<table>
<thead>
<tr>
<th>Title</th>
<th>Comparative morphology and phylogenetic relationships of the family Polynemidae (Pisces: Perciformes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>亢, 世华</td>
</tr>
<tr>
<td>Citation</td>
<td>北海道大学. 博士 水産科学. 甲第 12945号</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-12-25</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/68115</td>
</tr>
<tr>
<td>Rights</td>
<td>http://creativecommons.org/licenses/by-nc-sa/2.1/jp/</td>
</tr>
<tr>
<td>Type</td>
<td>theses (doctoral - abstract and summary of review)</td>
</tr>
<tr>
<td>Additional Information</td>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
</tbody>
</table>

File Information

- Shihua_Kang_abstract.pdf (論文内容の要旨)
Comparative morphology and phylogenetic relationships of the family Polynemidae

(Pisces: Perciformes)

The family Polynemidae, known as threadfins, is classified into the perciform suborder Percoidei, and comprises eight valid genera and about 50 species. This family is characterized by the diagnostic features such as the body elongated to deep and compressed, the adipose eyelid covering the eye, and the pectoral fins divided into an upper part with 12 to 19 rays joined by membrane and a lower part with three to 16 separate filament-like rays.

Polynemidae has been variously classified by many ichthyologists. For example, Nelson (1984) recognized that Polynemidae includes seven genera. Feltes (1993) described a new genus Parapolynemus, and redefined the family including seven genera with synonyms of Polistonemus under Polynemus. Motomura (2004) recognized eight genera, Eleutheronema, Filimanus, Galeoides, Leptomelanosoma, Parapolynemus, Pentanemus, Polydactylus and Polynemus. Many authors showed various candidates of the sister group of Polynemidae; then, Kang et al. (2017) confirmed the monophyly of the family Polynemidae by 19 synapomorphies, and showed the evidences to support the sister relationship of Polynemidae and Sciaenidae. However, phylogenetic relationships providing the basis of the classification have not been reconstructed in the Polynemidae.

The goals of the present study are: (1) to show the monophyly of this family and the sister relationship of Polynemidae and Sciaenidae; (2) to describe its osteological and myological characters; (3) to reconstruct its phylogenetic relationships based on morphological characters; and (4) to discuss the classification of Polynemidae.
Materials and systematic methodology

25 polynemid species in eight genera, and 86 acanthomorph species in 8 orders and 63 families were selected as study materials and comparative materials (of them, 11 sciaenid species were used as outgroup in phylogenetic analysis), respectively. Anatomical examinations were made on specimens stained in alcian blue and alizarin Red-S, and dissected under stereo-microscope utilized in the preparation of drawings.

In order to reconstruct phylogenetic relationships of Polynemidae, the cladistic approach formulated by Hennig (1966) was adopted. The outgroup comparison was used to determine the character polarity (Watrous and Wheeler, 1981; Wiley, 1981).

Monophyly of the family Polynemidae

Kang et al. (2017) concluded that the monophyly of the family Polynemidae was strongly supported by 19 synapomorphies of Polynemidae such as the tooth plate present on the ectopterygoid, the metapterygoid and quadrate interdigitated medially, an unnamed bone present on the cephalic sensory canal extending from the supratemporal, the third actinost not supporting pectoral-fin rays, a rod-like process extending from the ventral margin of the coracoid, and the adductor mandibulae section 1 comprised the lateral and medial elements. In addition to the 19 synapomorphies, a single new synapomorphy was found in this study: levator arcus palatini divided into two subsections, anterior and posterior subsections. Thus, this study recognizes 20 synapomorphies supporting the monophyly of Polynemidae.

Sister relationship of Polynemidae and Sciaenidae

Kang et al. (2017) proposed the sister relationship of Polynemidae and Sciaenidae supported by six synapomorphies including two rare (metapterygoid and quadrate interdigitated medially, and anterior extension of nasal canal present), two rather rare and two common derived characters. This study sustains this conclusion, and use Sciaenidae as the outgroup in the phylogenetic analysis.

Phylogenetic relationships of Polynemidae

Phylogenetic relationships of the family Polynemidae were reconstructed by characters in 64 transformation series. Four most parsimonious trees of Polynemidae were obtained after the phylogenetic analysis. The tree length was 153, consistency index 0.49 and rescaled consistency index 0.35. In this study, the strict consensus tree was constructed on the basis of four parsimonious trees and adopted as the relationships of Polynemidae (Figure). Major clades in the relationships are
described as follows:

Clade A.—Includes all examined polynemids. After the phylogenetic analysis, the monophyly of the family Polynemidae was also unambiguously supported by the following three synapomorphies: fourth infraorbital covering fifth laterally, adductor section 2 restricted to posterolateral surface of second epibranchial, filament-like rays slightly elongate. This clade was also supported by three additional synapomorphies according to ACCTRAN.

Clade B1.—Includes all examined polynemids, except for Pentanemus quinquarius, Parapolynemus verekeri and Polynemus, and was unambiguously supported by four synapomorphies.

Clade B2.—Includes Pentanemus quinquarius, Parapolynemus verekeri and Polynemus, and was unambiguously supported by four synapomorphies. This clade was also supported by two synapomorphies according to ACCTRAN.

Clade C1.—Includes Polydactylus, Galeoides decadactylus, Leptomelanosoma indicum and Eleutheronema, and was unambiguously supported by three synapomorphies.

Clade C2.—Includes the genus Filimanus, and was unambiguously supported by four synapomorphies. This clade was also supported by one synapomorphy according to DELTRAN.

Clade D2.—Includes Polydactylus opercularis, Leptomelanosoma indicum and Eleutheronema, and was unambiguously supported by three synapomorphies. This clade was also supported by two synapomorphies according to ACCTRAN, and by one synapomorphy according to DELTRAN.

Clade D3.—Includes Galeoides decadactylus, Polydactylus sextarius and Polydactylus microstomus, and was unambiguously supported by two synapomorphies. This clade was also supported by one synapomorphy according to ACCTRAN.
The validity of genera *Filimanus*, *Pentanemus*, *Parapolynemus* and *Polynemus* is supported in this study. However, the genus *Polydactylus* was assumed to be a non-monophyletic group in the four most parsimonious trees, because *Eleutheronema*, *Leptomelanosoma* and *Galeoides* are nested within *Polydactylus*. To avoid to recognize the cladistically invalid genus, this study propose a newly-defined genus including species of *Polydactylus*, *Eleutheronema*, *Leptomelanosoma* and *Galeoides* to clade C1. Accordingly, the latter three genera are synonymized under *Polydactylus* having priority over them.

Figure. Strict consensus tree of four most parsimonious phylogenetic relationships of Polynemidae.
This study redefined Polynemidae as a family including five genera. The new classification of Polynemidae is summarized as follows:

Family Polynemidae

Filimanus Myers, 1936

Parapolynemus Feltes, 1993

Pentanemus Günther, 1860

Polynemus Linnaeus, 1758 (synonym: *Polistonemus* Gill, 1861)