) I(μ0)− μ0

p+ 1
= Ẽ[Qμ0 ].

Another characterization of the “mountain”is the following link to the classical Payne-
Sattinger energy critical level determined by

(21) IK = inf
g∈H1

K(g)≤0

(
1

2
‖∇g‖2L2(Rd) +

m2

2
‖g‖2L2(Rd)

)
,

where K(g) determines the first Pohozaev relation

(22) K(g) = ‖∇g‖2L2(Rd) +m2‖g‖2L2(Rd) −
∫
Rd

V (x)|g(x)|p+1dx.

We have the following result.
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Theorem 2. Suppose that d ≥ 3, the assumptions (3), (4), (5) and (6) are satisfies and p > 1
obeys (12). Then one can find unique Q ∈ H1

rad(R
d), radial, positive, decaying exponentially

to 0 as r →∞ , that solves the problem (21), so that

IK = 1
2
‖∇Q‖2

L2(Rd)
+ m2

2
‖Q‖2

L2(Rd)
,(23)

(24) K(Q) = 0.

Moreover, we have

(25) Q = Qμ0 , and IK = I(μ0),

where μ0 > 0 is the parameter from point b), Theorem 1.

Our next global existence result shows that in the energy subcritical case, for suitable
controlled energy data, we have global solution.

Theorem 3. Suppose that d ≥ 3, and the assumptions (3), (4), (5) and (6) are satisfies.
Let

1 < p < pGN .

If Q is the unique radial, positive, decaying exponentially to 0 as r →∞, solution Q to the
equation

−ΔQ+m2Q− V (x)Qp+1(x) = 0

given by Theorem 1 b), then for any initial data (u0, u1) ∈ H1(Rd)× L2(Rd) with

E[u](0) < Ẽ(Q)

we have ∫
V (x)|u0|p+1 d x > μ0

and the existence of a unique global solution to the Cauchy problem (2), moreover

u(t, x) ∈ C(Rt;H
1), s.t. ut(t, x) ∈ C(Rt;×L2).

Let (−T−, T+)the maximal time existence interval for the solution u ∈ C((−T−, T+);H
1×

L2) to the Cauchy problem (2) and shall concentrate on the energy critical case

(26) E [u](0) = Ẽ(Q).

In this case the treshold separating global existence (T− = T+ = ∞) and blow up (at least
one of T−, T+ is finite) is determined by the functional K defined in (22).

First, we consider the case

(27) K(u0) ≥ 0.

Theorem 4. Suppose that d ≥ 3, and the assumptions (3), (4), (5) and (6) are satisfies.
Let

1 < p < pGN .

If Q is the unique radial, positive, decaying exponentially to 0 as r →∞, solution Q to the
equation

−ΔQ+m2Q− V (x)Qp+1(x) = 0

given by Theorem 1 b), then for any initial data (u0, u1) ∈∈ H1(Rd)×L2(Rd) satisfying (26)
and (27) we have unique global solution

u(t, x) ∈ C(Rt;H
1), s.t. ut(t, x) ∈ C(Rt;×L2).
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to the Cauchy problem (2).

If

(28) K(u0) < 0

then we have the following blow up result.

Theorem 5. Suppose that d ≥ 3, and the assumptions (3), (4), (5) and (6) are satisfies.
Let

1 < p < pGN .

If Q is the unique radial, positive, decaying exponentially to 0 as r →∞, solution Q to the
equation

−ΔQ+m2Q− V (x)Qp+1(x) = 0

given by Theorem 1 b). If the initial data u0, u1 satisfy (26) and (28), then we have at least
one of the following possibilities

• T+ <∞ and

lim
t↗T+

‖u2(t)‖2L2(Rd) + ‖∇u1(t)‖2L2(Rd) +m2‖u1(t)‖2L2(Rd) =∞;

• T− <∞ and

lim
t↘−T−

‖u2(t)‖2L2(Rd) + ‖∇u1(t)‖2L2(Rd) +m2‖u1(t)‖2L2(Rd) =∞.

Finally we will discuss the dichotomy in the critical case p = pGN .
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We consider NLS posed on a generic 2-d compact manifold M2, with a general
integer nonlinearity: {

i∂tu+Δgu = |u|p−1u, p = 2n+ 1,

u(0, x) = ϕ ∈ Hm(M2)

as well as cubic NLS on a 3-d compact manifold M3{
i∂tu+Δgu− u|u|2 = 0,

u(0, x) = ϕ ∈ Hm(M3).

The main point is the study of the growth of higher order Sobolev norms Hm for
m > 1 and for large times t >> 1. This topic has been pioneered by Bourgain in
[1], in the case of cubic NLS posed on T2.

More precisely we prove that in the 2-d case we have polynomial growth, namely:

Theorem 0.1. Let (M2, g) be a Riemanian manifold and p = 2n + 1 for n ≥ 1.
Then for every ε > 0, m ∈ N and for every u(t, x) solution :

sup
(0,T )

‖u(t, x)‖Hm(M2) ≤ CT
m−1
1−2s0

+ε, ∀ε > 0

where s0 ≥ 0 is such that

‖eitΔgϕ‖L4((0,1)×M2) ≤ C‖ϕ‖Hs0 (M2).

Notice that the bound does not depend on the order of the nonlinearity. At the
best of our knowledge this is the first result where it is proved a polynomial bound
on the growth of higher order Sobolev norms, that covers the super-cubic case in
2-d.

Concerning cubic NLS on 3-d compact manifold we show exponential growth,
namely

Theorem 0.2. Let (M3, g) be a Riemanian manifold. Then for every m ∈ N and
for every u(t, x) solution we have:

sup
(0,T )

‖u(t, x)‖Hm(M3) ≤ C exp(CT ).
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It is worth mentioning that this result is an improvement compared with the
previous result by Burq-Gérard-Tzvetkov (see [2]), who proved double exponential
bound on the growth of the higher order Sobolev norms, namely

sup
(0,T )

‖u(t, x)‖Hm(M3) ≤ C exp(exp(CT )).

1. Idea of the proof

The main novelty in our approach is the use of suitable modified energies, follow-
ing the approach in Ozawa-Visciglia [3]. More precisely we introduce the following
energy

E2k(u) = ‖∂k
t u‖2L2(M) −

p− 1

4

∫
M

|∂k−1
t ∇g(|u|2)|2g|u|p−3dvolg

−
∫
M

|∂k−1
t (|u|p−1u)|2dvolg.

As first step one can show by using the equation solved bu u(t, x) that the quantity
E2k(u) is equivalent to the Sobolev norm H2k; as a second step one has to control
the quantity

d

dt
E2k(u(t, x)) = −p− 1

4

∫
M

|∂k−1
t ∇g(|u|2)|2g∂t(|u|p−3)dvolg

+ 2

∫
M

∂k
t (|u|p−1)∂k−1

t (|∇gu|2g)dvolg

+
k−1∑
j=0

cj

∫
M

(∂j
t∇g(|u|2), ∂k−1

t ∇g(|u|2)g∂k−j
t (|u|p−3)dvolg

+ Re
k−2∑
j=0

cj

∫
M

∂k
t (|u|p−1)∂j

t (Δgū)∂
k−1−j
t udvolg

+ Im

k−1∑
j=1

cj

∫
M

∂j
t (|u|p−1)∂k−j

t u∂k
t ūdvolg

+ Re
k−1∑
j=0

cj

∫
M

∂j
t (|u|p−1)∂k−j

t u∂k−1
t (|u|p−1ū)dvolg.

The right hand side can be estimated thanks to Strichartz estimates, more specifi-
cally one can use in 2− d the estimate (with s0 derivative loss):

‖v‖L4((0,1)×M2) � ‖ϕ‖Hs0 (M2) + T‖F‖L∞((0,T );Hs0 (M2))

where v solves the linear Schroedinger equation with forcing term F and initial
datum ϕ; in 3− d the key estimate is the following one

‖v‖L2((0,1);L6(M3)) � ‖v‖L∞((0,1);Hε(M3))

+ ‖v‖L2((0,1);H1/2(M3)) + ‖F‖L2(0,T );L6/5(M3)).

Both linear estimates above have been obtained in [2].

The results are based on joint work with F. Planchon (Nice) and N. Tzvetkov
(Cergy-Pontoise).
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10.1016/j.anihpc.2015.03.004



－52－



－53－

Strong instability of standing waves

for nonlinear Schrödinger equations

with a harmonic potential

Masahito Ohta

Department of Mathematics, Tokyo University of Science,

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

We study the instability of standing waves eiωtφω(x) for the nonlinear

Schrödinger equation with a harmonic potential

i∂tu = −Δu+ |x|2u− |u|p−1u, (t, x) ∈ R× R
N , (1)

where N ≥ 1 and 1 < p < 2∗ − 1. Here, 2∗ is defined by 2∗ = 2N/(N − 2) if

N ≥ 3, and 2∗ = ∞ if N = 1, 2.

It is known that for any ω ∈ (−N,∞), there exists a unique positive

solution (ground state) φω(x) of the stationary problem

−Δφ+ |x|2φ+ ωφ− |φ|p−1φ = 0, x ∈ R
N (2)

in the energy space

X := {v ∈ H1(RN) : |x|v ∈ L2(RN)}.

Note that the condition ω > −N appears naturally in the existence of positive

solutions for (2), because the first eigenvalue of −Δ + |x|2 is N . For the

uniqueness of positive solutions for (2), see [7, 8, 9, 12].

The Cauchy problem for (1) is locally well-posed in the energy space X

(see [3, §9.2] and [11]). That is, for any u0 ∈ X there exist Tmax = Tmax(u0) ∈
(0,∞] and a unique solution u ∈ C([0, Tmax), X) of (1) with initial condition

u(0) = u0 such that either Tmax = ∞ (global existence) or Tmax < ∞ and

lim
t→Tmax

‖u(t)‖X = ∞ (finite time blowup). Moreover, the solution u(t) satisfies

the conservations of charge and energy

‖u(t)‖2L2 = ‖u0‖2L2 , E(u(t)) = E(u0) (3)
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for all t ∈ [0, Tmax), where the energy E is defined by

E(v) =
1

2
‖∇v‖2L2 +

1

2
‖xv‖2L2 − 1

p+ 1
‖v‖p+1

Lp+1 . (4)

Here we give the definitions of stability and instability of standing waves.

Definition 1. We say that the standing wave solution eiωtφω of (1) is stable

if for any ε > 0 there exists δ > 0 such that if u0 ∈ X and ‖u0 − φω‖X < δ,

then the solution u(t) of (1) with u(0) = u0 exists globally and satisfies

sup
t≥0

inf
θ∈R
‖u(t)− eiθφω‖X < ε.

Otherwise, eiωtφω is said to be unstable.

Definition 2. We say that eiωtφω is strongly unstable if for any ε > 0 there

exists u0 ∈ X such that ‖u0 − φω‖X < ε and the solution u(t) of (1) with

u(0) = u0 blows up in finite time.

Before we state our main result, we recall some known results on the

stability and instability of standing waves eiωtφω for (1). When ω is suffi-

ciently close to −N , the standing wave solution eiωtφω of (1) is stable for any

p ∈ (1, 2∗ − 1) (see [5]). On the other hand, when ω is sufficiently large, the

standing wave solution eiωtφω of (1) is stable if 1 < p ≤ 1 + 4/N (see [5, 4]),

and unstable if 1 + 4/N < p < 2∗ − 1 (see [6]). More precisely, it is proved

in [6] that eiωtφω is unstable if ∂2
λE(φλ

ω)|λ=1 < 0, where vλ(x) = λN/2v(λx) is

the L2-invariant scaling.

However, the strong instability of eiωtφω has been unknown for (1), al-

though there are some results on blowup (see, e.g., [2, 14]).

Now we state our main result in this paper.

Theorem 1. Let N ≥ 1, 1 + 4/N < p < 2∗ − 1, ω > −N , and let φω be the

positive solution of (2). Assume that ∂2
λE(φλ

ω)|λ=1 ≤ 0. Then, the standing

wave solution eiωtφω of (1) is strongly unstable.

We remark that by the scaling vλ(x) = λN/2v(λx) for λ > 0, we have

‖vλ‖2L2 = ‖v‖2L2 and

E(vλ) =
λ2

2
‖∇v‖2L2 +

λ−2

2
‖xv‖2L2 − λα

p+ 1
‖v‖p+1

Lp+1 . (5)
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Here and hereafter, we put

α :=
N

2
(p− 1) > 2.

Moreover, we define Sω(v) = E(v)+
ω

2
‖v‖2L2 for v ∈ X. Then, φω satisfies

S ′
ω(φω) = 0, and

0 = ∂λSω(φ
λ
ω)
∣∣
λ=1

= ‖∇φω‖2L2 − ‖xφω‖2L2 − α

p+ 1
‖φω‖p+1

Lp+1 ,

∂2
λE(φλ

ω)
∣∣
λ=1

= ‖∇φω‖2L2 + 3‖xφω‖2L2 − α(α− 1)

p+ 1
‖φω‖p+1

Lp+1

= 4‖xφω‖2L2 − α(α− 2)

p+ 1
‖φω‖p+1

Lp+1 .

Thus, the condition ∂2
λE(φλ

ω)|λ=1 ≤ 0 is equivalent to

‖xφω‖2L2

‖φω‖p+1
Lp+1

≤ α(α− 2)

4(p+ 1)
.

Furthermore, it is proved in Section 2 of [6] that

lim
ω→∞

‖xφω‖2L2

‖φω‖p+1
Lp+1

= 0.

Therefore, as a corollary of Theorem 1, we have the following.

Corollary 2. Let N ≥ 1, 1 + 4/N < p < 2∗ − 1, ω > −N , and let φω be

the positive solution of (2). Then, there exists ω0 ∈ (−N,∞) depending only

on N and p such that the standing wave solution eiωtφω of (1) is strongly

unstable for all ω ∈ (ω0,∞).

Proof of Theorem 1

In what follows, we assume that 1 + 4/N < p < 2∗ − 1, ω > −N , and φω

is the positive solution of (2). We put α = N(p− 1)/2 > 2.

The proofs of blowup and strong instability of standing waves for nonlin-

ear Schrödinger equations rely on the virial identity (see, e.g., [1, 3, 10, 13]).

Let u(t) be the solution of (1) with u(0) = u0 ∈ X. Then, the function

t �→ ‖xu(t)‖2L2 is in C2[0, Tmax), and satisfies

d2

dt2
‖xu(t)‖2L2 = 16P (u(t)) (6)
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for all t ∈ [0, Tmax), where

P (v) =
1

2
‖∇v‖2L2 − 1

2
‖xv‖2L2 − α

2(p+ 1)
‖v‖p+1

Lp+1 . (7)

Moreover, we define

R(v) = ‖∇v‖2L2 + 3‖xv‖2L2 − α(α− 1)

p+ 1
‖v‖p+1

Lp+1 . (8)

Note that by (5), we have

P (vλ) =
1

2
λ∂λE(vλ), R(vλ) = λ2∂2

λE(vλ) (9)

for λ > 0. We also define

Aω =
{
v ∈ X : E(v) < E(φω), ‖v‖2L2 = ‖φω‖2L2 , ‖v‖p+1

Lp+1 > ‖φω‖p+1
Lp+1

}
,

Bω = {v ∈ Aω : P (v) < 0} .

Lemma 1. Assume that R(φω) ≤ 0. Then, φλ
ω ∈ Bω for all λ > 1.

Since φλ
ω → φω in X as λ→ 1, Theorem 1 follows from Lemma 1 and the

following Theorem 3.

Theorem 3. Let N ≥ 1, 1 + 4/N < p < 2∗ − 1, ω > −N , and assume that

R(φω) ≤ 0. If u0 ∈ Bω, then the solution u(t) of (1) with u(0) = u0 blows up

in finite time.
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1 Introduction

The question of stability of solitary waves is answered in many cases for the nonlinear Schrödinger, Klein–

Gordon, and Korteweg–de Vries equations (see e.g. the review [Str89]). In these systems, at the points

represented by solitary waves, the hamiltonian function is of finite Morse index. In simpler cases, the Morse

index is equal to one, and the perturbations in the corresponding direction are prohibited by conservation

law when the Vakhitov–Kolokolov condition [VK73] is satisfied. In other words, the solitary waves could be

demonstrated to correspond to conditional minimizers of the energy under the charge constraint; this results

not only in spectral stability but also in orbital stability [CL82, GSS87]. The nature of stability of solitary

wave solutions of the nonlinear Dirac equation seems completely different from the picture. The Hamiltonian

function is not bounded from below, and is of infinite Morse index; the NLS-type approach to stability fails.

As a consequence, we do not know how to prove the orbital stability [CL82, GSS87] but via proving the

asymptotic stability first. The asymptotic stability, in turn, is based on knowing the spectrum of the linearized

problem; this will be our main focus.

Given a real-valued function f ∈ C1(R \ {0}), f(0) = 0, we consider the nonlinear Dirac equation in

R
n, n ≥ 1, which is known as the Soler model [Sol70]:

i∂tψ = Dmψ − f(ψ∗βψ)βψ, ψ(x, t) ∈ C
N , x ∈ R

n, (1.1)

where Dm = −iα · ∇+ βm is the free Dirac operator. Here α = (αj)1≤j≤n, with αj and β the self-adjoint

N × N Dirac matrices; m > 0 is the mass. We are interested in the stability properties of solitary wave

solutions to (1.1):

ψ(x, t) = φω(x)e
−iωt, φω ∈ H1

loc(R
n,CN ). (1.2)

Given a particular solitary wave (1.2), we consider its perturbation in the form of the Ansatz

ψ(x, t) = (φω(x) + ρ(x, t))e−iωt, (1.3)

and study the spectrum of the linearized equation on ρ. We will say that a particular solitary wave is spectrally

stable if the spectrum of the equation linearized at this wave does not contain eigenvalues with positive real

part. The spectrum of the linearization at solitary waves of the cubic nonlinear Dirac equation in (1+1)D was

computed numerically in [BC12a], suggesting spectral stability of all solitary waves in that model.

Let us mention that the linear instability in the nonrelativistic limit ω � m in the cases k > 2/n follows

from [CGG14]. We notice, though, that our numerics show that this spectral instability disappears when ω ∈
(0,m) becomes sufficiently small [CMKS+16]; this is a particular feature of the nonlinear Dirac equations

which is absent in the NLS case. Moreover, we note that quintic nonlinear Schrödinger equation in (1+1)D and

the cubic one in (2+1)D are “charge critical” (all solitary waves have the same charge), and as a consequence
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the linearization at any solitary wave has a 4 × 4 Jordan block at λ = 0, resulting in dynamic instability of

all solitary waves. On the contrary, for the nonlinear Dirac with the critical-power nonlinearity, the charge

of solitary waves is no longer the same, and small amplitude solitary waves are spectrally stable. In all these

cases, our conclusion is that in the nonrelativistic limit ω � m the spectral stability of a solitary wave solution

(1.2) to the nonlinear Dirac equation (1.1) is formally described by the Vakhitov–Kolokolov stability criterion

∂ωQ(φω) < 0, where Q(φω) =
∫
Rn |φω(x)|

2 dx is the corresponding charge.

Below is the short summary of results from [BC12b, BC16a, BC16b]. Let φω(x)e
−iωt be a solitary wave

solution to (1.1). The linearization at this solitary wave is the linearized equation on ρ from (1.3):

i∂tρ = L(ω)ρ, (1.4)

where

L(ω) = Dm − ω − f(φ∗
ωβφω)β − 2f ′(φ∗

ωβφω)βφω Re(φ∗
ωβ · ). (1.5)

The operator L(ω) is not C-linear because of the term with Re(φ∗
ωβ · ). To work with C-linear operators, one

could consider this operator as acting on (Re ρ, Im ρ) and then to study its complexification.

In this spirit, we proceed as follows. Let J ∈ End (CN ) be skew-adjoint and invertible, such that

J2 = −ICN , [J,Dm] = 0. We denote

L(ω) = Dm − ω + V (x, ω), ω ∈ [−m,m],

where V (·, ω) ∈ L∞(
R
n, End (CN )

)
for each ω ∈ [−m,m]. We will study the spectrum of JL(ω), where J

does not necessarily commute with V ; this parallels the absence of C-linearity in (1.5) (that is, JL represents

the operator −iL from (1.4) acting on (Re ρ, Im ρ)).

Theorem 1.1 (Absence of embedded eigenvalues). Let n ≥ 1, ω ∈ [−m,m], and V ∈ Ln
loc(R

n, End (CN )).
Let λ ∈ R \ [−m− |ω|,m+ |ω|] and assume that there are κ ∈ (0, 1] and R < ∞ such that

‖(n+ 16Λ2
+r

2 + 8rτ)1/2V v‖2 ≤ κ2
(
‖∇v‖2 + ‖(Λ2− −m2 + τ2)1/2v‖2

)
, (1.6)

for all τ ≥ 1 and v ∈ H1
0 (ΩR,C

N ), with Λ± = |λ| ± |ω|. Then ±iλ �∈ σp (JL(ω)) .

Theorem 1.2 (Bifurcation of point eigenvalues). Let n ≥ 1. Let (ωj)j∈N, ωj ∈ [−m,m], be a sequence with

limj→∞ ωj = ω0 ∈ [−m,m], and assume that V is hermitian and that there is ε > 0 such that

‖〈r〉1+εV (ω0)‖L∞(Rn,End (CN )) < ∞, lim
j→∞

‖〈r〉1+ε (V (ωj)− V (ω0)) ‖L∞(Rn,End (CN )) = 0,

where ‖〈r〉1+εV (ω)‖ = ‖〈·〉1+εV (·, ω)‖. Let λj ∈ σp(JL(ωj)), j ∈ N be a sequence such that Reλj �= 0,
λj −→

j→∞
λ0 ∈ iR, and λ0 �= ±i(m + |ω0|). If ω0 = ±m, additionally assume that λ0 �= 0. Then λ0 ∈

σp(JL(ω0)).

These two theorems are based on Jensen–Kato theory [JK79] adapted for the Dirac operator and on the

Carleman estimates from [BG87]. Combining Theorem 1.1 and Theorem 1.2, we conclude that for the lin-

earizations at solitary waves the bifurcations of point eigenvalues from the continuous spectrum beyond the

embedded thresholds ±i(m+ |ω|) are not possible.

Theorem 1.3 (Bifurcation of point eigenvalues from the spectrum of the free Dirac operator). Let n ≥ 1. Let

J ∈ End (CN ) be skew-adjoint and invertible, σ(J) = {±i}, with [J,Dm] = 0. Let (ωj)j∈N, ωj ∈ (−m,m),
be a Cauchy sequence, ωj → m, and assume that there is δ > 0 such that

lim
j→∞

‖〈r〉1+δV (·, ωj)‖L∞(Rn,End (CN )) = 0. (1.7)

Let λj ∈ σp(JL(ωj)), and let λ0 ∈ iR ∪ {∞} be an accumulation point of the sequence (λj)j∈N. Then:
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1. λ0 ∈ {0;±2mi}. In particular, λ0 �= ∞.

2. If additionally Reλj �= 0, λj → λ0 = 0, the potential V (x, ωj) is hermitian (for all x ∈ R
n and j ∈ N)

and satisfies

‖V (·, ωj)‖L∞(Rn,End (CN )) ≤ C(m− ωj), (1.8)

then λj = O(m2 − ω2
j ).

Now we consider the nonlinear Dirac equation (1.1). We assume that f ∈ C1(R \ {0}) ∩ C(R), and that

there are k > 0, K > k such that

|f(τ)− |τ |k| = o(|τ |K), |τf ′(τ)− k|τ |k| = o(|τ |K), |τ | ≤ 1. (1.9)

If n ≥ 3, we additionally assume that k < 2/(n− 2).
In the nonrelativistic limit ω � m, the solitary wave solutions φω(x)e

−iωt to nonlinear Dirac equation

could be obtained as bifurcations of the solitary wave solutions ϕω(x)e
−iωt to the nonlinear Schrödinger

equation. We recall that, by [Str77, BL83, BGK83], the stationary nonlinear Schrödinger equation

−u = −Δu− |u|2ku, u(x) ∈ R, x ∈ R
n, n ≥ 1 (1.10)

has a strictly positive spherically symmetric exponentially decaying solution uk ∈ C2(Rn)∩H1(Rn) (called

the ground state) if and only if 0 < k < 2/(n − 2) (any k > 0 if n ≤ 2); in the next theorem, Dirac

solitary wave profiles φω are obtained as bifurcations from uk. The main difficulty of the proof is insufficient

regularity of f(τ) = |τ |k + . . . near τ = 0 when k ≤ 1. As a result, the contraction mapping theorem can

not be used; in [BC16a], we base the argument on the Schauder fixed point theorem.

Theorem 1.4 (Solitary waves in the nonrelativistic limit). In (1.1), let n ∈ N.

1. There is ω0 ∈ (m/2, m) such that there is a C1 map ω �→ φω ∈ H1(Rn,CN ), with ∂ωφω ∈

H1(Rn,CN ). One has ‖e|x|
√
m2−ω2

φω‖L∞(Rn,CN ) = O
(
(m2 − ω2)

1
2k

)
, and moreover

φω(x)
∗βφω(x) ≥ |φω(x)|

2/2, ∀x ∈ R
n, ∀ω ∈ (ω0, m). (1.11)

2. Additionally, assume that either k < 2/n, K > k, or k = 2/n, K > 4/n. Then there is ω1 < m such

that ∂ωQ(ω) < 0 for all ω ∈ (ω1,m). If instead k > 2/n, then there is ω1 < m such that ∂ωQ(ω) > 0
for all ω ∈ (ω1,m).

Theorem 1.5 (Spectral stability of solitary waves in the nonrelativistic limit). In (1.1), let n ≤ 3, N ≤ 4. Let

f ∈ C1(R\{0})∩C(R) satisfy the assumption (1.9), with k, K such that either k < 2/n, K > k, or k = 2/n,
K > 4/n. Further, assume that k > kn, with k1 = 1, k2 ≈ 0.621, k3 ≈ 0.461 (this is a technical assumption

which guarantees that the linearization of the corresponding NLS at a solitary wave has a particularly simple

spectrum, making the analysis more straightforward). Let φω(x)e
−iωt, φω ∈ H2(Rn,CN ), ω � m, be a

family of solitary waves from Theorem 1.4. Then there is ω∗ ∈ (0,m) such that for each ω ∈ (ω∗,m) the

corresponding solitary wave is spectrally stable.

We note that if either k < 2/n, K > k or k = 2/n, K > 4/n, then, by Theorem 1.4 (2), for ω � m
one has ∂ωQ(φω) < 0; thus, the spectral stability in the nonrelativistic limit is formally described by the

Vakhitov–Kolokolov stability criterion [VK73].
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DECAY ESTIMATES FOR WAVE EQUATION WITH A
POTENTIAL ON EXTERIOR DOMAINS

TOKIO MATSUYAMA
CHUO UNIVERSITY, TOKYO, JAPAN

This talk is based on the joint work with Professor Vladimir Georgiev.

Let Ω be an exterior domain in R
3 such that the obstacle

O := R
3 \ Ω

is compact and its boundary ∂Ω is of C2,1. For the sake of simplicity, we assume that
the origin does not belong to Ω. In this talk we consider the initial-boundary value
problem for the wave equations with a potential in the exterior domain Ω and our
main goals are to study the local energy decay estimates and dispersive estimates for
the corresponding evolution flow.

We are concerned with the following initial-boundary value problem, for a function
u = u(t, x):

(0.1) ∂2
t u−Δu+ V (x)u = F (t, x), t �= 0, x ∈ Ω,

with the initial condition

(0.2) u(0, x) = f(x), ∂tu(0, x) = g(x),

and the boundary condition

(0.3) u(t, x) = 0, t ∈ R, x ∈ ∂Ω,

where V is a real-valued measurable function on Ω satisfying

(0.4) − c0|x|−δ0 ≤ V (x) ≤ c1|x|−δ0 for some 0 < c0 <
1

4
, c1 > 0 and δ0 > 2.

Let us introduce some operators and function spaces. We denote by

G0 = −Δ the free Hamiltonian in R
3,

and by

GV a self-adjoint realization on L2(Ω) of the operator −Δ|D + V ,

where
G := −Δ|D is the Dirichlet Laplacian

with domain
D(G) = D(GV ) = H2(Ω) ∩H1

0 (Ω).

Then GV is non-negative on L2(Ω) on account of (0.4), and it is shown that zero is
neither an eigenvalue nor a resonance of GV . Also, it is known that no eigenvalues are
present on (0,∞) (see Mochizuki [5], and also (0.12) below). Hence the continuous

Key words and phrases. Wave equation, local energy decay, dispersive estimates.
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spectrum of GV coincides with the interval [0,∞). The main theorem involves the
perturbed Besov spaces Ḃs

p,q(GV ) generated by GV . Following Iwabuchi, Matsuyama
and Taniguchi [3], we define these spaces in the following way. Let {ϕj(λ)}∞j=−∞ be

the Littlewood-Paley partition of unity: ϕ(λ) is a non-negative function having its
compact support in {λ : 1/2 ≤ λ ≤ 2} such that

+∞∑
j=−∞

ϕ(2−jλ) = 1 (λ �= 0), ϕj(λ) = ϕ(2−jλ), (j ∈ Z).

For any s ∈ R and 1 ≤ p, q ≤ ∞ we define the homogeneous Besov spaces Ḃs
p,q(GV )

by letting

(0.5) Ḃs
p,q(GV ) := {f ∈ Z ′

V (Ω) : ‖f‖Ḃs
p,q(GV ) < ∞},

where

‖f‖Ḃs
p,q(GV ) :=

∥∥{2sj‖ϕj(
√

GV )f‖Lp(Ω)

}
j∈Z

∥∥
�q(Z)

.

Here Z ′
V (Ω) is the dual space of a linear topological space ZV (Ω) which is defined by

letting

ZV (Ω) :=
{
f ∈ L1(Ω) ∩D(GV ) : GM

V f ∈ L1(Ω) ∩D(GV ) and

sup
j≤0

2M |j|‖ϕj(
√
GV )f‖L1(Ω) < ∞ for all M ∈ N

}
equipped with the family of semi-norms {qV,M(·)}∞M=1 given by

qV,M(f) := ‖f‖L1(Ω) + sup
j∈Z

2M |j|‖ϕj(
√
GV )f‖L1(Ω).

It is proved in Theorem 2.5 from [3] that the norms ‖f‖Ḃs
p,q(GV ) are independent of

the choice of ϕj. We shall also use the perturbed Sobolev spaces over Ω:

Ḣs
V (Ω) := Ḃs

2,2(GV ).

In particular case V = 0, replacing ϕj(
√
GV ) by ϕj(

√
G) in the definition, we define

Ḃs
p,q(G) and Ḣs(Ω) = Ḃs

2,2(G),

where we recall

G = −Δ|D
with domain

D(G) = H2(Ω) ∩H1
0 (Ω).

We shall use the inhomogeneous Sobolev spaces Hs
V (Ω) for s > 0. We say that

f ∈ Hs
V (Ω) (f ∈ Hs(Ω) resp.) for s > 0 if∥∥(I +GV )

s/2f
∥∥
L2(Ω)

< ∞ (
∥∥(I +G)s/2f

∥∥
L2(Ω)

< ∞ resp.)

Local energy for wave equations is defined by letting

ER(u)(t) =

∫
Ω∩{|x|≤R}

{|∇u(t, x)|2 + |∂tu(t, x)|2
}
dx,
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where, here and below, R > 0 is chosen such that

O = R
3 \ Ω ⊆ {|x| ≤ R}.

The result due to Ralston [9] concerns the case that

O is a compact and trapping obstacle,

and his result asserts that, given any μ ∈ (0, 1) and any T > 0, there exist f, g ∈
C∞

0 (Ω) with ∫
Ω

{|∇f(x)|2 + |g(x)|2} dx = 1

such that the solution to the initial-boundary value problem⎧⎪⎨⎪⎩
∂2
t u−Δu = 0, t �= 0, x ∈ Ω,

u(t, x) = 0, t ∈ R, x ∈ ∂Ω,

u(0, x) = f(x), ∂tu(0, x) = g(x), x ∈ Ω

satisfies the inequality

ER(u)(T ) ≥ 1− μ.

On the other hand, the scattering theory developed by Lax and Phillips gives a
construction of the scattering operator by using weaker form of local energy decay

(0.6) lim inf
t→∞

ER(u)(t) = 0.

Note that (0.6) follows directly from the RAGE (or simply ergodic type) theorem

(0.7) lim
T→∞

1

T

∫ T

0

ER(u)(t)dt = 0

and the property that zero is not eigenvalue of G, i.e.,

u ∈ D(G), Gu = 0 =⇒ u = 0.

An important consequence of weak energy decay (0.7) is the existence of the wave
operators

W∓ := s− lim
t→±∞

eit
√
GJ0e

−it
√
G0 ,

where J0 is the orthogonal projection

J0 : L
2(R3) → L2(Ω).

This observation implies that scattering theory and existence of wave operators are
established without appealing to additional geometric assumption of type

(0.8) O = R
3 \ Ω is non-trapping obstacle.

The condition (0.8) is crucial for the strong local energy decay in view of the results
of Morawetz, Ralston and Strauss [8] and Ralston [9].

Our main decay estimates (0.9)–(0.11) below are obtained also without appealing
to assumption (0.8).

We shall prove the following:
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Theorem 0.1. Assume that the measurable potential V satisfies (0.4). Let σ ≥ 2. If
f, g ∈ C∞

0 (Ω) and R > 0 is such that

O ⊆ {|x| ≤ R},
then the solution u to the initial-boundary value problem (0.1)–(0.3) with F ≡ 0
satisfies the estimate

(0.9) ER(u)(t) ≤ C

t2

(
‖f‖2

H2σ+1
V (Ω)

+ ‖g‖2H2σ
V (Ω)

)
for any t �= 0.

Interpolation between (0.9) and standard energy estimate

ER(u)(t) ≤ C
(
‖f‖2H1(Ω) + ‖g‖2L2(Ω)

)
gives the following:

Corollary 0.2. Assume that the measurable potential V satisfies (0.4). If f, g ∈
C∞

0 (Ω) and R > 0 is such that

O ⊆ {|x| ≤ R},
then for any k ∈ (0, 1], the solution u to the initial-boundary value problem (0.1)–(0.3)
with F ≡ 0 satisfies the estimate

(0.10) ER(u)(t) ≤ C

tk/2

(
‖f‖2Hk+1(Ω) + ‖g‖2Hk(Ω)

)
for any t �= 0.

Remark 0.1. If V = 0, then we are able to prove (0.10) for any k > 0. In the case
of presence of potential satisfying (0.4), we use the fact that

D(G
s/2
V ) = D(Gs/2), ‖f‖Hs

V (Ω) ∼ ‖f‖Hs(Ω), f ∈ D(Gs/2)

for any s ∈ [0, 2]. Therefore we need the restriction 0 < k ≤ 1 in Corollary 0.2, when
there is a potential.

Remark 0.2. It should be mentioned that the estimate (0.10) is slightly better local
energy decay estimate compared with the estimate

ER(u)(t) ≤ C

log(2 + t)2k

(
‖f‖2Hk+1(Ω) + ‖g‖2Hk(Ω)

)
,

which is obtained by Burq (see [1]).

The second result is concerned with Lp-Lp′-estimates:

Theorem 0.3. Let 1 ≤ p′ ≤ 2 ≤ p ≤ ∞ and 1/p + 1/p′ = 1. Suppose that the
measurable potential V satisfies (0.4). Then there exists a constant C > 0 such that

(0.11)

∥∥∥∥(√GV

)−1

eit
√
GV g

∥∥∥∥
Ḃ

−(1/2)+(2/p)
p,2 (GV )

≤ C|t|−1+(2/p)‖g‖
Ḃ

(1/2)−(2/p)

p′,2 (GV )

for any g ∈ Ḃ
(1/2)−(2/p)
p′,2 (GV ) and any t �= 0.
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The strategy of proof of Theorems 0.1 and 0.3 is based on the spectral representa-
tion of an operator ϕ(

√
GV ). More precisely, we shall use the identity:

ϕ(
√
GV ) =

1

πi

∫ ∞

0

ϕ(λ)
[
RV (λ

2 + i0)−RV (λ
2 − i0)

]
λ dλ,

where
ϕ(λ) = ϕj(λ)λ

−1eiλt,

and RV (λ
2 ± i0) are the operators induced by the resolvent operator

RV (z) = (GV − z)−1 for z ∈ C,

whose existence is assured by the limiting absorption principle (see Mochizuki [5, 6,
7]): Let δ0 > 1. Then there exist the limits

(0.12) s− lim
ε↘0

RV (λ
2 ± iε) = RV (λ

2 ± i0) in B(L2
s(Ω), H

2
−s(Ω))

for some s > 1/2 and for any λ > 0. It should be mentioned that the limiting
absorption principle (0.12) is true for an arbitrary exterior domain with a compact
boundary. If one considers the uniform resolvent estimates obtained in [5, 6, 7], the
geometrical condition (0.8) on Ω is imposed. However, the argument in this paper
does not require any geometrical condition.

Once the dispersive estimates are established, Strichartz estimates are obtained by
TT ∗ argument of [2] (see also Yajima [11]). This result will be presented in the talk.
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GLOBAL EXISTENCE OF SMALL EQUIVARIANT WAVE MAPS ON

ROTATIONALLY SYMMETRIC MANIFOLDS

PIERO D’ANCONA

This talk is based on a joint work with Qidi Zhang (School of Science, East China Uni-
versity of Science and Technology, Shanghai, e-mail: qidizhang@ecust.edu.cn), to appear on
Int. Math. Res. Not.

Wave maps are functions u : M1+n → N � from a Lorentzian manifold (M1+n, h) to a Rie-
mannian manifold (N �, g), which are critical points for the functional on M1+n with Lagrangian
density L(u) = Trh(u

∗g), the trace with respect to the metric h of the pullback of the metric
g through the map u. The space M1+n is usually called the base manifold and N � the target
manifold ; both are assumed to be smooth, complete and without boundary. This notion extends
to a Lorentzian setting the usual definition of harmonic maps between Riemannian manifolds.
Wave maps arise in several different physical theories, and in particular they play an important
role in general relativity.

When the base manifold is the flat Minkowski space R×R
n, in local coordinates on the target,

the Euler-Lagrange equations for L(u) reduce to a system of derivative nonlinear wave equations

�ua + Γa
bc(u)∂αu

b∂αuc = 0, (1.1)

where Γa
bc are the Christoffel symbols on N � and we use implicit summation over repeated indices.

The natural setting is then the Cauchy problem with data at t = 0

u(0, x) = u0, ut(0, x) = u1. (1.2)

The data are taken in suitable N �-valued Sobolev spaces

(u0, u1) ∈ Hs(Rm, N �)×Hs−1(Rm, TN �) (1.3)

which can be defined as follows, if N � is isometrically embedded in a euclidean R
�′ :

Hs(Rm;N �) := {v ∈ Hs(Rm;R�′), v(Rm) ⊆ N �}. (1.4)

Solutions belong to the space C([0, T );Hs), with T ≤ ∞. Starting with [7], [6] Problem (1.1),
(1.2) has been studied extensively; see [16] and [5] for a review of the classical theory.

Since equation (1.1) is invariant for the scaling u(t, x) �→ u(λt, λx), the critical Sobolev space
for the data corresponds to s = n

2 . In dimension n = 1 energy conservation is sufficient to prove
global well posedness, thus in the following we assume n ≥ 2. Concerning local existence, the
behaviour is rather clear; Problem (1.1)–(1.3) is

• locally well posed if s > n
2 (see [8], [10]). Note that classical energy estimates only allow

to prove local existence for s > n
2 + 1, and the sharp result requires bilinear methods

which exploit the null structure of the nonlinearity.
• ill posed if s < n

2 (see [15], [3], [4]).

The problem of global existence with small data has been completely understood through the
efforts of many authors during the last 20 years (see among the others [18], [20], [21], [9], [17],
[11], [22]). The end result is that if the initial data belong to H

n
2 ×H

n
2 −1, and their homogeneous

Date: May 6, 2016.
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Ḣ
n
2 ×Ḣ

n
2 −1 norm is sufficiently small, then there exists a global solution, continuous with values

in H
n
2 , for general targets. Note that the solution also belongs to a suitable Strichartz space

(more on this below), and uniqueness holds only under this additional constraint.
When the initial data are large, the geometry of the target manifold comes into play, and

the problem presents additional difficulties; in particular, blow up in finite time may occur. For
targets with positive curvature, when the dimension of the base space is n ≥ 3, blow up examples
with self similar structure were constructed already in [15], [18]. On the other hand, when the
target is negatively curved, the available blow up examples require n ≥ 7 [1]. The case n = 2

is especially interesting since the critical norm Ḣ
n
2 coincides with the energy norm, which is

conserved. However we shall not consider it here and we refer to [23] for further information.
The more general case of a nonflat base manifold has received much less attention. If we

restrict to maps defined on a product R×Mn, with Mn a Riemannian manifold, the wave map
system in local coordinates (1.1) becomes

ua
tt −ΔMua + Γa

bc(u)∂αu
b∂αuc = 0, (1.5)

where ΔM is the negative Laplace-Beltrami operator on Mn. To our knowledge, there are few
results on (1.5). In [19] the stability of equivariant, stationary wave maps on S

2 with values
in S

2 is proved, while [2] considers the local existence on Robertson-Walker spacetimes. More
recently, in [12] global existence of small wave maps is proved in the case when Mn = M4 is a
four dimensional small perturbation of flat R4, and the stability of equivariant wave maps defined
on H

2 is studied in [13].
We plan to initiate the study of equivariant solutions of (1.5) on more general base manifolds

Mn, n ≥ 3. Our main result is the global existence of equivariant wave maps for small data in the
critical norm, provided the base manifold belongs to a class of manifolds which we call admissible.
The class of admissible manifolds is rather large, and includes in particular asymptotically flat
manifolds and perturbations of real hyperbolic spaces; see some examples in Remark 1.3 below.
The precise definition is the following:

Definition 1.1 (Admissible manifolds). Let n ≥ 3. We say that a smooth manifold Mn is
admissible if its metric has the form dr2 + h(r)2dω2

Sn−1 and h(r) satisfies:

(i) ∃h∞ ≥ 0 such that H(r) := h
1−n
2 (h

n−1
2 )′′ = h∞ +O(r−2) for r � 1.

(ii) H(j)(r) = O(r−1) and (h− 1
2 )(j) = O(r−

1
2−j) for r � 1 and 1 ≤ j ≤ [n−1

2 ].
(iii) There exist c, δ0 > 0 such that for r > 0 we have h(r) ≥ cr while the function P (r) =

rH(r)− rh∞ + 1−δ0
4r satisfies the condition P (r) ≥ 0 ≥ P ′(r).

Note that (i) is a form of asymptotic convexity, while (iii) is effective essentially on a bounded
region. Condition (ii), on the other hand, is weaker and excludes singularities of the metric at
infinity. The parameter h∞ can be understood as a measure of the curvature of the manifold
at infinity; h∞ = 0 means essentially that the manifold is asymptotically flat, while the case
h∞ > 0 includes examples with large asymptotic curvature, like the hyperbolic spaces.

Now assume both Mn and N � are rotationally symmetric manifolds, with global metrics

Mn : dr2 + h(r)2dω2
Sn−1 , N � : dφ2 + g(φ)2dχ2

S�−1 (1.6)

where dω2
Sn−1 and dχ2

S�−1 are the standard metrics on the unit sphere. We recall the equivariant

ansatz (see [16]): writing the map u = (φ, χ) in coordinates on N �, the radial component φ =
φ(t, r) depends only on time and r, the radial coordinate on Mn, while the angular component
χ = χ(ω) depends only on the angular coordinate ω on Mn. It follows that χ : Sn−1 → S

�−1

must be a harmonic polynomial map of degree k, whose energy density is k(k + n− 2) for some
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integer k ≥ 1. On the other hand φ(t, r) must satisfy the �̄-equivariant wave map equation

φtt − φrr − (n− 1)
h′(r)
h(r)

φr +
�̄

h(r)2
g(φ)g′(φ) = 0 (1.7)

where �̄ = k(k + n− 2) and for which one considers the Cauchy problem with initial data

φ(0, r) = φ0(r), φt(0, r) = φ1(r). (1.8)

When h(r) = r the base space is the flat Rn and (1.7) reduces to the equation originally studied
in [18].

In the following statement we use the notation |DM | = (−ΔM )
1
2 , where ΔM is the Laplace-

Beltrami operator on Mn. If v : Mn → N � is an equivariant map of the form v = (φ(r), χ(ω))
with χ : Sn−1 → S

�−1 a fixed harmonic map, its Sobolev Hs(Mn;N �) norm can be equivalently
expresssed as

‖v‖Hs(Mn;N�) � ‖φ‖Hs := ‖(1−ΔM )
s
2φ‖L2(Mn).

We define also the weighted Sobolev space Hs
q (w) of radial functions on Mn with norm

‖φ‖Hs
q (w) := ‖w−1(|x|)φ(|x|)‖Hs

q (R
n+2k), w(r) := rk

r
n−1
2

h(r)
n−1
2

.

and we choose the indices (p, q) as

p =
4(m+ 1)

m+ 3
, q =

4m(m+ 1)

2m2 −m− 5
, m = n+ 2k. (1.9)

The notation L∞Hs ∩ CHs denotes the space of continuous bounded functions from R to Hs,
while LpHs

q (w) is the space of functions φ(t, r) which are Lp in time with values in Hs
q (w). Our

main result is the following:

Theorem 1.2 (Global existence in the critical norm). Let n ≥ 3, k ≥ 1, �̄ = k(k + n − 2) and
p, q as in (1.9). Assume Mn and N � are two rotationally invariant manifolds with metrics given

by (1.6), with Mn admissible, and let h∞ be the limit of h
1−n
2 (h

n−1
2 )′′ as r →∞. Consider the

Cauchy problem (1.7), (1.8).
If h∞ > 0 and ‖φ0‖H n

2
+ ‖φ1‖H n

2
−1 is sufficiently small, the problem has a unique global

solution φ(t, r) ∈ L∞H
n
2 ∩ CH

n
2 ∩ LpH

n−1
2

q (w).

If h∞ = 0 and ‖|DM | 12φ0‖
H

n−1
2

+ ‖|DM |− 1
2φ1‖

H
n−1
2

is sufficiently small, the problem has a

unique global solution φ(t, r) with |DM | 12φ ∈ L∞H
n−1
2 ∩ CH

n−1
2 and φ ∈ LpH

n−1
2

q (w).

Remark 1.1 (Scattering). It is not difficult to prove that the solutions constructed in Theorem
1.2 scatter to solutions of the linear equivariant equation

φtt − φrr − (n− 1)
h′(r)
h(r)

φr = 0

in H
n
2 ×H

n
2 −1 as t→ ±∞, by standard arguments; we omit the details.

Remark 1.2 (Local existence with large data). By a simple modification in the proof one can
show that the small data assumption can be replaced by the weaker assumption that the linear
part of the flow is sufficiently small. This in particular implies existence and uniqueness of a
time local solution for large data in the same regularity class.

Thus global existence of small equivariant wave maps on admissible manifolds holds in the
critical space H

n
2 ×H

n
2 −1, as in the case of a flat base manifold. The solution enjoys additional

LpLq integrability properties, determined by the Strichartz estimates used in the proof. This has
the usual drawback that uniqueness holds only in a restricted space. Unconditional uniqueness



－72－

4 P. D’ANCONA

in the critical space without additional restrictions was proved recently for general wave maps
on Minkowski space in [14]. We conjecture that a similar result holds also in our situation; as a
partial workaround, we prove that if the regularity of the initial data is increased by δ = 1

m+1

then uniqueness holds in the space CH
n
2 + 1

m+1 :

Theorem 1.3 (Higher regularity and unconditional uniqueness). Consider (1.7), (1.8) under
the assumptions of Theorem 1.2, and let 0 ≤ δ < k.

If h∞ > 0 and ‖φ0‖H n
2

+δ + ‖φ1‖H n
2

−1+δ is sufficiently small, the problem has a unique global

solution φ ∈ L∞H
n
2 +δ ∩ CH

n
2 +δ ∩ LpH

n−1
2 +δ

q (w). Moreover, if δ ≥ 1
m+1 , this is the unique

solution in CH
n
2 +δ.

If h∞ = 0 and ‖|DM | 12φ0‖
H

n−1
2

+δ(M)
+ ‖|DM |− 1

2φ1‖
H

n−1
2

+δ(M)
is sufficiently small, Problem

(1.7), (1.8) has a unique global solution φ with |DM | 12φ ∈ L∞H
n−1
2 +δ(M) ∩ CH

n−1
2 +δ(M) and

φ ∈ LpH
n−1
2 +δ

q (w). Moreover, if δ ≥ 1
m+1 , this is the unique solution with |DM | 12φ ∈ CH

n−1
2 +δ.

Remark 1.3 (Examples of admissible manifolds). The class of admissibile manifolds is rather
large. In particular we can prove that suitable perturbations of admissible manifolds are also
admissible; this allows to produce a substantial list of explicit examples. The following manifolds
are included in the class:

• The euclidean R
n and, more generally, rotationally invariant, asymptotically flat spaces

of dimension n ≥ 3,. The precise condition is the following: the radial component of the
metric has the form hε(r) = r + μ(r), with μ : R+ → R such that for small ε > 0

|μ(r)|+ r|μ′(r)|+ r2|μ′′(r)|+ r3|μ′′′(r)| ≤ εr for all r > 0

and
|μ(j)(r)| � r1−j for r � 1, j ≤ [n−1

2 ] + 2.

• Real hyperbolic spaces Hn with n ≥ 3, for which h(r) = sinh r; more generally, rotation-
ally invariant perturbations of Hn with a metric hε(r) = sinh r + μ(r), with μ : R+ → R

such that for small ε > 0

|μ(r)|+ |μ′(r)|+ |μ′′(r)|+ |μ′′′(r)| ≤ ε〈r〉−3 sinh r for all r > 0

and

|μ(j)(r)| � r−1er for r � 1, j ≤ [
n− 1

2
] + 2.

• Some classes of rotationally invariant manifolds with a metric h(r) of polynomial growth
h(r) ∼ rM , wher M can be any M ≥ 1.
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