

Title	Putative RNA viral sequences detected in an Ixodes scapularis-derived cell line
Author(s)	Nakao, Ryo; Matsuno, Keita; Qiu, Yongjin; Marilyama, Junki; Eguchi, Nao; Nao, Naganori; Kajihara, Masahiro; Yoshii, Kentaro; Sawa, Hirofumi; Takada, Ayato; Sugimoto, Chihiro
Citation	Ticks and Tick-Borne Diseases, 8(1), 103-111 https://doi.org/10.1016/j.ttbdis.2016.10.005
Issue Date	2018-01-22
Doc URL	http://hdl.handle.net/2115/68171
Rights	©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	Ticks Tick Borne Disv.8_p.103-111.pdf

1	Putative RNA viral sequences detected in an <i>Ixodes scapularis</i> -derived cell line
2	
3	Ryo Nakao ^{1,2} , Keita Matsuno ^{3,4} , Yongjin Qiu ⁵ , Junki Maruyama ⁶ , Nao Eguchi ⁶ ,
4	Naganori Nao ⁶ , Masahiro Kajihara ⁶ , Kentaro Yoshii ⁷ , Hirofumi Sawa ^{4,8,9,10} , Ayato
5	Takada ^{4,6,9} , Chihiro Sugimoto ^{4,5,9}
6	
7	¹ Unit of Risk Analysis and Management, Hokkaido University Research Center for
8	Zoonosis Control, Sapporo, Japan
9	² Laboratory of Parasitology, Department of Disease Control, Graduate School of
10	Veterinary Medicine, Hokkaido University, Sapporo, Japan
11	³ Laboratory of Microbiology, Department of Disease Control, Graduate School of
12	Veterinary Medicine, Hokkaido University, Sapporo, Japan
13	⁴ Global Institution for Collaborative Research and Education, Hokkaido University,
14	Sapporo, Japan
15	⁵ Division of Collaboration and Education, Hokkaido University Research Center for

16 Zoonosis Control, Sapporo, Japan

17	⁶ Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis
18	Control, Sapporo, Japan
19	⁷ Laboratory of Public Health, Department of Disease Control, Graduate School of
20	Veterinary Medicine, Hokkaido University, Sapporo, Japan
21	⁸ Division of Molecular Pathobiology, Hokkaido University Research Center for
22	Zoonosis Control, Sapporo, Japan
23	⁹ Department of Disease Control, School of Veterinary Medicine, University of Zambia,
24	Lusaka, Zambia
25	¹⁰ Global Virus Network, Baltimore, USA

Abstract

28	Ticks harbour various microorganisms, some of which act as pathogens of
29	humans and animals. The recent advancement of genome sequencing technologies
30	revealed that a wide range of previously unrecognised microorganisms exist in ticks.
31	Continuous cell lines established from ticks could play a key role in the isolation of
32	such microorganisms; however, tick cells themselves have been known to harbour
33	symbiotic microorganisms. The present study aimed to characterise putative RNA viral
34	sequences detected in the culture supernatant of one of the most frequently used tick
35	cell lines, ISE6, which was derived from embryos of the blacklegged tick Ixodes
36	scapularis. Viral particles purified from the culture supernatant were used for RNA
37	extraction, followed by Illumina sequencing. The reads were de novo assembled and the
38	resulting contigs were annotated by tBLASTx search. The results suggested that there
39	were at least five putative viral sequences of four phylogenetically distinct lineages in
40	ISE6 cells. The predominant viral sequence found in ISE6 cells, designated I. scapularis
41	iflavirus, was a member of the family Iflaviridae, which is an arthropod-infecting virus
42	group. We also identified L and M segments of the family Bunyaviridae, which could

43	not be classified into any of the five known genera, and a potential capsid protein
44	related to Drosophila A virus. In addition to these previously unrecognised viruses, ISE6
45	was revealed to harbour a putative genome sequence of <i>I. scapularis</i> -associated virus-1,
46	which was reported in a recent metagenomic study of I. scapularis itself. All the five
47	putative viral sequences were detected by RT-PCR in both ISE6 cells and the culture
48	supernatant. Electron microscopic analysis showed the existence of spherical virions
49	with a varying diameter of 50 to 70 nm in the culture supernatant of ISE6 cells. Further
50	studies are required to investigate the potential roles of ISE6-associated viruses in ticks.
51	
52	
53	Keywords
54	bunyavirus; iflavirus; ISE6; Ixodes scapularis; Ixodes scapularis-associated virus-1
55	
56	
57	
58	Introduction

59	Ticks harbour various microorganisms including viruses, bacteria and
60	protozoa, some of which act as pathogens of humans and animals. The recent
61	advancement of genome sequencing technologies enabled microbial community
62	analysis in a culture-independent manner (so-called metagenomic analysis) and revealed
63	that a wide range of previously unrecognised microorganisms exist in ticks (Carpi et al.,
64	2011; Nakao et al., 2013; Qiu et al., 2014; Tokarz et al., 2014). One of the requirements
65	for post-metagenomic studies is the characterisation of individual microorganisms in
66	terms of their potential pathogenicity to humans and animals, their influence on tick
67	biology and their interaction with other microbial linages.
68	Tick cell lines are key to achieving the above-mentioned objective. First, tick
69	cells are useful for isolation and molecular characterisation of microorganisms
70	harboured by ticks (Bell-Sakyi et al., 2012; 2007). Of note, prolonged culture of some
71	tick-borne pathogens in tick cells facilitates adaptation to mammalian systems (Bekker
72	et al., 2002; Munderloh et al., 2004), indicating that tick cell lines can be better tools for
73	the isolation of microorganisms than mammalian cells. Second, tick cell lines are useful
74	to investigate the interaction between tick-borne microorganisms and ticks in vitro, and

can be valuable tools to evaluate the vector competence of ticks for pathogens
(Bell-Sakyi et al., 2012). *In vitro* observation of the replication cycles and intracellular
localisation of microorganisms may help with the study of their survival mechanisms in
ticks and transmission dynamics in nature.

79Since the establishment of the first tick cell line from Rhipicephalus 80 appendiculatus (Varma et al., 1975), nearly 60 different cell lines originating from 16 81 different tick species are now available (Bell-Sakyi et al., 2012). Alberdi et al. (2012) 82 screened for bacterial endosymbionts and endogenous viruses in over 50 tick cell lines. 83 Despite the detection of virus-like particles by transmission electron microscopy (TEM), 84 PCR assays amplifying some known tick-borne viruses failed to detect viral genome 85 sequence in many of the cell lines (Alberdi et al., 2012), suggesting that uncharacterised 86 viruses exist in tick cell lines. In fact, the authors observed reovirus-like particles in ISE6 cells by TEM, while PCR was negative for St Croix River virus (SCRV), the only 87 88 previously characterised tick virus (Alberdi et al., 2012; Attoui et al., 2001).

This paper reports viral genome sequences obtained from one of the most frequently used tick cell lines, ISE6, which was derived from embryos of the

91	blacklegged tick Ixodes scapularis (Kurtti et al., 1996). Initially, we recognised the
92	existence of some virus sequences in the culture supernatant of ISE6 cells when this cell
93	line was employed for isolation and characterisation of novel tick-borne viruses in
94	field-collected ticks. High-throughput RNA sequencing analysis revealed that there are
95	at least five putative virus sequences from four phylogenetically different virus lineages
96	in this cell line.
97	
98	Materials and Methods
99	Cell line.
100	The ISE6 cell line was kindly provided by the CEH Institute of Virology and
101	Environmental Microbiology (Oxford, UK). The use of ISE6 cells was authorized by
101 102	Environmental Microbiology (Oxford, UK). The use of ISE6 cells was authorized by the University of Minnesota, the original provider of the cell line, under a material
101 102 103	Environmental Microbiology (Oxford, UK). The use of ISE6 cells was authorized by the University of Minnesota, the original provider of the cell line, under a material transfer agreement between the University of Minnesota and Hokkaido University. The
101 102 103 104	Environmental Microbiology (Oxford, UK). The use of ISE6 cells was authorized by the University of Minnesota, the original provider of the cell line, under a material transfer agreement between the University of Minnesota and Hokkaido University. The cells were cultured in L-15B medium supplemented with 10% fetal calf serum, 5%
101 102 103 104 105	Environmental Microbiology (Oxford, UK). The use of ISE6 cells was authorized by the University of Minnesota, the original provider of the cell line, under a material transfer agreement between the University of Minnesota and Hokkaido University. The cells were cultured in L-15B medium supplemented with 10% fetal calf serum, 5% tryptose phosphate broth (Sigma–Aldrich, St. Louis, MO, USA) and 0.1% bovine

107 Munderloh and Kurtti (1989).

108 Virus purification.

109	A total of 200 mL of the culture supernatant of ISE6 cells was obtained at 7
110	days after the last passage. The supernatant was centrifuged at 190 g for 10 min at 4°C
111	to remove cell debris. The supernatant was collected and the virus particles were
112	pelleted through a 20% sucrose cushion at 28,000 rpm for 1.5 h with a Beckman SW41
113	rotor at 4°C. The pellet was re-suspended in phosphate-buffered saline and the purified
114	virus was stored at -80°C until use.

115 **TEM.**

ISE6 culture supernatant and culture medium (as a negative control) were
subjected to low-speed centrifugation followed by ultracentrifugation as described
above. The pelleted was fixed with 0.25% glutaraldehyde in PBS for 1 week at 4°C.
Fixed samples supplemented with 0.1% bovine serum albumin were adsorbed to
collodion-carbon-coated copper grids and negatively stained for 30 s with 2%
phosphotungstic acid solution (pH 5.8). Virus particles were observed under an H-7650
TEM (Hitachi, Tokyo, Japan) at 100 kV. For ultrathin sections, ISE6 cells were pelleted

123	by centrifugation at 190 g for 10 min at 4°C, and fixed with 2.5% glutaraldehyde in 0.1
124	M cacodylate buffer (pH 7.4) for 30 minutes. The fixed pellet was washed with
125	cacodylate buffer, postfixed with 2% osmium tetroxide in the cacodylate buffer for 1
126	hour at 4°C, dehydrated with a series of ethanol gradients followed by propylene oxide,
127	embedded in Epon 812 Resin mixture (TAAB Laboratories Equipment Ltd.,
128	Aldermaston, UK), and polymerized at 60°C for 2 days. Ultrathin sections (70 nm) were
129	stained with EM stainer (Nissin EM, Tokyo, Japan) and lead citrate and examined with
130	an H-7650 TEM at 80 kV.
131	High-throughput RNA sequencing.
131 132	High-throughput RNA sequencing. RNA extracted from the pellet using the QIAamp Viral RNA Mini Kit
131 132 133	High-throughput RNA sequencing. RNA extracted from the pellet using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) was subjected to double-stranded complementary DNA
131 132 133 134	High-throughput RNA sequencing. RNA extracted from the pellet using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) was subjected to double-stranded complementary DNA (cDNA) synthesis using the cDNA Synthesis Kit (M-MLV Version; TaKaRa Bio Inc.,
 131 132 133 134 135 	High-throughput RNA sequencing. RNA extracted from the pellet using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) was subjected to double-stranded complementary DNA (cDNA) synthesis using the cDNA Synthesis Kit (M-MLV Version; TaKaRa Bio Inc., Shiga, Japan). The double-stranded cDNA was sequenced using the Illumina MiSeq v3
 131 132 133 134 135 136 	High-throughput RNA sequencing. RNA extracted from the pellet using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) was subjected to double-stranded complementary DNA (cDNA) synthesis using the cDNA Synthesis Kit (M-MLV Version; TaKaRa Bio Inc., Shiga, Japan). The double-stranded cDNA was sequenced using the Illumina MiSeq v3 system (Illumina, San Diego, CA, USA) with paired-end reads (2 × 300 nucleotides
 131 132 133 134 135 136 137 	High-throughput RNA sequencing. RNA extracted from the pellet using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) was subjected to double-stranded complementary DNA (cDNA) synthesis using the cDNA Synthesis Kit (M-MLV Version; TaKaRa Bio Inc., Shiga, Japan). The double-stranded cDNA was sequenced using the Illumina MiSeq v3 system (Illumina, San Diego, CA, USA) with paired-end reads (2 × 300 nucleotides (nt)) following the manufacturer's protocol. The Illumina sequencing data were

PCR and Sanger sequencing.

140	To examine the existence of putative viral sequences in the ISE6 cells and
141	the culture supernatant, conventional PCR was performed on the cDNA generated from
142	the total RNA extracted from both ISE6 cells and the culture supernatant. As a negative
143	control, total RNA was extracted from the culture medium prior to use in maintenance
144	of ISE6 cells. PCR was also performed using genomic DNA (gDNA) extracted from
145	ISE6 cells to investigate whether the viral sequences are incorporated into the tick
146	genome. Total RNA was extracted from the ISE6 cells and the culture
147	supernatant/medium using, respectively, the NucleoSpin RNA II (TaKaRa Bio Inc.) and
148	the QIAamp Viral RNA Mini Kit. The RNA was treated with DNase I (New England
149	Biolabs, Ipswich, MA, USA) and subjected to cDNA synthesis using the PrimeScript II
150	1st strand cDNA Synthesis Kit (TaKaRa Bio Inc.). gDNA was extracted from ISE6 cells
151	using the NucleoSpin Tissue kit (TaKaRa Bio Inc.). The PCR primers used in this study
152	are listed in Table 1. All PCR reactions were performed in a total volume of 25 μL
153	containing 12.5 μ L of 2× Gflex PCR Buffer (TaKaRa Bio Inc.), 0.5 μ L of each primer
154	(10 μM), 0.5 μL of Tks Gflex DNA Polymerase (TaKaRa Bio Inc.) and 1.0 μL of

155template cDNA or gDNA. Sanger sequencing of the amplified products was performed 156using the BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems, 157Foster City, CA, USA) and an ABI Prism 3130x genetic analyser (Applied Biosystems). 158Data analysis. 159After trimming low-quality reads and PhiX control reads, the resulting reads 160 were de novo assembled using CLC Genomics Workbench (version 4.9). The contigs 161 with high coverage ($> \times 100$) were initially screened for homology to known viruses by 162 local BLASTn and tBLASTx searches against the NCBI Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/) (e-value $< 10^{-4}$). The potential viral sequences 163 164 were then compared with the draft genome sequence of I. scapularis (GenBank no. 165NZ ABJB010000000) to filter out sequences possibly derived from the tick genome. In 166 the search for sequences of M and S segments of a novel bunyavirus, a custom database 167 comprising the sequences of all known Bunyaviridae deposited in GenBank was 168 employed.

169 Multiple sequence alignment and phylogenetic analysis.

170 The nucleotide sequences were aligned together with representative sequences

171	of other known relevant viruses available in GenBank using MUSCLE as implemented
172	in MEGA (version 6) (Tamura et al., 2013). After manual modification of the
173	alignments, phylogenetic trees were constructed using the neighbour-joining method
174	with 1,000 bootstrap replicates, using MEGA.
175	
176	Results
177	Detection of putative viral sequences.
178	Out of 5,316,590 raw sequence reads (average length = 289.6 nt) generated
179	from Miseq, 4,873,495 (average length = 238.2 nt) were used for <i>de novo</i> assembly
180	after trimming low-quality reads/bases and PhiX control reads. The number of contigs
181	generated with high coverage (> $\times 100$) was 84. A total of 19 contigs showed similarity
182	with the reference sequences of the virus database by tBLASTx search. After
183	comparison with the I. scapularis genome, four contigs were initially determined as
184	virus sequences (Table 2). These four contigs were not annotated by BLASTn search,
185	indicating that nucleotide homologies with viruses deposited in the RefSeq database are
186	low.

TEM.

188	TEM analysis showed the existence of spherical virions with diameters
189	ranging from 50 to 70 nm in the culture supernatant of ISE6 cells. These virions had
190	spikes on their surface and apparently lacked an envelope (Figures 1A and 1B). It was
191	difficult to discriminate between virions by their size and surface structure observed by
192	TEM. No similar structures were observed in the culture medium (Figures 1C and 1D).
193	In ultrathin sections of ISE6 cells, numerous spherical virion-like structures were
194	observed in the cytoplasm (Figures 1E and 1F).
195	Iflavirus.
196	Approximately 20% of the reads were mapped to contig 1, which was
197	predicted to be a member of the Iflavirus genus by tBLASTx search (Table 2). This
198	contig is composed of 9,252 nt, excluding the 3'-terminal poly(A), and contains a single
199	open reading frame (ORF) encoding a polyprotein of 2,991 amino acids (aa) following
200	an incomplete internal ribosome entry site. Six conserved domains associated with viral
201	RNA replication were identified by InterProScan (Jones et al., 2014): three picornavirus
202	capsid-like domains at aa positions 405-620, 698-903 and 1,071-1,288, a RNA

203	helicase domain at aa positions 1,650–1,820, a peptidase domain at aa positions 2,223–
204	2,423 and an RNA-dependent RNA polymerase (RdRp) domain at aa positions 2,471-
205	2,956 (Figure 2A), which are well conserved throughout the genus Iflavirus. The
206	phylogenetic analysis also grouped this novel virus, tentatively designated Ixodes
207	scapularis iflavirus (ISIV), into the genus Iflavirus (Figure 3). Because the aa sequence
208	identity between the capsid proteins of ISIV and the other iflaviruses is less than 90%
209	(data not shown), ISIV would constitute a novel species in the genus Iflavirus following
210	the criteria described elsewhere (Chen et al., 2012).
211	Bunyavirus.
212	Contig 2 (9,147 nt) was assigned as a putative viral sequence related to the L
213	segment of a bunyavirus (Table 2). Contig 2 encodes a single ORF (2,978 aa), which
214	comprises a bunyavirus RdRp domain at aa positions 880-1,636 (Figure 2B). This
215	putative viral sequence was clustered together with an unclassified virus, Wenzhou
216	Shrimp Virus 2 (LC094424) which was recognised in RNA deep sequencing of shrimps
217	(Penaeus monodon and Exopalaemon carinicauda) (Li et al., 2015) in a phylogenetic

Ixodes scapularis bunyavirus (ISBV), all the contigs (n = 3,075), including those with low coverage, were compared with all the sequences of known Bunyaviridae deposited in GenBank. This successfully recovered the M segment (contig 5 (coverage = \times 93)), while the S segment was not detected. Contig 5 is 4,321 nt in length, encoding a single coding sequence of the putative glycoprotein precursor (1,350 aa) (Figure 2B), which is also grouped together with Wenzhou Shrimp Virus 2 in phylogenetic analysis (Figure 4B).

226 Ixodes scapularis-associated virus-1 (ISAV-1).

227Contig 3 was initially associated with turnip rosette virus (NC 004553.3) in 228 the genus Sobemovirus by tBLASTx search against the RefSeq database. A further 229similarity search against all sequences deposited in GenBank revealed that this sequence 230has the highest similarity (98% nucleotide identity) with the partial genome sequence of 231ISAV-1 isolate K13 (KM048318) in the same genus, which was recovered from 232field-captured I. scapularis through a metagenomic study (Tokarz et al., 2014). The 233contig sequence encodes a putative protease (540 aa) and RdRp (313 aa), both of which 234showed the highest similarities (97%) with those encoded by ISAV-1.

235 Unclassified virus.

250

236	We identified that contig 4 of 1,485 nt encodes a putative viral capsid protein
237	(411 aa) with similarity to an unclassified positive-strand RNA virus, Drosophila A
238	virus (DAV). We could not find other fragments of this virus among all the contigs,
239	including those with low coverage ($< \times 100$).
240	PCR.
241	PCR was performed on the cDNA generated from the total RNA extracted
242	from ISE6 cells, the culture supernatant, and the culture medium and gDNA extracted
243	from ISE6 cells. All the putative viral sequences were detected in both ISE6 cells and
244	the culture supernatant but not in the culture medium (Figure 5). When gDNA was
245	included as a template, no amplification was observed except for the reaction with
246	primers amplifying tick mitochondrial 16S rRNA gene (rDNA). Sanger sequencing of
247	the PCR products confirmed the specific amplification of each target (data not shown).
248	
249	Discussion

The present study demonstrated that at least five distinct putative viral

251	sequences existed in a tick cell line, ISE6. In comparison with bacterial detection, where
252	universal primers are available to amplify variable regions of bacterial 16S rDNA, a
253	search for previously uncharacterised viruses has been hampered by the lack of proper
254	detection tools, and little is known about viruses infecting ticks and tick cell lines
255	(Alberdi et al., 2012; Attoui et al., 2001). The use of high-throughput sequencing
256	technology sheds light on these poorly characterised viruses.
257	To our surprise, we recovered the sequences of L and M segments of one or
258	more putative viruses of the family Bunyaviridae from the culture supernatant of ISE6
259	cells (Table 2). Several members of this virus family have been recognised as tick-borne
260	viruses of medical and veterinary importance. The family is currently divided into five
261	genera (Orthobunyavirus, Hantavirus, Nairovirus, Phlebovirus and Tospovirus) based
262	on antigenic, structural and genetic characteristics (Plyusnin et al., 2012). As evidenced
263	by the finding of Gouléako virus in mosquitoes in Côte d'Ivoire (Marklewitz et al.,
264	2011), bunyaviruses that cannot be classified into any of the five known genera have
265	also come to attention. Recent metagenomic studies of arthropod-borne viruses led to
266	the discovery of many such unclassified bunyaviruses (Ballinger et al., 2014; Webster et

267	al., 2015). Based on the sequences found, the closest relative of ISBV is Wenzhou
268	Shrimp Virus 2, which is one of the unclassified bunyaviruses found in a metagenomic
269	study of Chinese shrimps (Li et al., 2015), and thus its phylogenetic position is not
270	clearly understood. Despite an intensive search using a custom database comprising the
271	sequences of all known Bunyaviridae deposited in GenBank, we could not find the
272	sequence of the potential S segment of ISBV. Similarly, Li et al. (2015) failed to detect
273	the sequence of putative S segment of Wenzhou Shrimp Virus 2 in the deep sequencing
274	data.
275	The predominant putative virus found in ISE6 cells was a member of the
276	family Iflaviridae, which is an arthropod-infecting virus group with a single-stranded
277	RNA genome. Along with the advancement of next-generation sequencing techniques,
278	an increasing number of iflaviruses are being reported in various arthropod species even
279	in laboratory colonies (Liu et al., 2015); however, there is no report to date on the
280	detection of this virus group from ticks. Some iflaviruses have occasionally been
281	associated with adverse effects on the survival of arthropod hosts (Martin et al., 2012;
າວາ	Silve at al. 2015; Vallag and Haghimata 2000). For example, deformed using using

283	which is an iflavirus commonly infecting the European honeybee (Apis mellifera)
284	asymptomatically with low viral loads (de Miranda and Genersch, 2010), causes
285	morphological deformity and reduces the life span with elevated virus loads when
286	transmitted by the ectoparasitic mite Varroa destructor (de Miranda and Fries, 2008;
287	Dainat et al., 2012). Further studies are required to investigate the role of ISIV in vivo
288	and to assess the prevalence of ISIV and its related viruses in natural populations of
289	ticks.
290	In addition to the previously unrecognised viruses, ISE6 was revealed to
291	harbour partial sequence of the putative virus ISAV-1, which was recently discovered in
292	I. scapularis collected at Heckscher State Park in the United States (Suffolk County,
293	NY) (Tokarz et al., 2014), where the authors identified a partial genome sequence (2.8
294	kb) of ISAV-1 encompassing the majority of a putative protease and an RdRp without
295	information on its capsid protein. A recent metagenomic study reported the detection of
296	a virus closely related to ISAV-1, designated Humaita-Tubiacanga virus (HTV), in a
297	laboratory colony of the mosquito Aedes aegypti (Aguiar et al., 2015). The authors
298	detected a sequence corresponding to the RdRp of HTV together with one viral segment

299	(1,609 nt) predicted to encode a protein with a coat domain, with the highest similarity
300	to a capsid protein of DAV. As supported by further evidence of small RNA profiles and
301	simultaneous detection by RT-PCR in individual mosquitoes, the authors proposed that
302	the capsid protein related to DAV is associated with the RdRp of HTV. Likewise, we
303	detected one virus sequence encoding a putative viral capsid protein with the highest
304	similarity to DAV in ISE6 cells, while a sequence corresponding to the RdRp of DAV
305	was absent. These facts collectively support the possible association of ISAV-1 with a
306	capsid protein related to DAV.
307	An initial scan for potential virus sequences detected 19 contigs. Because the
308	rest of the virus-like sequences showed high similarity with draft genome sequences of <i>I</i> .
309	scapularis, we suspected that they are integrated in the genome of <i>I. scapularis</i> and thus
310	did not include them in the further analysis. It is, however, possible that some of them
311	were derived from endogenous viruses infecting the I. scapularis Wikel strain used in
312	the whole genome sequencing project (Gulia-Nuss et al., 2016). As reported elsewhere,
313	some arthropods have acquired a number of virus-like sequences in their genomes
314	during evolution (Ballinger et al., 2014; Katzourakis and Gifford, 2010; Liu et al., 2010)

315 It is therefore important to perform paleovirological analysis of arthropods with a 316 process of *in silico* identification of endogenous virus elements incorporated into the 317 host genome. 318 Considering the high abundance of viral sequences associated with ISIV in 319 the sequencing data, the majority of the virions observed in the culture supernatant by 320 TEM might be expected to be ISIV (Figure 1). However, the morphological features of 321the particles were different from the virion properties of the genus Iflavirus, which are 322approximately 30 nm in diameter with no distinctive surface structures (Chen et al., 323 2012). Since ISAV-1 was only reported from a metagenomic study (Tokarz et al., 2014), 324 the morphological features of ISAV-1 are completely unknown. The size of the only 325characterised tick virus, SCRV, is approximately 55 nm in diameter (Attoui et al., 2001), 326 which is comparable to that of the virions observed in this study (between 50 and 70 nm 327in diameter). It is unfortunate that we could not differentiate the virions with a varying 328 diameter due to the similarity of their surface structures and the resolution limits of 329 TEM. Further studies using immune-electron microscopy are required to determine the 330 morphological structure of each virion in ISE6 cells.

331	The role of viruses in tick cells is totally unknown. There is some evidence in
332	mosquito cell lines that some persistently infecting viruses, for example C6/36
333	densovirus (Parvoviridae), cell-fusing agent virus (Flaviviridae) and Aedes
334	pseudoscutellaris reovirus (Reoviridae), modulate exogenous viruses' replication and
335	vice versa, possibly in part through regulation of host antiviral immune responses
336	(Morazzani et al., 2012). Hence, the experimental outcomes using ISE6 cells, which
337	might contain several putative endogenous viruses, should be carefully considered.
338	Because we characterised the putative viral sequences in ISE6 cells, it becomes possible
339	to determine the genome sequences of the viruses isolated in ISE6 cells by removing the
340	sequencing reads from putative viruses by in silico analysis. In fact, we have determined
341	whole genomes of previously uncharacterized bunyaviruses, which can be propagate in
342	ISE6 cells but not in mammalian cell lines (manuscript in preparation). It might be
343	worth trying to generate virus-free cell lines by interfering with replication of putative
344	viruses in ISE6 cells based on siRNA silencing technology (Bell-Sakyi and Attoui,
345	2013).

In conclusion, the present study reports five putative viral sequences from

347	four phylogenetically different virus lineages in ISE6 cells. Unfortunately, since we
348	could not test the presence of these putative viral sequences in ISE6 cells maintained in
349	other laboratories, we cannot rule out the possibility that the ISE6 cells used in this
350	study had been contaminated with the putative viruses during passage in our laboratory
351	or the provider's laboratory. Considering the increasing importance of tick cell lines in a
352	wide range of research on ticks and tick-borne pathogens, a comprehensive search for
353	tick-associated viruses not only in ISE6 cells but also in other tick cell lines is required.
354	Expanding knowledge of the diversity of tick-borne pathogens as well as tick-associated
355	viruses may lead to better understanding of the tripartite interaction between pathogenic
356	microorganisms, non-pathogenic microorganisms and ticks.
357	
358	Acknowledgements
359	We acknowledge Dr. Ulrike Mundrloh of the University of Minnesota for kindly giving
360	permission to use ISE6 cells. This work was supported by JSPS KAKENHI
361	Grant-in-Aid for Young Scientists (B) (25850195) and (A) (15H05633), and for
362	Scientific Research on Innovative Areas (16H06431) and Japan Science and

363	Technology Agency (JST)/Japan International Cooperation Agency (JICA) within the
364	framework of the Science and Technology Research Partnership for Sustainable
365	Development (SATREPS).
366	
367	References
368	Aguiar, E.R.G.R., Olmo, R.P., Paro, S., Ferreira, F.V., de Faria, I.J.D.S., Todjro,
369	Y.M.H., Lobo, F.P., Kroon, E.G., Meignin, C., Gatherer, D., Imler, JL., Marques,
370	J.T., 2015. Sequence-independent characterization of viruses based on the pattern of
371	viral small RNAs produced by the host. Nucleic Acids Res. 43, 6191–6206.
372	Alberdi, M.P., Dalby, M.J., Rodriguez-Andres, J., Fazakerley, J.K., Kohl, A.,
373	Bell-Sakyi, L., 2012. Detection and identification of putative bacterial
374	endosymbionts and endogenous viruses in tick cell lines. Ticks Tick Borne Dis. 3,
375	137–146.
376	Attoui, H., Stirling, J.M., Munderloh, U.G., Billoir, F., Brookes, S.M., Burroughs, J.N.,
377	de Micco, P., Mertens, P.P., de Lamballerie, X., 2001. Complete sequence

- 378 characterization of the genome of the St Croix River virus, a new orbivirus isolated
- from cells of *Ixodes scapularis*. J. Gen. Virol. 82, 795–804.
- 380 Ballinger, M.J., Bruenn, J.A., Hay, J., Czechowski, D., Taylor, D.J., 2014. Discovery
- and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like
- sequences in insect genomes. J. Virol. 88, 8783–8794.
- 383 Bekker, C.P.J., Bell-Sakyi, L., Paxton, E.A., Martinez, D., Bensaid, A., Jongejan, F.,
- 384 2002. Transcriptional analysis of the major antigenic protein 1 multigene family of
- 385 *Cowdria ruminantium*. Gene 285, 193–201.
- 386 Bell-Sakyi, L., Attoui, H., 2013. Endogenous tick viruses and modulation of tick-borne
- 387 pathogen growth. Front. Cell Infect. Microbiol. 3, 25.
- 388 Bell-Sakyi, L., Kohl, A., Bente, D.A., Fazakerley, J.K., 2012. Tick cell lines for study
- 389 of Crimean-Congo hemorrhagic fever virus and other arboviruses. Vector Borne
- 390 Zoonotic Dis. 12, 769–781.
- 391 Bell-Sakyi, L., Zweygarth, E., Blouin, E.F., Gould, E.A., Jongejan, F., 2007. Tick cell
- lines: tools for tick and tick-borne disease research. Trends Parasitol. 23, 450–457.

393	Black, W.C., Piesman, J., 1994. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida)
394	based on mitochondrial 16S rDNA sequences. Proc. Natl. Acad. Sci. U.S.A. 91,
395	10034–10038.
396	Carpi, G., Cagnacci, F., Wittekindt, N.E., Zhao, F., Qi, J., Tomsho, L.P., Drautz, D.I.,
397	Rizzoli, A., Schuster, S.C., 2011. Metagenomic profile of the bacterial communities
398	associated with Ixodes ricinus ticks. PLoS ONE 6, e25604.
399	Chen, Y.P., Nakashima, N., Christian, P.D., Bakonyi, T., Bonning, B.C., Valles, S.M.
400	and Lightner, D., 2012. Family Iflaviridae, in: Andrew, M.Q.K., Adams, M.J.,
401	Carstens, E.B., Lefkowitz, E.J. (Eds.), Virus taxonomy, Ninth report of the
402	International Committee on Taxonomy of Viruses. Elsevier Academic Press, San
403	Diego, CA, pp. 846–849.
404	Dainat, B., Evans, J.D., Chen, Y.P., Gauthier, L., Neumann, P., 2012. Dead or alive:
405	deformed wing virus and Varroa destructor reduce the life span of winter
406	honeybees. Appl. Environ. Microbiol. 78, 981–987.
407	de Miranda, J.R., Fries, I., 2008. Venereal and vertical transmission of deformed wing
408	virus in honeybees (Apis mellifera L.). J. Invertebr. Pathol. 98, 184–189.

410	Suppl 1, S48–61.
411	Gulia-Nuss, M., Nuss, A.B., Meyer, J.M., Sonenshine, D.E., Roe, R.M., Waterhouse,
412	R.M., Sattelle, D.B., la Fuente, de, J., Ribeiro, J.M., Megy, K., Thimmapuram, J.,
413	Miller, J.R., Walenz, B.P., Koren, S., Hostetler, J.B., Thiagarajan, M., Joardar, V.S.,
414	Hannick, L.I., Bidwell, S., Hammond, M.P., Young, S., Zeng, Q., Abrudan, J.L.,
415	Almeida, F.C., Ayllón, N., Bhide, K., Bissinger, B.W., Bonzon-Kulichenko, E.,
416	Buckingham, S.D., Caffrey, D.R., Caimano, M.J., Croset, V., Driscoll, T., Gilbert,
417	D., Gillespie, J.J., Giraldo-Calderón, G.I., Grabowski, J.M., Jiang, D., Khalil,
418	S.M.S., Kim, D., Kocan, K.M., Koči, J., Kuhn, R.J., Kurtti, T.J., Lees, K., Lang,
419	E.G., Kennedy, R.C., Kwon, H., Perera, R., Qi, Y., Radolf, J.D., Sakamoto, J.M.,
420	Sánchez-Gracia, A., Severo, M.S., Silverman, N., Šimo, L., Tojo, M., Tornador, C.,
421	Van Zee, J.P., Vázquez, J., Vieira, F.G., Villar, M., Wespiser, A.R., Yang, Y., Zhu,
422	J., Arensburger, P., Pietrantonio, P.V., Barker, S.C., Shao, R., Zdobnov, E.M.,
423	Hauser, F., Grimmelikhuijzen, C.J.P., Park, Y., Rozas, J., Benton, R., Pedra, J.H.F.,

de Miranda, J.R., Genersch, E., 2010. Deformed wing virus. J. Invertebr. Pathol. 103

409

424 Nelson, D.R., Unger, M.F., Tubio, J.M.C., Tu, Z., Robertson, H.M., Shumway, M.,

425	Sutton, G., Wortman, J.R., Lawson, D., Wikel, S.K., Nene, V.M., Fraser, C.M.,
426	Collins, F.H., Birren, B., Nelson, K.E., Caler, E., Hill, C.A., 2016. Genomic
427	insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7,
428	10507.
429	Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H.,
430	Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A.,
431	Scheremetjew, M., Yong, S.Y., Lopez, R., Hunter, S., 2014. InterProScan 5:
432	genome-scale protein function classification. Bioinformatics 30, 1236-1240.
433	Katzourakis, A., Gifford, R.J., 2010. Endogenous viral elements in animal genomes.
434	PLoS Genet. 6, e1001191.
435	Kurtti, T.J., Munderloh, U.G., Andreadis, T.G., Magnarelli, L.A., Mather, T.N., 1996.
436	Tick cell culture isolation of an intracellular prokaryote from the tick <i>Ixodes</i>
437	scapularis. J. Invertebr. Pathol. 67, 318-321.
438	Li, C.X., Shi, M., Tian, J.H., Lin, X.D., Kang, Y.J., Chen, L.J., Qin, X.C., Xu, J.,
439	Holmes, E.C., Zhang, Y.Z., 2015. Unprecedented genomic diversity of RNA
440	viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 4.

441	Liu, H., Fu, Y., Jiang, D., Li, G., Xie, J., Cheng, J., Peng, Y., Ghabrial, S.A., Yi, X.,
442	2010. Widespread horizontal gene transfer from double-stranded RNA viruses to
443	eukaryotic nuclear genomes. J. Virol. 84, 11876–11887.
444	Liu, S., Chen, Y., Bonning, B.C., 2015. RNA virus discovery in insects. Curr. Opin.
445	Insect Sci. 8, 54–61.
446	Marklewitz, M., Handrick, S., Grasse, W., Kurth, A., Lukashev, A., Drosten, C.,
447	Ellerbrok, H., Leendertz, F.H., Pauli, G., Junglen, S., 2011. Gouleako virus isolated
448	from West African mosquitoes constitutes a proposed novel genus in the family
449	Bunyaviridae. J. Virol. 85, 9227–9234.
450	Martin, S.J., Highfield, A.C., Brettell, L., Villalobos, E.M., Budge, G.E., Powell, M.,
451	Nikaido, S., Schroeder, D.C., 2012. Global honey bee viral landscape altered by a

- 453 Morazzani, E.M., Wiley, M.R., Murreddu, M.G., Adelman, Z.N., Myles, K.M., 2012.
- 454 Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the
- 455 mosquito soma. PLoS Pathog. 8, e1002470.

parasitic mite. Science 336, 1304-1306.

- 456 Munderloh, U.G., Kurtti, T.J., 1989. Formulation of medium for tick cell culture. Exp.
- 457 Appl. Acarol. 7, 219–229.
- 458 Munderloh, U.G., Lynch M.J., Herron, M.J., Palmer, A.T., Kurtti, T.J., Nelson, R.D.,
- 459 Goodman, J.L., 2004. Infection of endothelial cells with *Anaplasma marginale* and
- 460 A. phagocytophilum. Vet. Microbiol. 101, 53–64.
- 461 Nakao, R., Abe, T., Nijhof, A.M., Yamamoto, S., Jongejan, F., Ikemura, T., Sugimoto,
- 462 C., 2013. A novel approach, based on BLSOMs (Batch Learning Self-Organizing
- 463 Maps), to the microbiome analysis of ticks. ISME J. 7, 1003–1015.
- 464 Plyusnin, A., Beaty, B., Elliott, R.M., Goldbach, R., Kormelink, R., Lundkvist, A.,
- 465 Schmaljohn, C.S., Tesh, R.B., 2012. Family Bunyaviridae, in: Andrew, M.Q.K.,
- 466 Adams, M.J., Carstens, E.B., Lefkowitz, E.J. (Eds.), Virus taxonomy, Ninth report
- 467 of the International Committee on Taxonomy of Viruses. Elsevier Academic Press,
- 468 San Diego, CA, pp. 725–741.
- 469 Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F., Sugimoto, C., 2014. Microbial
- 470 population analysis of the salivary glands of ticks; a possible strategy for the
- 471 surveillance of bacterial pathogens. PLoS ONE 9, e103961.

472	Silva, L.A., Ardisson-Araujo, D.M.P., Tinoco, R.S., Fernandes, O.A., Melo, F.L.,
473	Ribeiro, B.M., 2015. Complete genome sequence and structural characterization of
474	a novel iflavirus isolated from Opsiphanes invirae (Lepidoptera: Nymphalidae). J.
475	Invertebr. Pathol. 130, 136–140.
476	Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6:
477	Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-
478	2729.
479	Tokarz, R., Williams, S.H., Sameroff, S., Sanchez Leon, M., Jain, K., Lipkin, W.I.,
480	2014. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and
481	Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate
482	viruses. J. Virol. 88, 11480–11492.
483	Valles, S.M., Hashimoto, Y., 2009. Isolation and characterization of Solenopsis invicta
484	virus 3, a new positive-strand RNA virus infecting the red imported fire ant,

485Solenopsis invicta. Virology 388, 354–361.

486	Varma, M.G., Pudney, M., Leake, C.J., 1975. The establishment of three cell lines from
487	the tick Rhipicephalus appendiculatus (Acari: Ixodidae) and their infection with
488	some arboviruses. J. Med. Entomol. 11, 698–706.
489	Webster, C.L., Waldron, F.M., Robertson, S., Crowson, D., Ferrari, G., Quintana, J.F.,
490	Brouqui, JM., Bayne, E.H., Ben Longdon, Buck, A.H., Lazzaro, B.P., Akorli, J.,
491	Haddrill, P.R., Obbard, D.J., 2015. The discovery, distribution, and evolution of
492	viruses associated with Drosophila melanogaster. PLoS Biol. 13, e1002210.
493	
494	Legends to Figures and Tables
495	Figure 1. Electron micrographs of virions observed in the supernatant and
496	ultrathin section of ISE6 cells.
497	(A) Virions purified from the culture supernatant of ISE6 cells, (B) enlarged image of a
498	virion, (C) cell culture medium only, and (D) enlarged image of culture medium only
499	were observed by an H-7650 transmission electron microscope (Hitachi, Tokyo, Japan)
500	at 100 kV. (E) Ultrathin section of an ISE6 cell and (F) enlarged image of virion-like

503	Figure 2. Predicted genome organisations of <i>Ixodes scapularis</i> iflavirus (A) and
504	Ixodes scapularis bunyavirus (B).
505	De novo assembled contigs were subjected to an ORF search, and the putative amino
506	acid sequences were used for a conserved domain search with InterProScan. Each
507	domain is indicated by a grey bar, and the name is shown beneath the bar.
508	
509	Figure 3. Phylogenetic tree of the genus Iflavirus.
510	The full-length sequence of the Ixodes scapularis iflavirus (contig 1) (shown
511	underlined) was used for phylogenetic analysis with the other iflaviruses. Drosophila C
512	virus in the family Dicistroviridae was deployed as an outgroup. Bootstrap probabilities
513	higher than 70% are indicated near the branches. The scale bar indicates 0.5 changes per
514	nucleotide position.
515	
516	Figure 4. Phylogenetic trees of the family Bunyaviridae.
517	The full-length sequences of the <i>Ixodes scapularis</i> bunyavirus (contigs 2 and 5) (shown

underlined) were used for phylogenetic analyses with the other bunyavirus L (A) and M
segments (B), respectively. Bootstrap probabilities higher than 70% are indicated near
the branches. The scale bars indicate 0.5 changes per nucleotide position.

521

522Figure 5. PCR amplification of each putative viral sequence and tick 523mitochondrial 16S rRNA gene. 524PCR was performed on the cDNA generated from the total RNA extracted from ISE6 525cells (1), the culture supernatant (2), and the culture medium (3) and gDNA extracted 526from ISE6 cells (4). ISIV, ISB L, ISB M, ISAV-1, ISUV, and 16S rDNA represent PCR 527 reactions with primers amplifying Ixodes scapularis iflavirus, L segment of Ixodes 528scapularis bunyavirus, M segment of Ixodes scapularis bunyavirus, Ixodes scapularis 529associated virus-1, unclassified virus related to Drosophila A virus, and tick mitochondrial 16S rRNA gene (rDNA), respectively. All the five putative viral 530531sequences were detected in both ISE6 cells and the culture supernatant while only tick 532mitochondrial 16S rDNA was amplified from gDNA. Lane M shows a 100-bp DNA 533 marker.

536	sequence and tick mitochondrial 16S rRNA gene sequence.
537	
538	Table 2. Summary of putative partial viral genome sequences identified in ISE6

Table 1. Oligonucleotide primers used for PCR amplification of each putative viral

cells.

A Ixodes scapularis iflavirus

В

Ixodes scapularis bunyavirus

L segment

0.5

Table 1. Oligonucleotide primers used for PCR amplification of each putative viral sequence and tick mitochondrial 16S rRNA

gene sequence.

Primer name	Sequence (5' to 3')	Target	Amplicon size (bp)	Reference
ISIV_F	GGGGCGTGGTAAATGTGGTA	Ixodes scapularis iflavirus	437	This study
ISIV_R	ACACTCCGCGATGAAAGGTT			
ISB_L_F	GCATTGTGTCCAGCTCTTCA	Ixodes scapularis bunyavirus, L segment	547	This study
ISB_L_R	GTCTCCAGAAACAGGCTTGC			
ISB_M_F	CTGGCACAATCCTTTTGGTT	Ixodes scapularis bunyavirus, M segment	571	This study
ISB_M_R	TTCTCTCAGCCCTGGTGT			
ISAV-1_F	AACGTGTACGGAATGCACCT	Ixodes scapularis associated virus-1, RdRP	383	This study
ISAV-1_R	GTTTGGCCAGAACTTGGCAG			
ISUV_F	GACCACGGACACCAGTTTCT	Unclassified virus, capsid precursor	338	This study
ISUV_R	GGTCAGACAGATAGGTCGCC			
16S+1	CTGCTCAATGATTTTTTAAATTGCTGTGG	Tick mitochondrial 16S rRNA gene	460	Black and Piesman, 1994
16S-1	CCGGTCTGAACTCAGATCAAGTA			

Contig ID	Length (bp)	Average coverage	Virus family	Provisional virus name	Closest relative (aa identity)	Accession no.
1	9,252ª	24,785	Iflaviridae	Ixodes scapularis iflavirus	Formica exsecta virus 2 (25%)	LC094426
2	9,147	172	Bunyaviridae	Ixodes scapularis bunyavirus, L segment	Wenzhou Shrimp Virus 2 (25%)	LC094424
3	2,686	934	Unassigned	Ixodes scapularis-associated virus-1, peptidase and RdRp	Ixodes scapularis-associated virus-1 (98%)	LC094964
4	1,485	378	Unassigned	Unclassified virus, capsid precursor	Drosophila A virus (36%)	LC094965
5	4,321	93	Bunyaviridae	Ixodes scapularis bunyavirus, M segment	Wenzhou Shrimp Virus 2 (25%)	LC094425

Table 2. Summary of putative partial viral genome sequences identified in ISE6 cells.

^aContig size without polyA.