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THE HYDROSTATIC STOKES SEMIGROUP AND WELL-POSEDNESS OF THE

PRIMITIVE EQUATIONS ON SPACES OF BOUNDED FUNCTIONS

YOSHIKAZU GIGA, MATHIS GRIES, MATTHIAS HIEBER, AMRU HUSSEIN, AND TAKAHITO KASHIWABARA

Abstract. Consider the 3-d primitive equations in a layer domain Ω = G× (−h, 0), G = (0, 1)2, subject
to mixed Dirichlet and Neumann boundary conditions at z = −h and z = 0, respectively, and the

periodic lateral boundary condition. It is shown that this equation is globally, strongly well-posed for
arbitrary large data of the form a = a1 + a2, where a1 ∈ C(G;Lp(−h, 0)), a2 ∈ L∞(G;Lp(−h, 0)) for
p > 3, and where a1 is periodic in the horizontal variables and a2 is sufficiently small. In particular, no

differentiability condition on the data is assumed. The approach relies on L∞
H Lp

z(Ω)-estimates for terms

of the form t1/2∥∂zetAσPf∥L∞
H

L
p
z(Ω) ≤ Cetβ∥f∥L∞

H
L
p
z(Ω) for t > 0, where etAσ denotes the hydrostatic

Stokes semigroup. The difficulty in proving estimates of this form is that the hydrostatic Helmholtz
projection P fails to be bounded with respect to the L∞-norm. The global strong well-posedness result is
then obtained by an iteration scheme, splitting the data into a smooth and a rough part and by combining

a reference solution for smooth data with an evolution equation for the rough part.

1. Introduction

The primitive equations are a model for oceanic and atmospheric dynamics and are derived from the
Navier-Stokes equations by assuming a hydrostatic balance for the pressure term, see [17–19]. These
equations are known to be globally and strongly well-posed in the three dimensional setting for arbitrarily
large data belonging to H1 by the celebrated result of Cao and Titi [5]. The latter considers the case of
Neumann boundary conditions and this result also holds true for the case mixed Dirichlet and Neumann
boundary conditions, again for data in H1, as shown by Kukavika and Ziane [14].

Several approaches have been developed in the last years aiming for extending the above two results to
the case of rough initial data. One approach is based on the theory of weak solutions, see e.g. [13,16,23,24].
Although the existence of weak solutions to the primitive equations for initial data in L2 is known since
the pioneering work by Lions, Temam and Wang [17], its uniqueness remains an open problem until
today. Li and Titi [16] proved uniqueness of weak solutions assuming that the initial data are small L∞-
perturbations of continuous data or data belonging to {v ∈ L6 : ∂zv ∈ L2}, where z denotes the vertical
variable. By a weak-strong uniqueness argument, these unique weak solutions regularize and even become
strong solutions. For a survey of known results, see also [15].

A different approach to the primitive equations is based on a semilinear evolution equation for the
hydrostatic Stokes operator within the Lp-setting, see [11]. There, the existence of a unique, global,
strong solution to the primitive equations for initial data belonging to H2/p,p was proved for the case of
mixed Dirichlet-Neumann boundary conditions. This approach was transfered in [8,9] to the case of pure
Neumann boundary conditions and global, strong well-posedness of the primitive equations was obtained
for data a of the form a = a1 + a2, where a1 ∈ C(G;L1(−h, 0)) and a2 ∈ L∞(G;L1(−h, 0)) with a2
being small. These spaces are scaling invariant and represent the anisotropic character of the primitive
equations.
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Note that the choice of boundary conditions has a severe impact on the linearized primitive equations.
In the setting of layer domains, i.e., Ω = G× (−h, 0) ⊂ R3 with G = (0, 1)2 and h > 0, this is illustrated
best by the hydrostatic Stokes operator Aσ. The latter can be represented formally by the differential
expression

Av = ∆v +
1

h
∇H(−∆H)−1divH

(
∂zv
∣∣
z=−h

)
,(1.1)

restricted to hydrostatically solenoidal vector fields, where for z = −h Dirichlet and for z = 0 Neumann
boundary conditions are imposed and periodicity is assumed horizontally, see [7] for details. In partic-
ular, in the case of pure Neumann boundary conditions, the hydrostatic Stokes operator reduces to the
Laplacian, i.e. Aσv = ∆v.

It is the aim of this article to study properties of the hydrostatic Stokes semigroup and terms of the form
∇etAσP on spaces of bounded functions. These properties yield then the global, strong well-posedness
result of the primitive equations in the case of mixed Dirichlet-Neumann boundary conditions. More
precisely, we prove global, strong well-posedness of the primitive equations for initial data of the form

a = a1 + a2, a1 ∈ C(G;Lp(−h, 0)), and a2 ∈ L∞(G;Lp(−h, 0)) for p > 3,

where a1 is periodic in the horizontal variables and a2 is sufficiently small. Our strategy is to introduce
a reference solution for the smoothened part of the initial data and to combine this with an evolution
equation approach for the remaining rough part.

The main difficulty when dealing with the primitive equations on spaces of bounded functions is that
the hydrostatic Helmholtz projection P fails to be bounded with respect to the L∞-norm. This is similar
to the case of the classical Stokes semigroup, for which L∞-theory was developed in [1] and [2].

In Sections 6 and 7 we prove that the combination of the three main players, ∇, P, etAσ , nevertheless
give rise to bounded operators on L∞

HL
p
z(Ω), which in addition satisfy typical global, second order parabolic

decay estimates of the form

t1/2∥∂ietAσPf∥L∞
H L

p
z(Ω) ≤ Cetβ∥f∥L∞

H L
p
z(Ω),

t1/2∥etAσP∂jf∥L∞
H L

p
z(Ω) ≤ Cetβ∥f∥L∞

H L
p
z(Ω),

t∥∂ietAσP∂jf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω),

for t > 0, where ∂i, ∂j ∈ {∂x, ∂y, ∂z}.
Note that the choice of the boundary conditions involved affects to a very great extent the difficulty

in proving these estimates. For the case of mixed Dirichlet-Neumann boundary conditions, our approach
relies on the representation (1.1) of the linearized problem. The constraint p > 3 arises from embedding
properties for the reference solution and estimates for the linearized problem in L∞(G;Lp(−h, 0)).

Our approach is based on an iteration scheme, which is inspired by the classical schemes to the Navier-
Stokes equations. Here, the iterative construction of a unique, local solution relies on L∞

HL
p
z(Ω)-estimates

for the crucial terms of the form etAσPdiv (u ⊗ v), where u = (v, w) is the full velocity and v its hor-
izontal component. Let us note that the above linear estimates are of independent interest for further
considerations.

The use of a reference solution allows us to obtain the smallness condition on the L∞
HL

p
z-perturbation

a2 of a1 by means of an absolute constant, while for Neumann boundary conditions it is needed that a2 is
small compared to a1, cf. [8]. Also, Li and Titi assume in [16] that a2 is small compared to the L4-norm
of a1.

Comparing our result with the one by Li and Titi in [16], which has been obtained for Neumann
boundary conditions, we observe that the initial data allowed in our approach are of anisotropic nature
and require no conditions on the derivatives of the initial data, such as e.g. ∂zv ∈ L2 as in [16].

This article is structured as follows: In Section 2 we collect preliminary facts and fix the notation. In
Section 3 we state our main results concerning the global strong well-posedness of the primitive equations
for rough data and the crucial estimates for the linearized problem. The proof of our main results starts
with a discussion of anisotropic Lp-spaces in Section 4, which is followed in Section 5 by estimates for
the Laplacian in anisotropic spaces. The subsequent Sections 6 and 7 are devoted to the development
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of an L∞(G;Lp(−h, 0))-theory for the hydrostatic Stokes equations and its associated resolvent problem.
Finally, in Section 8 we present our iteration scheme yielding the global, strong well-posedness of the
primitive equations for rough initial data.

2. Preliminaries

Let Ω = G× (−h, 0) where G = (0, 1)2. We consider the primitive equations on Ω given by

∂tv −∆v + (u · ∇)v +∇Hπ = 0 on Ω× (0,∞),
∂zπ = 0 on Ω× (0,∞),

divHv = 0 on G× (0,∞),
v(0) = a on Ω,

(2.1)

using the notations divHv = ∂xv1 + ∂yv2 and ∇Hπ = (∂xπ, ∂yπ)
T , while v = 1

h

∫ 0

−h v(·, z) dz is the

vertical average, π : G → R denotes the surface pressure, u = (v, w) is the velocity field with horizontal
and vertical components v : Ω → R2 and w : Ω → R respectively, where w = w(v) is given by the relation

w(x, y, z) = −
∫ z

h

divHv(x, y, r) dr.(2.2)

This is supplemented by mixed Dirichlet and Neumann boundary conditions

∂zv = 0 on Γu × (0,∞), π, v periodic on Γl × (0,∞), v = 0 on Γb × (0,∞),(2.3)

where the boundary is divided into Γu = G× {0}, Γl = ∂G× [−h, 0] and Γb = G× {0}.
In the following we will be dealing with anisotropic Lp-spaces on cylindrical sets of the type U = Ω or

U = R2 × R. More precisely, if U = U ′ × U3 ⊂ R2 × R is a product of measurable sets and q, p ∈ [1,∞]
we define

LqHL
p
z(U) := Lq(U ′;Lp(U3)) := {f : U → K measurable, ∥f∥LqHLpz(U) <∞},

for K ∈ {R,C} with norm

∥f∥LqHLpz(U) :=


(∫

U ′∥f(x′, ·)∥qLp(U3)
dx′
)1/q

, q ∈ [1,∞),

ess supx′∈U ′∥f(x′, ·)∥Lp(U3), q = ∞.

Endowed with this norm, LqHL
p
z(U) is a Banach space for all p, q ∈ [1,∞].

We will denote the W k,p-closure of C∞
per(Ω) by W k,p

per (Ω), where C
∞
per(Ω) denotes the space of smooth

functions v on Ω that such that ∂αx v and ∂αy v are periodic on Γl with period 1 in the variables x and y

for all α ∈ N, but not necessarily periodic with respect to the vertical direction z. Moreover, by Cm,α(Ω),
Cm,α(G) we denote the spaces of m-times differentiable functions with Hölder-continuous derivatives of
exponents α ∈ (0, 1) and the subspaces of functions periodic on Γl and ∂G will be denoted by Cm,αper (Ω)

and Cm,αper (G), respectively. For a Banach space E we denote by Cper([0, 1]
2;E) the set of continuous

functions f : [0, 1]2 → E such that f(0, y) = f(1, y) and f(y, 0) = f(y, 1) for all x, y ∈ [0, 1].
In order to include the condition divHv = 0 one defines the hydrostatic Helmholtz projection P as

in [7, 11] using the two-dimensional Helmholtz projection Q with periodic boundary conditions given by
Qg = g−∇Hπ for g : G→ R2 solving ∆Hπ = divHg for π periodic on ∂G, where ∆Hg = ∂2xg+ ∂2yg. The
hydrostatic Helmholtz projection is then defined as

Pf = f − (1−Q)f = f +
1

h
∇H(−∆H)−1divHf = f −∇Hπ.

The range of P : Lp(Ω)2 → Lp(Ω)2, p ∈ (1,∞), is denoted by Lpσ(Ω) and is given by

{v ∈ C∞
per(Ω)

2 : divHv = 0}
∥·∥Lp(Ω)

.

Further characterizations of Lpσ(Ω) are given in [11, Proposition 4.3].
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Since P fails to be bounded on L∞(Ω)2 it is not evident which space is a suitable substitute for Lpσ(Ω)
in the case p = ∞. In this article, we will be considering the spaces

X := Cper([0, 1]
2;Lp(−h, 0))2 and Xσ := X ∩ Lpσ(Ω), p ∈ (1,∞).(2.4)

The linearization of equation (2.1), called the hydrostatic Stokes equation, is given by

∂tv −∆v +∇Hπ = f, divHv = 0, v(0) = a(2.5)

and subject to boundary conditions (2.3). The dynamics of this evolution equation is governed by the
hydrostatic Stokes operator, and its Xσ-realization Aσ is given by

Aσv := Av, D(Aσ∞) = {v ∈W 2,p
per(Ω)

2 ∩Xσ : ∂zv
∣∣
Γu

= 0, v
∣∣
Γb

= 0,Av ∈ Xσ},

where Av is defined by (1.1). It wil be proved that Aσ generates a strongly continuous, analytic semigroup
etAσ on Xσ. Information on the linear theory in Lpσ(Ω) for p ∈ (1,∞) can be found in [7].

3. Main results

Our first main result concerns the global well-posedness of the primitive equations for arbitrarily large
initial data in Xσ, while the second result extends this situation to the case of small perturbations in
L∞
HL

p
z(Ω). Here, a strong solution means – as in [11] – a solution v to the primitive equations satisfying

v ∈ C1((0,∞);Lp(Ω))2 ∩ C((0,∞);W 2,p(Ω))2.(3.1)

Our third main result concerns L∞
HL

p
Z-estimates for the hydrostatic Stokes semigroup. These estimates

are essential for proving the above two results on the non-linear problem. They are also of independent
interest.

Theorem 3.1. Let p ∈ (3,∞). Then for all a ∈ Xσ there exists a unique, global, strong solution v to the
primitive equations (2.1) with v(0) = a satisfying

v ∈ C([0,∞);Xσ), t1/2∇v ∈ L∞((0,∞);X), lim sup
t→0+

t1/2∥∇v(t)∥L∞
H L

p
z(Ω) = 0.

The corresponding pressure satisfies

π ∈ C((0,∞);C1,α([0, 1]2)), α ∈ (0, 1− 3/p)

and is unique up to an additive constant.

Theorem 3.2. Let p ∈ (3,∞). Then there exists a constant C0 > 0 such that if a = a1+a2 with a1 ∈ Xσ

and a2 ∈ L∞
HL

p
z(Ω)

2 ∩ Lpσ(Ω) with
∥a2∥L∞

H L
p
z(Ω) ≤ C0,

then there exists a unique, global, strong solution v to the primitive equations (2.1) with v(0) = a satisfying

v ∈ C([0,∞);Lpσ(Ω)) ∩ L
∞((0, T );L∞

HL
p
z(Ω))

2

as well as

t1/2∇v ∈ L∞((0,∞);X), lim sup
t→0+

t1/2∥∇v∥L∞
H L

p
z(Ω) ≤ C∥a2∥L∞

H L
p
z
,

where C > 0 does not depend on the data, and the pressure has the same regularity as in Theorem 3.1.

Taking advantage of the regularization of solutions for t > 0 one passes into the setting discussed in [11]
and [9], and thus we obtain the following corollary.

Corollary 3.3. For t > 0 the solution v, π in Theorem 3.1 and Theorem 3.2 are real analytic in time and
space, and the velocity v decays exponentially as t→ ∞.

Our main result on the hydrostatic semigroup acting on Xσ reads as follows.
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Theorem 3.4. Let p ∈ (3,∞). Then the following assertions hold true:
a) Aσ is the generator of a strongly continuous, analytic and exponentially stable semigroup etAσ on Xσ

of angle π/2.
b) There exist constants C > 0, β > 0 such that for ∂i, ∂j ∈ {∂x, ∂y, ∂z}

t1/2∥∂jetAσf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω), t > 0, f ∈ Xσ,(i)

t1/2∥etAσP∂jf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω), t > 0, f ∈ Xσ,(ii)

t∥∂ietAσP∂jf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω), t > 0, f ∈ Xσ;(iii)

c) For all f ∈ Xσ

lim
t→0+

t1/2∥∇etAσf∥L∞
H L

p
z(Ω) = 0.

Remarks 3.5. a) We note that when in the situation of Theorem 3.2 the initial data do not belong to
X, i.e. when a2 ̸= 0, the solution fails to be continuous at t = 0 with respect to the L∞

HL
p
z-norm.

b) The condition p > 3 is due to the embeddings

vref(t0) ∈ B2−2/q
pq (Ω)2 ↪→ C1(Ω)2 and W 2,p(Ω) ↪→ C1,α(Ω) for p ∈ (3,∞),

cf. [25, Section 3.3.1]. Since the two-dimensional Helmholtz projection Q fails to be bounded with respect
to the L∞-norm, we instead estimate it in spaces of Hölder continuous functions C0,α

per ([0, 1]
2) = C0,α(T2)

for α ∈ (0, 1) where T2 denotes the two-dimensional torus. In fact Q is bounded with respect to the
C0,α-norm. This follows by the theory of Fourier multipliers on Besov spaces, compare e.g. [3, Theorem
6.2] for the whole space, and the periodic case follows using periodic extension.
c) In Theorem 3.4 one can even consider f ∈ L∞

HL
p
z(Ω)

2 for p ∈ (3,∞). Then the corresponding semigroup
is still analytic, but it fails to be strongly continuous. The estimates (i)− (iii) still hold, whereas property
c) in Theorem 3.4 has to be replaced by

lim sup
t→0+

t1/2∥∇etAσv∥L∞
H L

p
z(Ω) ≤ C∥v∥L∞

H L
p
z(Ω)

for some C > 0, where with a slight abuse of notation etAσ denotes also the hydrostatic Stokes semigroup
on L∞

HL
p
z(Ω).

d ) Some words about our strategy for proving the global well-posedness results are in order:

(i) We will first construct a local, mild solution to the problem (2.1), i.e. a function satisfying the
relation

v(t) = etAσa+

∫ t

0

e(t−s)AσPF (v(s)) ds, t ∈ (0, T )(3.2)

for some T > 0, where F (v) = −(u ·∇)v. We will then show that v regularizes for t0 > 0 and using
the result of [11, Theorem 6.1] or [9, Theorem 3.1], we may take v(t0) as a new initial value to
extend the mild solution to a global, strong solution on (t0,∞) and then on (0,∞) by uniqueness.
The additional regularity for t→ 0+ results form the construction of the mild solutions.

(ii) In order to construct a mild solution we decompose a = aref + a0 such that aref is sufficiently
smooth and a0 can be taken to be arbitrarily small.

(iii) Using previously established results concerning the existence of solutions to the primitive equations
for smooth data, we obtain a reference solution vref and construct then V := v−vref via an iteration
scheme using L∞-type estimates for terms of the form ∇etAσP given in Theorem 3.4.

4. Properties of anisotropic spaces

In this section, we will discuss properties of anisotropic Lq-Lp-spaces. We will write C(U ′;Lp(U3)) for
the set of continuous Lp(U3)-valued functions on U ′ and likewise

Lq(U ′;C(U3)) := {f ∈ LqHL
∞
z (U) : f(x′, ·) ∈ C(U3) for almost all x′ ∈ U ′},
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and Cc(U
′;Lp(U3)) and Lq(U ′;Cc(U3)) for the subsets of functions with compact support in horizontal

and vertical variables, respectively. For p, q ∈ [1,∞) the space C∞
c (U) is dense in these spaces as well as

in LqHL
p
z(U), and furthermore we have

C∞
c (R3)

∥·∥L∞
H
L
p
z = C0(R2;Lp(R)), C∞

c (R3)
∥·∥Lq

H
L∞
z = Lq(R2;C0(R)),

as well as

C∞
per(Ω)

2
∥·∥L∞

H
L
p
z = X, C∞

per(Ω)
∥·∥Lq

H
L∞
z = Lq(G;C[−h, 0]).

Observe thst even C∞
per([0, 1]

2;C∞
c (−h, 0))2 is dense in X and LqHL

p
z(Ω)

2. If p = q = ∞, then

C∞
c (R3)

∥·∥L∞
H
L∞
z = C0(R3), C∞

per(Ω)
∥·∥L∞

H
L∞
z = Cper([0, 1]

2;C[−h, 0]).

Here C0(Rd) denotes the set of functions vanishing at infinity. These density results follow from the
fact that if E is a Banach space over K ∈ {R,C}, then the linear space generated by elementary tensor
functions f ⊗ e for measurable f : U ′ → K and e ∈ E is dense in Lq(U ′;E) for q ∈ [1,∞), since it contains
the simple E-valued functions. It is also dense in C0(U

′;E), if one only considers continuous functions f ,
due to a generalization of the Stone-Weierstrass theorem, see e.g. [12].

In the case that U ⊂ R3 is bounded, we also have

Lq1HL
p1
z (U) ↪→ Lq2HL

p2
z (U)

whenever q1 ≥ q2 and p1 ≥ p2. See [11, Section 5] for more details.
Another important property of the LqHL

p
z-norm is its behaviour under operations like multiplication

and convolution. For the former one, we obviously obtain

∥fg∥LqHLpz(U) ≤ ∥f∥Lq1H Lp1z (U)∥g∥Lq2H Lp2z (U)

whenever 1/p1 + 1/p2 = 1/p and 1/q1 + 1/q2 = 1/q. For the latter one, the following variant of Young’s
inequality holds true.

Lemma 4.1. [10, Theorem 3.1]. Let f ∈ LqHL
p
z(R3) for p, q ∈ [1,∞] and g ∈ L1(R3). Then

∥g ∗ f∥LqHLpz(R3) ≤ ∥g∥L1(R3)∥f∥LqHLpz(R3).

5. Linear estimates for the Laplace operator

In this section we establish resolvent and semigroup estimates for Laplace operators with a focus on
anisotropic LqHL

p
z-spaces, where p, q ∈ [1,∞].

First, we consider the resolvent problem for the Laplacian on the full space for

λ ∈ Σθ = {λ ∈ C \ {0} : |arg(λ)| < θ}, θ ∈ (0, π),

i.e.

∆v − λv = f on R3, f ∈ C∞
c (R3),(5.1)

and for ∂j ∈ {∂x, ∂y, ∂z}

∆w − λw = ∂jf on R3, f ∈ C∞
c (R3).(5.2)

It is well known that the solution to problem (5.1) is given by the convolution v = Kλ ∗ f and the one to
problem (5.2) by v = ∂jKλ ∗ f , where Kλ is explicitly given by

Kλ(x) =
1

4π

e−λ
1/2|x|

|x|
, x ∈ R3 \ {0}.

Using this representation one easily obtains the following uniform L1(R3)-estimates.

Lemma 5.1. For all θ ∈ (0, π) there exists Cθ > 0 such that for all λ ∈ Σθ one has

|λ| · ∥Kλ∥L1(R3) + |λ|1/2∥∇Kλ∥L1(R3) ≤ Cθ.
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Proof. Set ψ := arg(λ) ∈ (−θ, θ). Since Kλ is radially symmetric we use spherical coordinates to obtain∫
R3

|Kλ(x)| dx =

∫ ∞

0

re−|λ|1/2 cos(ψ/2)r dr

as well as ∫
R3

|∇Kλ(x)| dx ≤
∫ ∞

0

(1 + |λ|1/2r)e−|λ|1/2 cos(ψ/2)r dr.

So, |λ| · ∥Kλ∥L1(R3) = sec(ψ/2)2 and |λ|1/2∥∇Kλ∥L1(R3) ≤ sec(ψ/2) + sec(ψ/2)2, and thus we obtain the
desired result. �

From this and Young’s inequality for convolutions in anisotropic spaces, cf. Lemma 4.1, one immediately
obtains suitable LqHL

p
z-estimates for the resolvent problems (5.1) and (5.2) for q, p ∈ [1,∞].

Corollary 5.2. Let λ ∈ Σθ for some θ ∈ (0, π). Assume one of the following cases:

(i) p, q ∈ [1,∞) and f ∈ LqHL
p
z(R3), or

(ii) p ∈ [1,∞), q = ∞, and f ∈ LqHL
p
z(R3) with compact support in horizontal direction, or

(iii) p = ∞, q ∈ [1,∞), and f ∈ LqHL
p
z(R3) with compact support in vertical direction.

Then the functions

v = Kλ ∗ f and w = ∂jKλ ∗ f

are the unique solutions to the problems (5.1) and (5.2) in LqHL
p
z(R3), respectively, and there exists a

constant Cθ > 0 such that

|λ| · ∥v∥LqHLpz(R3) + |λ|1/2∥∇v∥LqHLpz(R3) + ∥∆v∥LqHLpz(R3) ≤ Cθ∥f∥LqHLpz(R3),(5.3)

|λ|1/2∥w∥LqHLpz(R3) ≤ Cθ∥f∥LqHLpz(R3).(5.4)

Remark 5.3. In the case q, p ∈ [1,∞) we have that C∞
c (R3) is dense in LqHL

p
z(R3), so we may assume

that f is essentially bounded and has compact support, yielding ∂i(Kλ ∗ f) = (∂iKλ) ∗ f . In the cases
where q and/or p is infinite we add this as an assumption.

We now investigate for the Laplacian on Ω with boundary conditions (2.3) the resolvent problems

λv −∆v = f on Ω,(5.5)

and for ∂i ∈ {∂x, ∂y, ∂z}

λw −∆w = ∂if on Ω.(5.6)

Lemma 5.4. Let θ ∈ (0, π) and f ∈ LqHL
p
z(Ω) for q ∈ [1,∞], p ∈ [1,∞). Then there exists λ0 > 0

such that for λ ∈ Σθ with |λ| ≥ λ0 the problems (5.5) and (5.6) have unique solutions v ∈ LqHL
p
z(Ω) and

w ∈ LqHL
p
z(Ω), respectively, and there exists a constant Cθ > 0 such that

|λ| · ∥v∥LqHLpz(Ω) + |λ|1/2∥∇v∥LqHLpz(Ω) + ∥∆v∥LqHLpz(Ω) ≤ Cθ∥f∥LqHLpz(Ω),(5.7)

|λ|1/2∥w∥LqHLpz(Ω) ≤ Cθ∥f∥LqHLpz(Ω).(5.8)

In particular for q = ∞ and p ∈ (2,∞) one can chose λ0 = 0.

To prove this lemma, we will need some facts concerning isotropic Lp-spaces. So, for p ∈ (1,∞) denote
by ∆p the Laplace operator on Lp(Ω) defined by

∆pv = ∆v, D(∆p) = {v ∈W 2,p
per(Ω) : ∂zv

∣∣
Γu

= 0, v
∣∣
Γb

= 0}.

One has ρ(−∆p) ⊂ C \ [δ,∞), for some δ > 0, i.e. 0 ∈ ρ(−∆p), cf. [21, Remark 8.23], and the resolvent
satisfies for some Cθ,p > 0 the estimate

|λ| · ∥(∆p − λ)−1f∥Lp(Ω) + ∥∆p(∆p − λ)−1f∥Lp(Ω) ≤ Cθ,p∥f∥Lp(Ω), f ∈ Lp(Ω),(5.9)
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where λ ∈ Σθ, θ ∈ (0, π). Furthermore, −∆p possesses a bounded H∞-calculus of angle 0, see e.g. [21],
and therefore

D((−∆p)
ϑ) = [Lp(Ω), D(∆p)]ϑ ⊂W 2ϑ,p(Ω), ϑ ∈ [0, 1],(5.10)

where [·, ·] denotes the complex interpolation functor. In particular ∂j(−∆p)
−1/2 is bounded on Lp(Ω) for

∂j ∈ {∂x, ∂y, ∂z} and by taking adjoints the same holds true for the closure of (−∆p)
−1/2∂j . This yields

the estimates

|λ|1/2∥∂j(∆p − λ)−1f∥Lp(Ω) + |λ|1/2∥(∆p − λ)−1∂jf∥Lp(Ω) ≤ Cθ,p∥f∥Lp(Ω), f ∈ Lp(Ω),

∥∂j(∆p − λ)−1∂if∥Lp(Ω) ≤ Cθ,p∥f∥Lp(Ω), f ∈ Lp(Ω)
(5.11)

for λ ∈ Σθ, θ ∈ (0, π), and some Cθ,p > 0.

Proof of Lemma 5.4. First, we apply the following density arguments:

(i) For q, p ∈ [1,∞) and f ∈ LqHL
p
z(Ω) we assume that f ∈ C∞

per([0, 1]
2;C∞

c (−h, 0)) since
C∞

per([0, 1]
2;C∞

c (−h, 0)) is a dense subspace of LqHL
p
z(Ω).

(ii) For q = ∞ and f ∈ L∞(G;Lp(−h, 0)), we assume that f ∈ L∞(G;C∞
c (−h, 0)), as the latter space

is dense in L∞
HL

p
z(Ω).

In particular, in either case we may assume that f = 0 on Γu ∪ Γb and f ∈ L∞(Ω). The existence of a
unique solution to the problems (5.5) and (5.6) in LqHL

p
z(Ω) for such smooth f follows from the properties

of the mappings (λ−∆)−1 and (λ−∆)−1∂i in L
r(Ω) for λ ∈ λ ∈ Σθ since

v ∈W 2,r(Ω) ↪→ L∞(Ω) ↪→ LqHL
p
z(Ω) and w ∈W 1,r(Ω) ↪→ L∞(Ω) ↪→ LqHL

p
z(Ω), r > 3.

It therefore suffices to prove the estimates (5.7) and (5.8). This is done in the following by localizing the
results of Lemma 5.2.

For this purpose we first make use of the extension operator

E = Eeven,odd
z ◦ Eper

H

where Eper
H is the periodic extension operator from G to R2 in horizontal direction and Eeven,odd

z extends
from (−h, 0) to (−2h, h) in vertical direction via even and odd reflexion at the top and bottom part of
the boundary respectively.

Second, we utilize a family of cut-off-functions χr ∈ C∞
c (R3) for r ∈ (0,∞) of the form χr(x, y, z) =

φr(x, y)ψr(z) where φr ∈ C∞
c (R2) and ψr ∈ C∞

c (R) satisfy

φr ≡ 1 on [−1/4, 5/4]2, φr ≡ 0 on ((−∞,−r − 1/4] ∪ [5/4 + r,∞))
2
,

ψr ≡ 1 on [−5h/4, h/4], ψr ≡ 0 on (−∞,−r − 5h/4] ∪ [h/4 + r,∞),

and there is a constant M > 0 independent of r such that

∥φr∥∞ + ∥ψr∥∞ + r (∥∇Hφr∥∞ + ∥∂zψr∥∞) + r2
(
∥∆Hφr∥∞ + ∥∂2zψr∥∞

)
≤M.

Here, we consider 0 < 4r < 3min{1, h} which implies that φr and ψr are supported on (−1, 2) and
(−2h, h) respectively. We now define an extension of v from Ω onto the whole space R3 via

u(x, y, z) = χr(x, y, z)(Ev)(x, y, z)

for a suitable value of r which we will specify later on. If v solves problem (5.5) then u solves the problem

λu−∆u = F on R3, F := χrEf − 2(∇χr) · E(∇v)− (∆χr)Ev.

Here we made use of the fact that E commutes with derivatives of v.
Note that not only does F have compact support, but we also have F ∈ L∞(R3) since we may assume

that f ∈ L∞(Ω) and v ∈ W 1,∞(Ω) by the above approximation argument. Thus we may now apply
Lemma 5.2, and estimate (5.3) yields

|λ| · ∥u∥LqHLpz(R3) + |λ|1/2∥∇u∥LqHLpz(R3) ≤ Cθ∥F∥LqHLpz(R3).
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To estimate F we use that χr is supported on (−1, 2)2 × (−2h, h), and therefore

∥χrEf∥LqHLpz(R3) ≤ 27M2∥f∥LqHLpz(Ω),

∥(∇χr) · E(∇v)∥LqHLpz(R3) ≤ 27M2r−1∥∇v∥LqHLpz(Ω),

∥(∆χr)Ev∥LqHLpz(R3) ≤ 27M2r−2∥v∥LqHLpz(Ω).

Next, we set r = η|λ|−1/2 to obtain

∥F∥LqHLpz(R3) ≤ 27M2
(
∥f∥LqHLpz(Ω) + 2η−1|λ|1/2∥∇v∥LqHLpz(Ω) + η−2|λ| · ∥v∥LqHLpz(Ω)

)
.

Now assume that η > 0 is sufficiently large enough such that 54CθM
2η−1 < 1/2, 27CθM

2η−2 < 1/2 and

then assume that λ0 > 0 is large enough such that 4ηλ
−1/2
0 < 3min{1, h}. This and the fact that u is an

extension of v then yields

|λ| · ∥v∥LqHLpz(Ω) + |λ|1/2∥∇v∥LqHLpz(Ω) ≤ 54CθM
2∥f∥LqHLpz(Ω) for |λ| ≥ λ0.

In the case q = ∞, p ∈ (2,∞) we obtain the estimate for the full range of λ ∈ Σθ by setting λ1 := λ0

|λ|λ

for 0 < |λ| < λ0. Then f ∈ L∞
HL

p
z(Ω) ↪→ Lp(Ω) yields

|λ| · ∥v∥Lp(Ω) + |λ|1/2∥∇v∥Lp(Ω) + ∥∆v∥Lp(Ω) ≤ Cθ,p∥f∥Lp(Ω)

by (5.9) and since λ1v −∆v = f + (λ1 − λ)v we obtain

|λ1| · ∥v∥L∞
H L

p
z(Ω) + |λ1|1/2|∇v|L∞

H L
p
z(Ω) + ∥∆v∥L∞

H L
p
z(Ω) ≤ Cθ,p

(
∥f∥L∞

H L
p
z(Ω) + |λ1 − λ| · ∥v∥L∞

H L
p
z(Ω)

)
where we can further estimate |λ1 − λ| < λ0, and p ∈ (1,∞) yields

∥v∥L∞
H L

p
z(Ω) ≤ Cp∥v∥W 2,p

H Lpz(Ω) ≤ Cp∥v∥W 2,p(Ω) ≤ Cp∥∆v∥Lp(Ω) ≤ Cp∥f∥Lp(Ω) ≤ Cp∥f∥L∞
H L

p
z(Ω)

where we used W 2,p(G) ↪→ L∞(G) and that ∆p is invertible on Lp(Ω). Since |λ1| = λ0 > |λ|, this yields
the desired result for the full range of λ ∈ Σθ, θ ∈ (0, π).

If v instead solves problem (5.6) with ∂i = ∂z then u solves the problem

λu−∆u = G on R3, G := χrE(∂zf)− 2(∇χr) · E(∇v)− (∆χr)Ev.

We rewrite

−2(∇χr) · E(∇v)− (∆χr)Ev = −2div(∇χrEv) + (∆χr)Ev, χrE(∂zf) = ∂z(χrsEf)− (∂zχr)sEf

where

s(z) =

{
1, z ∈ (−2h, 0),

−1, x ∈ (0, h).

Here, by the density argument above, we may assume f = 0 on Γu ∪ Γb. This yields u = u1 + u2 where

λu1 −∆u1 = ∂zG1 + divHG2 on R3, G1 := χrsEf, G2 := −2(∇χr)Ev,
λu2 −∆u2 = G3 on R3, G3 := −(∂zχr)sEf + (∆χr)Ev.

Since Gi, i ∈ {1, 2, 3}, are bounded and have compact support, we may apply Lemma 5.2 to obtain the
estimate

|λ|1/2∥u∥LqHLpz(R3) ≤ Cθ

(
∥G1∥LqHLpz(R3) + ∥G2∥LqHLpz(R3) + |λ|−1/2∥G3∥LqHLpz(R3)

)
.

Proceeding as above we obtain

∥G1∥LqHLpz(R3) ≤ 27M2∥f∥LqHLpz(Ω),

∥G2∥LqHLpz(R3) ≤ 54M2η−1|λ|1/2∥v∥L∞
H L

p
z(Ω),

∥G3∥L∞
H L

p
z(R3) ≤ 27M2η−1|λ|1/2∥f∥L∞

H L
p
z(Ω) + 27M2η−2|λ| · ∥v∥L∞

H L
p
z(Ω).

The above assumptions on η and λ0 then yield the desired result for |λ| > λ0. The case ∂i ∈ {∂x, ∂y}
is analogous where for f ∈ L∞(G;C∞

c (−h, 0)) horizontal derivatives are understood in the sense of
distributions, and otherwise derivatives can be treated using smooth approximations as above.
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For the case q = ∞ and p ∈ (2,∞), to extend this estimate to the full range of λ ∈ Σθ one proceeds as
above to obtain

|λ|1/2 · ∥v∥Lp(Ω) + ∥∇v∥Lp(Ω) ≤ Cθ,p∥f∥Lp(Ω)

from (5.11), as well as

|λ1|1/2 · ∥v∥L∞
H L

p
z(Ω) + ∥∇v∥L∞

H L
p
z(Ω) ≤ Cθ

(
∥f∥L∞

H L
p
z(Ω) + |λ1|−1/2|λ1 − λ| · ∥v∥L∞

H L
p
z(Ω)

)
.

Since we have |λ1|−1/2|λ1 − λ| ≤ λ
1/2
0 and p ∈ (2,∞) this yields

∥v∥L∞
H L

p
z(Ω) ≤ Cp∥v∥W 1,p

H Lpz(Ω) ≤ Cp∥v∥W 1,p(Ω) ≤ Cp∥∇v∥Lp(Ω) ≤ Cp∥f∥Lp(Ω) ≤ Cp∥f∥L∞
H L

p
z(Ω),

where we used the embedding W 1,p(G) ↪→ L∞(G) and the Poincaré inequality ∥v∥Lp(Ω) ≤ Cp∥∇v∥Lp(Ω)

for v with v
∣∣
Γb

= 0. �

Remark 5.5. The results of Lemma 5.4 also hold true if the condition ∂zv
∣∣
Γu

= 0 is replaced by v
∣∣
Γu

= 0

or if LqHL
p
z(Ω) is replaced by Cper([0, 1]

2;Lp(−h, 0)). For pure Dirichlet boundary conditions one extends
by an odd reflexion at both z = 0 and z = −h replacing Eeven,odd

z by Eodd,odd
z and setting s(z) ≡ 1 in the

proof.

Since Ω = G×(−h, 0) is a cylindrical domain the semigroup generated by the Laplacian with the above
boundary conditions satisfies

et∆(f ⊗ g) = et∆Hf ⊗ et∆zg, f : G→ R2, g : (−h, 0) → R,

where (f ⊗ g)(x, y, z) := f(x, y)g(z) is an elementary tensor, ∆H := ∂2x + ∂2y is the Laplacian on G with
periodic boundary conditions and ∆z is defined by

∆zv := ∂2zv, D(∆z) = {f ∈W 2,p(−h, 0) : f(−h) = ∂zf(0) = 0}.
We now investigate these operators separately, starting with the vertical one, cf. [6, 21].

Lemma 5.6. Let p ∈ (1,∞). Then the operator ∆z generates a strongly continuous, exponentially stable,
analytic semigroup on Lp(−h, 0).

Lemma 5.7. Let θ ∈ (0, π/2). Then there exists a constant Cθ > 0 such that for all τ ∈ Σθ we have

|τ |1/2∥∇He
τ∆HQf∥L∞(G) ≤ Cθ∥f∥L∞(G), f ∈ L∞(G).

Remark 5.8. Note that although the two-dimensional Helmholtz projector with periodic boundary con-
ditions Q is unbounded on L∞(G), the composition ∇He

τ∆HQ defines a bounded operator for τ ∈ Σθ.

Proof of Lemma 5.7. Let QR2 and Q be the Helmholtz projection on R2 and T2, respectively, and Eper
H

be the periodic extension operator from G onto R2. Then Eper
H Qf = QR2Eper

H f for all f : G→ R2 and

Eper
H |τ |1/2∇He

τ∆HQf = |τ |1/2∇He
τ∆HEper

H Qf = |τ |1/2∇He
τ∆HQR2Eper

H f.

Since ∥Eper
H f∥L∞(R2) = ∥f∥L∞(G) it therefore suffices to consider the operator ∆H on the full space R2.

Recall that 1−QR2 is given by (RjRk)1≤j,k≤2 where Rj is the Riesz transform in the j-th direction. We
therefore investigate the family of Fourier multipliers

mτ,j,k,l(ξ) =

{
|τ |1/2ξl

(
δj,k − ξjξk

|ξ|2

)
e−τ |ξ|

2

, ξ ∈ R2 \ {0},
0, ξ = 0,

for 1 ≤ j, k, l ≤ 2.

Using the invariance under rescaling and replacing ξ with |τ |−1/2ξ, we may assume that τ = eiψ where
|ψ| < θ. We show that for each of these symbols we have m = ĝ for some g ∈ L1(R2) such that
∥g∥L1(R2) ≤ Cθ. The desired estimate then follows from Young’s inequality. Since this family of symbols

belongs to C(R2) ∩ C∞(R2 \ {0}) we verify the Mikhlin condition

max
|α|≤2

sup
ξ∈R2\{0}

|ξ||α|+δ|Dαm(ξ)| < M <∞,(5.12)
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for some δ > 0. Elementary calculations using the homogeneity of the first factor show that for an
arbitrary multi-index α ∈ N2 we have

sup
ξ∈R2\{0}

|ξ|α
∣∣∣∣Dα ξjξk

|ξ|2

∣∣∣∣ < Mα <∞, sup
ξ∈R2\{0}

|ξ|α+δ
∣∣∣Dαξle

−eiψ|ξ|2
∣∣∣ < Mα,δ,ψ ≤Mα,δ,θ <∞

for δ ∈ (0, 1) which together with the product rule yield that (5.12) is satisfied. Analogously we verify the
condition

|ξ||α||Dαm(ξ)| ≤ Cα|ξ|, |ξ| ≤ 1, ξ ̸= 0(5.13)

for 0 < |α| ≤ 2 by noting that

|ξ||α|
∣∣∣∣Dα ξjξkξj

|ξ|2

∣∣∣∣ ≤ Cα|ξ|, |ξ| ≤ 1, ξ ̸= 0

and

|ξ||α|
∣∣∣Dαe−e

iψ|ξ|2
∣∣∣+ |ξ||α|

∣∣∣Dαξle
−eiψ|ξ|2

∣∣∣ ≤ Cα,δ,ψ ≤ Cα,δ,θ |ξ| ≤ 1, ξ ̸= 0.

We now split the symbol into m = φm + (1 − φ)m where φ ∈ C∞
c (R2) is a cut-off function satisfying

φ(ξ) = 1 for |ξ| ≤ 2. Applying [4, Lemma 8.2.3 and 8.2.4] to the terms (1 − φ)m and φm respectively
then yields the desired results. �

6. Linear estimates for the hydrostatic Stokes operator: part 1

A key element in the proof of our global existence results are the estimates for the hydrostatic Stokes
semigroup in Xσ. To this end, we prove first estimates in the larger space X, where we make use of
representation (1.1). We thus define the operator A by

Av := Av, D(A) = {v ∈W 2,p
per(Ω)

2 ∩X : ∂zv
∣∣
Γu

= 0, v
∣∣
Γb

= 0,Av ∈ X}.

It is the aim of this section to prove the following claim.

Claim 6.1. Let p ∈ (3,∞). Then
a) A is the generator of a strongly continuous, analytic semigroup on X.
b) There exist constants C > 0, β ∈ R such that for ∂i ∈ {∂x, ∂y, ∂z}, t > 0 and f ∈ X one has that

t1/2∥∂ietAf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω), t > 0, f ∈ X,(i)

for ∂j ∈ {∂x, ∂y}

t1/2∥∂jetAPf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω), t > 0, f ∈ X,(ii)

t1/2∥etAP∂jf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω), t > 0, f ∈ X,(iii)

t∥∂ietAP∂jf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω), t > 0, f ∈ X.(iv)

c) Xσ is an invariant subspace of A, and its restriction is Aσ. The semigroup etA restricts to an expo-
nentially stable, strongly continuous, analytic semigroup of angle π/2 on Xσ.
d) Furthermore, for all v ∈ Xσ

lim
t→0+

t1/2∥∇etAv∥L∞
H L

p
z(Ω) = 0.

In order to solve equation (2.5) in Xσ, we collect first several facts concerning the corresponding theory
in Lpσ(Ω). To this end, let p ∈ (1,∞), and define Ap,σ : D(Ap,σ) → Lpσ(Ω) by

Ap,σv := P∆v, D(Ap,σ) = {v ∈W 2,p
per(Ω)

2 : divHv = 0, ∂zv
∣∣
Γu

= 0, v
∣∣
Γb

= 0.}.

Consider furthermore Ap : D(Ap) → Lp(Ω)2 defined by

Apv := ∆pv +Bv, D(Ap) := D(∆p)
2, Bv :=

1

h
(1−Q)∂zv

∣∣
Γb
,
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where ∆p denotes the Laplacian in Lp(Ω)2 as in the last section. By [7], the operator Ap is an extension of
Ap,σ. The idea is that the pressure term may be recovered by applying the vertical average and horizontal
divergence to (2.5), yielding

∆Hπ = divHf − divH
1

h
∂zv
∣∣
Γb
,(6.1)

or equivalently since 1−Q agrees with ∇H(−∆H)−1divH one has ∇Hπ = (1−Q)f −Bv.
Note that the following inclusions hold

A ⊂ Ap and Aσ ⊂ Ap,σ,(6.2)

and that etAp,σ , etAp , etA and etAσ are consistent semigroups.

Proof of Claim 6.1. Let λ0 > 0 with λ0 ∈ ρ(Ap), θ ∈ (0, π/2), and

λ ∈ Σθ+π/2 ∩Bλ0(0)
c ⊂ ρ(Ap).

By (6.2) it follows that λ − A is injective for λ ∈ ρ(Ap) and likewise λ − Aσ is injective for λ ∈ ρ(Aσp ).

Since X ↪→ Lp(Ω)2 the existence of a unique v ∈ D(Ap) for p ∈ (1,∞) follows from the Lp-theory for
Ap, cf. [7], and since W 2,p

per(Ω)
2 ↪→ X for p ∈ (3/2,∞) it follows that v ∈ D(A). Since (Ap − λ)−1 further

leaves Lpσ(Ω) invariant, f ∈ Xσ implies v ∈ D(Aσ). Hence,

ρ(Ap) ⊂ ρ(A) and ρ(Ap,σ) ⊂ ρ(Aσ).(6.3)

In particular the resolvent sets are non-empty and thus the operators are closed.
Since the semigroup estimates follow from resolvent estimates by arguments involving the inverse

Laplace transform, it now remains to prove suitable resolvent estimates in X. To this end we observe first
that v = (λ−A)−1f is equivalent to

v = (λ−∆p)
−1(f +Bv),(6.4)

and second, using the fact that Q is continuous on C0,α
per([0, 1]

2) for α ∈ (0, 1), that

∥Bv∥L∞
H L

p
z(Ω) ≤ h1/p∥Bv∥L∞(Ω) ≤ h1/p∥Bv∥C0,α([0,1]2) ≤ C∥∂zv

∣∣
Γb
∥C0,α([0,1]2) ≤ C∥v∥C1,α(Ω).

Assuming p ∈ (3,∞) we have W 2,p(Ω) ↪→ C1,α(Ω) for some α = αp ∈ (0, 1 − 3/p). Using the resolvent
estimate for Ap in Lp(Ω)2 we obtain

∥v∥C1,α(Ω) ≤ Cp∥v∥W 2,p(Ω) ≤ Cp
(
∥v∥Lp(Ω) + ∥Av∥Lp(Ω)

)
≤ Cp(1 + |λ|−1)∥f∥Lp(Ω).

This and |λ| > λ0 yield ∥Bv∥L∞
H L

p
z(Ω) ≤ Cp(1 + λ−1

0 )∥f∥L∞
H L

p
z(Ω). So, using Lemma 5.4 we obtain

|λ| · ∥v∥L∞
H L

p
z(Ω) + |λ|1/2∥∇v∥L∞

H L
p
z(Ω) + ∥Av∥L∞

H L
p
z(Ω) ≤ Cθ,p,λ0∥f∥L∞

H L
p
z(Ω),(6.5)

where we used that for λ as above and p ∈ (3,∞) one has

∥Av∥L∞
H L

p
z(Ω) ≤ ∥∆v∥L∞

H L
p
z(Ω) + ∥Bv∥L∞

H L
p
z(Ω) ≤ Cθ,p,λ0∥f∥L∞

H L
p
z(Ω).

Note that if one instead considers f ∈ Xσ, then λ0 > 0 can be taken to be arbitrarily small and θ
arbitrarily close to π/2 by [7, Theorem 3.1]. Since 0 ∈ ρ(Ap,σ) ⊂ ρ(Aσ), compare [11, Theorem 3.1] and
(6.3) it follows that the spectral bound

β := sup{Re(λ) : λ ∈ σ(Aσ)}
is negative implying exponential decay, and estimate (6.5) is valid for all λ ∈ Σθ, θ ∈ (0, π) and f ∈ Xσ.

To verify that D(A) and D(Aσ) are dense in X and Xσ respectively, observe that the space

C∞
per([0, 1]

2;C∞
c ((−h, 0)))2

is contained in D(A) and dense in X, so the semigroup generated by A is strongly continuous on X. Since
it leaves Lpσ(Ω) invariant, the restriction of the semigroup on X ∩ Lpσ(Ω) = Xσ is strongly continuous as
well and generated by the restriction of A onto D(A)∩Lpσ(Ω) = D(Aσ), i.e. Aσ, which is therefore densely
defined on Xσ. Thus we have proven a), c) and estimate (i) in b).
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To prove the remaining semigroup estimates in b) we consider the corresponding resolvent estimates.
Since X ↪→ Lp(Ω)2 and P is bounded on Lp(Ω)2 the existence of

v := (λ−Ap,σ)
−1Pf ∈ D(Ap,σ) ↪→W 2,p

per(Ω)
2 ↪→ X

for f ∈ X follows from the Lp-theory for Ap,σ, and it suffices to extend the Lp-estimate

|λ|1/2∥∂i(λ−Ap,σ)
−1f∥Lp(Ω) + |λ|1/2∥(λ−Ap,σ)

−1∂if∥Lp(Ω) ≤ Cθ,p∥f∥Lp(Ω), f ∈ Lpσ(Ω),(6.6)

where ∂i ∈ {∂x, ∂y}, θ ∈ (0, π), Cθ,p > 0, to X, i.e. to prove the estimate

|λ|1/2∥∇Hv∥L∞
H L

p
z(Ω) ≤ Cθ,p∥f∥L∞

H L
p
z(Ω), λ ∈ Σθ.(6.7)

Recall that Pf = f − (1 − Q)f = f̃ + Qf , and that if f ∈ X then f ∈ Cper([0, 1]
2)2 satisfies ∥f∥∞ ≤

C∥f∥L∞
H L

p
z(Ω) for any p ∈ [1,∞]. Using (6.4) we rewrite

v = (λ−Aσ)
−1Pf = (λ−∆)−1(f̃ +Bv +Qf),

and since the term f̃ +Bv can be dealt with as before, it suffices to show the estimate

|λ|1/2∥∇H(λ−∆)−1Qf∥L∞
H L

p
z(Ω) ≤ Cθ∥f∥L∞(G).(6.8)

SinceQf does not depend on z we can writeQf = Qf⊗1, and so for λ = |λ|eiψ with ψ ∈ (−π/2+ε, π/2−ε)
for small ε > 0 we have

|λ|1/2∇H(λ−∆)−1
(
Qf ⊗ 1

)
= |λ|1/2

∫ ∞

0

e−λt
(
∇He

t∆HQf ⊗ et∆z1
)
dt,

where et∆z denotes the semigroup from Lemma 5.6. Applying the estimates in Lemma 5.7 and 5.6 yields

|λ|1/2∥∇H(λ−∆)−1
(
Qf ⊗ 1

)
∥L∞

H L
p
z(Ω) ≤ |λ|1/2

∫ ∞

0

e−λt∥∇He
t∆HQf∥L∞(G)∥et∆z1∥Lp(−h,0) dt

≤ C|λ|1/2
(∫ ∞

0

e−|λ| cos(ψ)tt−1/2 dt

)
∥f∥L∞(G)

≤ C

√
π√

cos(π/2− ε)
∥f∥L∞(G).

To include the full range of angles ψ one simply replaces ∆H and ∆z with eiθ∆H and eiθ∆z respectively
where θ ∈ (−π/2, π/2) is a suitable angle.

Since an elementary calculation shows that ∇H commutes with A and P we obtain

∂i(λ−A)−1f = (λ−A)−1∂if, ∂i(λ−A)−1Pf = (λ−A)−1P∂if
for horizontal derivatives ∂i ∈ {∂x, ∂y} and f ∈ C∞

per([0, 1]
2;C∞

c [−h, 0])2. Note that for any v ∈ W 2,p
per(Ω)

the horizontal derivatives ∂xv and ∂yv are periodic on Γl as well. This yields suitable estimates for the
right-hand sides.

To verify d), we first make use of the density of the domains of the generators. So, let ε > 0 and
v′ ∈ D(Aσ) such that ∥v − v′∥L∞

H L
p
z(Ω) < ε/2C0. By b) (i) we have

t1/2∥∇etAv∥L∞
H L

p
z(Ω) ≤ C0∥v∥L∞

H L
p
z(Ω)

for all v ∈ X and t > 0. Then

t1/2∥∇etAv∥L∞
H L

p
z(Ω) ≤

ε

2
+ t1/2∥∇etAv′∥L∞

H L
p
z(Ω)

and we can further estimate

∥∇etAv′∥L∞
H L

p
z(Ω) ≤ h1/p∥etAv′∥C1(Ω) ≤ Cp∥etAv′∥D(Ap,σ).

This and the invertibility of Ap,σ on Lpσ(Ω) yield

t1/2∥∇etAp,σv′∥Lpσ(Ω) ≤ Cpt
1/2∥Ap,σetAp,σv′∥Lpσ(Ω) = Cpt

1/2∥etAp,σAp,σv′∥Lpσ(Ω) ≤ Cpt
1/2∥Ap,σv′∥Lpσ(Ω)

and since Ap,σv
′ ∈ Lpσ(Ω) the claim follows. �
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7. Linear estimates for the hydrostatic Stokes operator: part 2

This section is devoted to prove that the estimates of Claim 6.1 in the case of vertical derivatives, i.e.
that the estimates (ii), (iii) and (iv) in Claim 6.1 are valid even for ∂j = ∂z.

Claim 7.1. Under the assumptions of Claim 6.1 there exist constants C > 0 and β ∈ R such that

t1/2∥∂zetAPf∥L∞
H L

p
z(Ω) ≤ Cetβ∥f∥L∞

H L
p
z(Ω),(7.1)

t1/2∥etAP∂zf∥L∞
H L

p
z(Ω) ≤ Cetβ∥f∥L∞

H L
p
z(Ω),(7.2)

t∥∂ietAP∂jf∥L∞
H L

p
z(Ω) ≤ Ceβt∥f∥L∞

H L
p
z(Ω),(7.3)

where ∂i, ∂j ∈ {∂x, ∂y, ∂z}, for all t > 0 and f ∈ X.

As in the last section, these semigroup estimates follow from suitable resolvent estimates and standard
arguments involving the inverse Laplace transform.

Before investigating the estimate for ∂z(λ− A)P we present an anisotropic version of an interpolation
inequality. We use the notation (x, y, z) =: (x′, z) and let B(x′0; r) = {x′ ∈ R2 : |x′ − x′0| < r} denote a
disk in R2.

Lemma 7.2. Let p ∈ (2,∞), q ∈ [1,∞], r > 0, and x′0 ∈ R2. Then, for v ∈ W 1,p(B(x′0; r);L
q
z),

Lqz = Lq(−h, 0) we have

∥v∥L∞(B(x′
0;r);L

q
z) ≤ Cr−2/p(∥v∥Lp(B(x′

0;r);L
q
z) + r∥∇Hv∥Lp(B(x′

0;r);L
q
z)),

where the constant C = CΩ,p,q > 0 is independent of r and x′0.

Proof. We put w(x′) := (
∫ 0

−h |v(x
′, z)|q dz)1/q and apply a two-dimensional interpolation inequality, com-

pare [20, Lemma 3.1.4] to have

(7.4) ∥w∥L∞(B(x′
0;r))

≤ Cr−2/p(∥w∥Lp(B(x′
0;r))

+ r∥∇Hw∥Lp(B(x′
0;r))

).

One sees that ∥w∥Lp(B(x′
0;r))

= ∥v∥Lp(B(x′
0;r);L

q
z). To estimate the second term we compute ∂iw for

∂i ∈ {∂x, ∂y} as follows:

∂iw(x
′) =

(∫ 0

−h
|v(x′, z)|q dz

)1/q−1 ∫ 0

−h
|v(x′, z)|q−2(∂iv(x

′, z) · v(x′, z)) dz.

Using Hölder’s inquality we obtain

|∂iw(x′)| ≤
(∫ 0

−h
|v(x′, z)|q dz

)1/q−1 ∫ 0

−h
|v(x′, z)|q−1|∂iv(x′, z)| dz ≤

(∫ 0

−h
|∂iv(x′, z)|q dz

)1/q

and substituting this into (7.4) proves the estimate for q <∞. The case q = ∞ is a straightforward result
of (7.4). �

It is well known that 1−Q = −∇H(−∆H)−1divH = ∇H∆−1
H divH with periodic boundary conditions is

a singular integral operator which fails to be bounded in L∞(G)2. However, if one allows for a logarithmic
(and therefore divergent) factor, some L∞-type estimate are still available. In this spirit we give a local
Lp-estimate for the operator ∇H(−∆H)−1divH corresponding to the scale of the L∞-norm.

Proposition 7.3. Let p ∈ (1,∞), x′0 ∈ G. Then there exists r0 > 0 such that for all r ∈ (0, r0) the weak
solution of

(7.5) ∆Hπ = divHF in G, π|∂G : periodic,

∫
G

π dx′ = 0,

for F ∈ L∞(G)2 satisfies

∥∇Hπ∥Lp(B(x′
0;r))

≤ Cr2/p(1 + | log r|)∥F∥L∞(G).

Here the constant C = CG,p > 0 is independent of x′0 and r.
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Proof. By applying a periodic extension we may assume that (7.5) holds in a larger square G′ := (−2, 3)2.
We choose r0 < 1/8 to obtain B(x′0; 4r0) ⊂ (−1/2, 3/2)2 and utilize two cut-off functions ω, θ ∈ C∞

c (R2),
θ = θr, satisfying the following properties:

ω ≡ 1 on [−1, 2]2, supp (ω) ⊂ G′, ∥∇k
Hω∥L∞(R2) ≤ C,

θ ≡ 1 on B(x′0; 2r), supp (θ) ⊂ B(x′0; 4r), ∥∇k
Hθ∥L∞(R2) ≤ Cr−k

for k = 0, 1, 2; compare the proof of Lemma 5.4. From (7.5) we see that ωπ satisfies

∆H(ωπ) = divH(ωF )−∇Hω · F + 2divH
(
(∇Hω)π

)
− (∆Hω)π in R2.

Then, letting Ψ(x′, y′) := 1
2π log |x′ − y′| be the Green’s function for the Laplacian in R2, we obtain

(ωπ)(x′) = −
∫
R2

(∇y′Ψ)(x′, y′) ·
[
ωF + 2(∇y′ω)π

]
(y′) dy′ −

∫
R2

Ψ(x′, y′)
[
(∇Hω) · F + (∆Hω)π

]
(y′) dy′.

Therefore, for x′ ∈ B(x′0; r) we have the representation

∇Hπ(x
′) =−

∫
R2

(∇x′∇y′Ψ)(x′, y′)
[
ωF + 2(∇y′ω)π

]
(y′) dy′ −

∫
R2

(∇x′Ψ)(x′, y′)
[
(∇Hω) · F + (∆Hω)π

]
(y′) dy′

=−
∫
R2

(∇x′∇y′Ψ)(x′, y′)
[
θF + ω(1− θ)F + 2(∇y′ω)π

]
(y′) dy′

−
∫
R2

(∇x′Ψ)(x′, y′)
[
(∇Hω) · F + (∆Hω)π

]
(y′) dy′

=:Π1(x
′) + Π2(x

′) + Π3(x
′) + Π4(x

′) + Π5(x
′)

where in the second step we used ωθ = θ. We derive Lp(B(x′0; r))-estimates for each of the above terms
as follows: By the Calderón–Zygmund inequality we have

∥Π1∥Lp(R2) ≤ C∥θF∥Lp(R2) ≤ C∥θ∥Lp(R2)∥F∥L∞(G′) ≤ Cr2/p∥F∥L∞(G).

For the second term note that we have |∇x′∇y′Ψ(x′, y′)| ≤ C|x′ − y′|−2 and

supp (ω(1− θ)) = supp (ω − θ) ⊂ supp(ω) \B(x′0; 2r)

yields supp (ω(1− θ)) ⊂ {r ≤ |x′ − y′| ≤ 4} and therefore

∥Π2∥Lp(B(x′
0;r))

≤ ∥1∥Lp(B(x′
0;r))

(
sup

x′∈B(x′
0;r)

∫
r≤|x′−y′|≤4

C|x′ − y′|−2 dy′

)
∥ω(1− θ)F∥L∞(G′)

≤ Cr2/p(1 + | log r|)∥F∥L∞(G).

The condition supp (∇Hω) ⊂ G′ \ [−1, 2] yields

∥Π3∥Lp(B(x′
0;r))

≤ ∥1∥Lp(B(x′
0;r))

(
sup

1/2≤|x′−y′|≤3

C|x′ − y′|−2

)
∥2(∇Hω)π∥L1(G′) ≤ Cr2/p∥π∥L1(G).

It follows from Poincaré’s inequality and the L2-theory for (7.5) that

∥π∥L1(G′) ≤ C∥π∥L2(G) ≤ C∥∇Hπ∥L2(G) ≤ C∥F∥L2(G) ≤ C∥F∥L∞(G)

and therefore ∥Π3∥Lp(B(x′
0;r))

≤ Cr2/p∥F∥L∞(G). Similarly to Π3, we have

∥Π4 +Π5∥Lp(B(x′
0;r))

≤ ∥1∥Lp(B(x′
0;r))

(
sup

1/2≤|x′−y′|≤3

C|x′ − y′|−1
)
(∥F∥L1(G) + ∥π∥L1(G))

≤ Cr2/p∥F∥L∞(G).

Combining these estimates yields the desired estimate. �

Remark 7.4. Note that the Calderón–Zygmund inequality we have used to estimate Π1 does not hold
for p ∈ {1,∞} while the arguments of Section 6 can be adapted to cover the case p = ∞.
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We now turn to prove the estimate |λ|1/2∥∂z(λ − A)−1P∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0∥f∥L∞

H L
p
z(Ω) for λ ∈ Σθ,

|λ| > λ0 and for θ ∈ (0, π), p > 3. For this purpose we observe that the solution v to the resolvent
problem

λv −Av = Pf on Ω

with boundary conditions (2.3) is decomposed as v = v1 + v2, where (v1, π1) and (v1, π1) solve

(7.6) λv1 −∆v1 +∇Hπ1 = f on Ω, ∆H π1 = −h−1divH(∂zv|Γb) on G,

and

(7.7) λv2 −∆v2 +∇Hπ2 = 0 on Ω, ∆H π2 = divH f̄ on G,

respectively, both equipped with the boundary conditions (2.3) and periodic boundary conditions for πi
on ∂G, as π := π1 + π2 satisfies (6.1). Since (7.6) is equivalent to v1 = (λ−∆)−1(f +Bv) we obtain

|λ|1/2∥∂zv1∥L∞
H L

p
z(Ω) ≤ |λ|1/2∥∇v1∥L∞

H L
p
z(Ω) ≤ Cθ,p,λ0∥f∥L∞

H L
p
z(Ω)(7.8)

for |λ| > λ0 by the same argument used to derive (6.5). This, ∇Hv2 = ∇Hv −∇Hv1, and estimate (6.7)
yield

|λ|1/2∥∇Hv2∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0∥f∥L∞

H L
p
z(Ω), λ ∈ Σθ.(7.9)

In order to prove estimate (7.1) it thus remains to establish the following.

Proposition 7.5. Let p ∈ (3,∞) and θ ∈ (0, π). Then there exists constants λ0 > 0 and Cθ,p,λ0 > 0 such
that for all λ ∈ Σθ with |λ| > λ0 and f ∈ X the solution v2 of (7.7) satisfies

|λ|1/2∥∂zv2∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0

∥f∥L∞
H L

p
z(Ω).

Remark 7.6. The estimate

|λ|1/2∥∂z(λ−A)−1Pf∥L∞
H L

p
z(Ω) ≤ Cθ,p∥f∥L∞

H L
p
z(Ω), f ∈ X

actually holds for the full range of λ ∈ Σθ, θ ∈ (0, π), i.e. one can take λ0 = 0. This is obtained by using
that Pf ∈ Lpσ(Ω) yields v := (λ−A)−1Pf ∈ D(Ap,σ) and therefore

∥v∥L∞
H L

p
z(Ω) ≤ Cp∥v∥W 2,p(Ω) ≤ Cp∥Av∥Lpσ(Ω) ≤ Cp∥Pf∥Lpσ(Ω) ≤ Cp∥f∥Lpσ(Ω) ≤ Cp∥f∥L∞

H L
p
z(Ω),

so the same argument as in the proof of Lemma 5.4 applies.

Proof of Proposition 7.5. We will simply write (v, π) instead of (v2, π2) for the solution of (7.7). By
applying a periodic extension in the horizontal variables we may assume that (7.7) holds in a larger
domain allowing us to replace Ω and G by Ω′ := G′ × (−h, 0) and G′ := (−2, 3)2 respectively. We
decompose the boundary of Ω′ into Γ′

u = G′×{0}, Γ′
l := ∂G′× [−h, 0] and Γ′

b = G×{−h}. For simplicity
we continue to denote the periodic extensions of v, π and f in the same manner.

Let η > 1 be a parameter to be fixed later, and let λ0 be a positive number such that

r0 := η λ
−1/2
0 < min{1/8, h/4}.(7.10)

We fix arbitrary λ ∈ Σθ, |λ| > λ0, put r := η|λ|−1/2 < r0, and introduce two cut-off functions α = αr,
β = βr, satisfying

α ∈ C∞([−h, 0]), α ≡ 0 on [−h,−h+ r], α ≡ 1 on [−h+ 2r, 0], |∂kzα(z)| ≤ Cr−k,

β ∈ C∞([−h, 0]), β ≡ 1 on [−h,−h+ 2r], β ≡ 0 on [−h+ 3r, 0], |∂kzβ(z)| ≤ Cr−k

for k = 0, 1, 2, compare the proof of Lemma 5.4. We then split the estimate for ∂zv into the “upper” and
“lower” parts in Ω as

(7.11) ∥∂zv∥L∞
H L

p
z(Ω) ≤ ∥∂z(αv)∥L∞

H L
p
z(Ω) + ∥∂z(βv)∥L∞

H L
p
z(Ω).
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Step 1. Let us first focus on ∂z(αv). By Lemma 7.2 with radius |λ|−1/2 and p = q we have

|λ|1/2∥∂z(αv)∥L∞
H L

p
z(Ω) ≤ Cp|λ|1/p sup

x′
0∈G

(
|λ|1/2∥∂z(αv)∥Lp(C(x′

0;|λ|−1/2)) + ∥∇H∂z(αv)∥Lp(C(x′
0;|λ|−1/2))

)
,

(7.12)

where C(x′0; |λ|−1/2) denotes the cylinder B(x′0; |λ|−1/2)× (−h, 0) and we used that

∥f∥L∞
H L

p
z(Ω) = sup

x′
0∈G

∥f∥L∞(B(x′
0,R);Lpz), R > 0.

In the following we fix arbitrary x′0 ∈ G and introduce a cut-off function θ = θr ∈ C∞
c (R2) such that

θ ≡ 1 in B(x′0; |λ|−1/2), supp θ ⊂ B(x′0; r), ∥∇k
Hθ∥L∞(R2) ≤ Cr−k

for k = 0, 1, 2. Then θαv solves

λ(θαv)−∆(θαv) = −θα∇Hπ − 2∇(θα) · ∇v − (∆(θα))v on Ω′,

∂z(θαv)|Γ′
u∪Γ′

b
= 0, θαv periodic on Γ′

l.

We further differentiate this equation with respect to z to obtain

λ(θ∂z(αv))−∆(θ∂z(αv)) = F1 + ∂zF2 on Ω′, θ∂z(αv)
∣∣
Γ′
u∪Γ′

b

= 0, θ∂z(αv) periodic on Γ′
l.

where

F1 := −θ(∂zα)(∇Hπ)− (∆Hθ)(∂zα)v − (∆Hθ)α(∂zv),

F2 := −2(∇Hθ)α · (∇Hv)− 2θ(∂zα)(∂zv)− θ(∂2zα)v.

By (5.7) and (5.8) for Ω′ in the case q = p, we obtain the estimate

|λ|1/2∥∂z(θαv)∥Lp(Ω′) + ∥∇∂z(θαv)∥Lp(Ω′) ≤ Cθ

(
|λ|−1/2∥F1∥Lp(Ω′) + ∥F2∥Lp(Ω′)

)
.(7.13)

and since θ ≡ 1 on C(x′0; |λ|−1/2) ⊂ Ω′ by (7.10), we further have

∥∂z(αv)∥Lp(C(x′
0;|λ|−1/2)) ≤ ∥∂z(θαv)∥Lp(Ω′),

∥∇∂z(αv)∥Lp(C(x′
0;|λ|−1/2)) ≤ ∥∇∂z(αv)∥Lp(C(x′

0;|λ|−1/2)).
(7.14)

Let us estimate each term on this right-hand side of (7.13) as follows: Denoting ∥·∥LpH := ∥·∥Lp(B(x′
0;r))

and ∥·∥Lpz := ∥·∥Lp(−h,0), we first observe that the cut-off functions satisfy

∥θ∥LpH ≤ Cr2/p, ∥∇Hθ∥LpH ≤ Cr2/p−1, ∥∆Hθ∥LpH ≤ Cr2/p−2

as well as

∥∂zα∥Lpz ≤ Cr1/p−1, ∥∂2zα∥Lpz ≤ Cr1/p−2.

By Proposition 7.3 we then have

∥θ(∂zα)(∇Hπ)∥Lp(Ω′) ≤ ∥θ∥∞∥∂zα∥Lpz∥∇Hπ∥LpH ≤ Cpr
3/p−1(1 + | log r|)∥f∥L∞

H L
p
z(Ω).

We further have the Poincaré inequality

∥f∥L∞(G′;Lp(−h,−h+d)) ≤ d∥∂zf∥L∞
H L

p
z
, 0 ≤ d ≤ h, f

∣∣
Γ′
b

= 0(7.15)

and hence using Hölder’s inequality yields

∥(∆Hθ)(∂zα)v∥Lp(Ω′) ≤ ∥∆Hθ∥LpH∥∂zα∥∞∥v∥L∞(G′;Lp(−h,−h+2r)) ≤ Cr2/p−2∥∂zv∥L∞
H L

p
z(Ω).

For the third term in F1 we simply have

∥(∆Hθ)α(∂zv)∥Lp(Ω′) ≤ ∥∆Hθ∥LpH∥α∥∞∥∂zv∥L∞
H L

p
z(Ω) ≤ Cr2/p−2∥∂zv∥L∞

H L
p
z(Ω).

The first term in F2 is estimated via (7.9), yielding

∥(∇Hθ)α(∇Hv)∥Lp(Ω′) ≤ ∥∇Hθ∥LpH∥α∥∞∥∇Hv∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0r

2/p−1|λ|−1/2∥f∥L∞
H L

p
z(Ω),
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whereas for the second term in F2 we simply have

∥θ(∂zα)(∂zv)∥Lp(Ω′) ≤ ∥θ∥∞∥∂zα∥∞∥∂zv∥L∞
H L

p
z(Ω) ≤ Cr2/p−1∥∂zv∥L∞

H L
p
z(Ω),

and by the Poincaré inequality (7.15) we estimate the last term by

∥θ(∂2zα)v∥Lp(Ω′) ≤ ∥θ∥LpH∥∂
2
zα∥∞∥v∥L∞

H L
p
z(Ω) ≤ Cr2/p−1∥∂zv∥L∞

H L
p
z(Ω).

Collecting the above estimates, using (7.12), (7.13) and (7.14), as well as r = η|λ|−1/2, we obtain that

|λ|1/2∥∂z(αv)∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0

(
η2/p−2 + η3/p−2|λ|−1/2p + η2/p−1r1/p|log(r)|

)
∥f∥L∞

H L
p
z(Ω)

+ Cθ,p(η
2/p−1 + η2/p−2)|λ|1/2∥∂zv∥L∞

H L
p
z(Ω).

≤ Cθ,p,λ0η
2/p−1

(
1 + r1/p| log r|

)
∥f∥L∞

H L
p
z(Ω)

+ Cθ,p(η
2/p−1 + η2/p−2)|λ|1/2∥∂zv∥L∞

H L
p
z(Ω).

(7.16)

Step 2: Now we shall estimate ∂z(βv). We apply Lemma 7.2 as in the previous step to obtain

|λ|1/2∥∂z(βv)∥L∞
H L

p
z(Ω) ≤ Cp|λ|1/p sup

x′
0∈G

(
|λ|1/2∥∂z(βv)∥Lp(C(x′

0;|λ|−1/2)) + ∥∇H∂z(βv)∥Lp(C(x′
0;|λ|−1/2))

)
.

(7.17)

In the following we fix an arbitrary point x′0 ∈ G. With the same cut-off function θ ∈ C∞
c (R2) as in Step

1, we find that θβv solves

λ(θβv)−∆(θβv) = F3 in Ω′, ∂z(θβv)|Γ′
u
= 0, θβv

∣∣
Γ′
b

= 0, θβv periodic on Γ′
l

where

F3 := −θβ(∇Hπ)− 2(∇Hθ)β · (∇Hv)− 2θ(∂zβ)(∂zv)− (∆Hθ)βv − 2θ(∂2zβ)v.

We apply estimate (5.7) on Ω′ with q = p to obtain

|λ|1/2∥∇(θβv)∥Lp(Ω′) + ∥∆(θβv)∥Lp(Ω′) ≤ Cθ∥F3∥Lp(Ω′)(7.18)

where we further have, compare (7.14), that

∥∂z(βv)∥Lp(C(x′
0;|λ|−1/2) ≤ ∥∇(θβv)∥Lp(Ω′),

∥∇H∂z(βv)∥Lp(C(x′
0;|λ|−1/2) ≤ ∥∇H∂z(θβv)∥Lp(Ω′) ≤ ∥θβv∥W 2,p(Ω′) ≤ Cp∥∆(θβv)∥Lp(Ω′)

(7.19)

by the invertibility of the Laplace operator with mixed Neumann and Dirichlet boundary conditions,
compare Section 5.

We now estimate the right-hand side of (7.18) as follows: Note that β satisfies the estimates

∥β∥Lpz ≤ Cr1/p, ∥∂zβ∥Lpz ≤ Cr1/p−1, ∥∂2zβ∥Lpz ≤ Cr1/p−2

since supp(β) ⊂ [−h,−h+ 3r]. It follows from Proposition 7.3 that

∥θβ(∇Hπ)∥Lp(Ω′) ≤ ∥θ∥∞∥β∥Lpz∥∇Hπ∥LpH ≤ Cpr
3/p(1 + | log r|)∥f∥L∞

H L
p
z(Ω).

The estimate (7.9) implies that

∥(∇Hθ)β · (∇Hv)∥LpH ≤ ∥∇Hθ∥LpH∥β∥∞∥∇Hv∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0r

2/p−1|λ|−1/2∥f∥L∞
H L

p
z(Ω),

and for the term containing vertical derivatives we have

∥θ(∂zβ)(∂zv)∥Lp(Ω′) ≤ ∥θ∥LpH∥∂zβ∥∞∥∂zv∥L∞
H L

p
z(Ω) ≤ Cr2/p−1∥∂zv∥L∞

H L
p
z(Ω).

By the Poincaré inequality (7.15) we have

∥(∆Hθ)βv∥Lp(Ω′) ≤ ∥∆Hθ∥LpH∥β∥∞∥v∥L∞(G;Lp(−h,−h+3r)) ≤ Cr2/p−1∥∂zv∥L∞
H L

p
z(Ω)

as well as

∥θ(∂2zβ) v∥Lp(Ω′) ≤ ∥θ∥LpH∥∂
2
zβ∥∞∥v∥L∞(G;Lp(−h,−h+3r)) ≤ Cr2/p−1∥∂zv∥L∞

H L
p
z(Ω).
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Combining the above estimates with (7.17), (7.18) and (7.19) as well as r = η|λ|−1/2 then yields

|λ|1/2∥∂z(βv)∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0

(
η2/p−1 + η3/p|λ|−1/2p

(
1 + | log(η|λ|−1/2)|

))
∥f∥L∞

H L
p
z(Ω)

+ Cθ,pη
2/p−1|λ|1/2∥∂zv∥L∞

H L
p
z(Ω).

(7.20)

We now substitute (7.16) and (7.20) into (7.11). Since all constants C > 0 do not depend on the parameter
η > 0, we can take it to be sufficiently large and so similarly to the proof of Lemma 5.4 we obtain

|λ|1/2∥∂zv∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0

(
η2/p−1(1 + r1/p|log(r)|) + η3/p|λ|−1/2p(1 + |log(|λ|)|)

)
∥f∥L∞

H L
p
z(Ω).

Since

sup
0<r<r0

r1/p|log(r)| <∞, sup
|λ|>λ0

|λ|−1/2p(1 + |log(|λ|)|) <∞,

for any r0, λ0 > 0 and p ∈ (1,∞), this implies the desired estimate |λ|1/2∥∂zv∥L∞
H L

p
z(Ω) ≤ C∥f∥L∞

H L
p
z(Ω)

for |λ| ≥ λ0. �

We now turn to the problem

λv −Av = P∂zf on Ω(7.21)

with boundary conditions (2.3) for f ∈ X. Since

P∂zf = ∂zf − (1−Q)∂zf = ∂zf,(7.22)

whenever f = 0 on Γu ∪ Γb and C∞
per([0, 1]

2;C∞
c (−h, 0))2 is dense in X we may assume without loss of

generality that (7.22) holds. Moreover, in view of periodic extension we may assume that (7.21) holds in
a larger domain Ω′ := G′ × (−h, 0), G′ := (−2, 3)2. Since the problem is well-posed in Lpσ(Ω) by (6.6),
estimate (7.2) then follows from the following:

Proposition 7.7. Let p ∈ (2,∞) and θ ∈ (0, π). Then there exists constants λ0 > 0 and Cθ,p,λ0 > 0 such
that for all λ ∈ Σθ with |λ| > λ0 and f ∈ X the solution to the problem (7.21) satisfies

|λ|1/2∥v∥L∞
H L

p
z(Ω) ≤ Cθ,p,λ0∥f∥L∞

H L
p
z(Ω).

To prove this estimate, we adopt a duality argument combined with the use of a regularized delta
function, which is based on the methodology known in L∞-type error analysis of the finite element
method, cf. [22].

In order to prove this estimate we first introduce some notation. Using periodicity, one sees that for
any ε ∈ (0, 1) we have B(x′0, ε) ⊂ G′ for x′0 ∈ G and

∥v∥p
L∞
H L

p
z(Ω)

= sup
x′
0∈G

sup
x′∈B(x′

0;ε)

∫ 0

−h
|v(x′, z)|p dz,

where by B(x′0; ε) we continue to denote a disk in R2, compare Lemma 7.2. In the following we fix

arbitrary x′0 ∈ G, x′ ∈ B(x′0; ε) and choose ε = |λ|−
p

2(p−2) for λ as above.
Letting δ ≥ 0 be a smooth nonnegative function in the variables (x, y) =: x′ such that supp δ ⊂ B(0; 1)

and
∫
R2 δ dx

′ = 1, we introduce a rescaled function as

δε(x
′) :=

1

ε2
δ

(
x′

ε

)
, δε,x′

0
(x′) := δε(x

′ − x′0).(7.23)

We then obtain
(7.24)∫ 0

−h
|v(x′, z)|p dz =

∫ 0

−h

∫
G′

(
|v(x′, z)|p − |v(y′, z)|p

)
δε,x′

0
(y′) dy′dz + (v, δε,x′

0
|v|p−2v∗)Ω′ =: I1(x

′) + I2,

where v∗ means the complex conjugate of v and (·, ·)Ω′ denotes the inner product on L2(Ω′)2. In the
following we estimate the two terms on the right-hand side separately, beginning with I1.
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Lemma 7.8. Under the assumptions of Proposition 7.7 we have for all for all x′0 ∈ G and x′ ∈ B(x′0; ε),

ε = |λ|−
p

2(p−2) , that

|I1(x′)| =
∣∣∣∣∫

Ω′

(
|v(x′, z)|p − |v(y′, z)|p

)
δε,x′

0
(y′) dy′dz

∣∣∣∣ ≤ Cθ,p|λ|−1/2∥f∥L∞
H L

p
z(Ω)∥v∥

p−1
L∞
H L

p
z(Ω)

.

Proof. Since
∫
R2 δε,x′

0
(y′) dy′ = 1 and supp δε,x′

0
⊂ B(x′0; ε) we obtain

|I1(x′)| ≤ sup
y′∈B(x′

0;ε)

∫ 0

−h

∣∣|v(x′, z)|p − |v(y′, z)|p
∣∣ dz

≤ C sup
y′∈B(x′

0;ε)

∫ 0

−h
(|v(x′, z)|p−1 + |v(y′, z)|p−1)

∣∣v(x′, z)− v(y′, z)
∣∣ dz,

where we have used the elementary inequality

|ap − bp| ≤ pmax{a, b}p−1|a− b| ≤ p(a+ b)p−1|a− b| ≤ p2p−2(ap−1 + bp−1)|a− b|

for all a, b ≥ 0, where we used that p ∈ [2,∞) implies that x 7→ xp−1 is a convex function. Hölder’s
inequality then implies that∫ 0

−h
(|v(x′, z)|p−1 + |v(y′, z)|p−1)

∣∣v(x′, z)− v(y′, z)
∣∣ dz ≤ (∥v(x′)∥p−1

Lpz
+ ∥v(y′)∥p−1

Lpz
)∥v(x′)− v(y′)∥Lpz .

Hence we have

sup
x′∈B(x′

0;ε)

|I1(x′)| ≤ C sup
y′∈B(x′

0;ε)

∥v(y′)∥p−1
Lpz

sup
y′∈B(x′

0;ε)

∥v(x′)− v(y′)∥Lpz ≤ C∥v∥p−1
L∞
H L

p
z
εα∥v∥CαHLpz(Ω),

where α := 1−2/p > 0 and ∥v∥CαHLpz(Ω) denotes the space of L
p(−h, 0)-valued Hölder continuous functions

of exponent α on G.

The assumption ε = |λ|−
p

2(p−2) then yields εα = |λ|−1/2. We now use the Sobolev embedding
W 1,p(G) ↪→ Cα(G) to obtain the estimate ∥v∥CαHLpz ≤ C∥v∥W 1,p(Ω). In addition, the Poincaré inequality
yields

∥v∥W 1,p(Ω) ≤ Cp∥∇v∥Lp(Ω) = Cp∥∇(λ−Ap,σ)
−1∂zf∥Lp(Ω) ≤ Cθ,p∥f∥Lp(Ω) ≤ Cθ,p∥f∥L∞

H L
p
z(Ω),

where we used that ∇(−Ap,σ)−1/2, Ap,σ(λ − Ap,σ)
−1 and (−Ap,σ)−1/2∂z are (uniformly) bounded on

Lpσ(Ω) for λ ∈ Σθ by [7]. Combining these results then gives the desired estimate. �

In order to estimate I2 we perform a duality argument. For this purpose we introduce an auxiliary
problem corresponding to (7.21) as follows:

(7.25)

λ∗w −∆w +∇HΠ = δε,x′
0
|v|p−2v∗ in Ω′,

∂zΠ = 0 in Ω′,

divH w̄ = 0 in G′,

∂zw|Γ′
u
= 0, w|Γ′

b
= 0, w,Π periodic on Γ′

l,

where the upper script ∗ means complex conjugate as before. We establish an L1
HL

q
z-estimate to this

problem, where q := p/(p− 1) is the dual index of p.

Proposition 7.9. Let p ∈ (2,∞), 1/p + 1/q = 1 and θ ∈ (0, π). Then there exists a sufficiently large
λ0 > 0 and a constant Cp,λ0,θ > 0 such that the solution of (7.25) satisfies

|λ|1/2∥∂zw∥L1
HL

q
z(Ω′) ≤ Cθ,p

(
1 + |λ|−1/2qε2/s−2

)
∥v∥p−1

L∞
H L

p
z(Ω)

,

for all ε ∈ (0, 1), s ∈ (1, q], x′0 ∈ G, λ ∈ Σθ, |λ| > λ0, and v ∈ X.

Remark 7.10. If one even has p ∈ (3,∞) then this result can be extended to the full range of λ ∈ Σθ by
a similar argument as in the proof of Lemma 5.4, compare Remark 7.6.
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For simplicity, we write LpHL
q
z to refer to LpHL

q
z(Ω

′) = Lp(G′;Lq(−h, 0)) when there is no ambiguity.
First we introduce the following result.

Lemma 7.11. Let ε ∈ (0, 1), x′0 ∈ G, p ∈ (1,∞), 1/p+ 1/q = 1 and v ∈ X be arbitrary. Then, for δε,x′
0

defined as in (7.23) and s ∈ [1, q] we have

∥δε,x′
0
|v|p−2v∗∥Ls(Ω′) ≤ C∥δε,x′

0
|v|p−2v∗∥LsHLqz ≤ Cε2/s−2∥v∥p−1

L∞
H L

p
z(Ω)

for a constant C > 0 not depending on ε, x′0 and v.

Proof. We set F := δε,x′
0
|v|p−2v∗. Noting that |F |q = δqε,x′

0
|v|p and that δε,x′

0
is independent of z, we

obtain

∥F∥LsHLqz =

[∫
G′

(∫ 0

−h
δε(x

′ − x′0)
q|v(x′, z)|p dz

)s/q
dx′

]1/s

≤
(∫

G′
δε(x

′ − x′0)
s dx′

)1/s
[
sup
x′∈G′

(∫ 0

−h
|v(x′, z)|p dz

)1/p
]p/q

≤ Cε2/s−2∥v∥p−1
L∞
H L

p
z(Ω)

,

where we used the periodicity of v in the last step. This completes the proof. �

Proof of Proposition 7.9. We set r := η|λ|−1/2, where η > 0 is a large number to be fixed later and

|λ| > λ0, where λ0 > 0 is sufficiently large such that ηλ
−1/2
0 < 1. We introduce two cut-off functions

α = αr, β = βr in the vertical direction as follows:

α ∈ C∞([−h, 0]), α ≡ 0 in [−h,−h+ r], α ≡ 1 in [−h+ 2r, 0], |∂kzα(z)| ≤ Cr−k,

β ∈ C∞([−h, 0]), β ≡ 1 in [−h,−h+ 2r], β ≡ 0 in [−h+ 3r, 0], |∂kzβ(z)| ≤ Cr−k

for k = 0, 1, 2. Then we may split the estimate for ∂zw into the “upper” and “lower” parts in Ω′ as

(7.26) ∥∂zw∥L1
HL

q
z
≤ ∥∂z(αw)∥L1

HL
q
z
+ ∥∂z(βw)∥L1

HL
q
z
.

Step 1. We consider αw, which satisfies

λ∗αw −∆(αw) = αF − α(∇HΠ)− 2(∂zα)(∂zw)− (∂2zα)w,

∂z(αw) = 0 on Γ′
u ∪ Γ′

b, αw periodic on Γ′
l

where F := δε,x′
0
|v|p−2v∗ as in the proof of Lemma7.11. Differentiating this with respect to z yields

λ∗∂z(αw)−∆(∂z(αw)) = ∂z
[
αF − 2(∂zα)(∂zw)− (∂2zα)w

]
− (∂zα)(∇HΠ) in Ω′,

∂z(αw) = 0 on Γ′
u ∪ Γ′

b, ∂z(αw) periodic on Γ′
l.

Applying Lemma 5.4 in L1
HL

q
z(Ω

′) we obtain

|λ|1/2∥∂z(αw)∥L1
HL

q
z
≤C

(
∥αF∥L1

HL
q
z
+ ∥(∂zα)(∂zw)∥L1

HL
q
z
+ ∥(∂2zα)w∥L1

HL
q
z

)
+C|λ|−1/2∥(∂zα)(∇HΠ)∥L1

HL
q
z
.

We now estimate each term on the right-hand side. By Lemma 7.11 with s = 1 we have

∥αF∥L1
HL

q
z
≤ ∥α∥∞∥F∥L1

HL
q
z
≤ C∥v∥p−1

L∞
H L

p
z(Ω)

.

Using the estimate on derivatives of α we obtain

∥(∂zα)(∂zw)∥L1
HL

q
z
≤ Cr−1∥∂zw∥L1

HL
q
z
,

and by the Poincaré inequality we have

∥(∂2zα)w∥L1
HL

q
z
≤ Cr−2∥w∥L1

HL
q
z(G′×(−h,−h+2r)) ≤ Cr−1∥∂zw∥L1

HL
q
z
.



22 GIGA, GRIES, HIEBER, HUSSEIN, AND KASHIWABARA

Using Ls(G′) ↪→ L1(G′) as well as the estimate on the pressure term, cf. [11, Theorem 3.1.], in Ls(Ω) for
s ∈ (1, q], we obtain

∥(∂zα)(∇HΠ)∥L1
HL

q
z
≤ C∥∂zα∥Lqz∥∇HΠ∥Ls(G′) ≤ Cr1/q−1∥F∥Ls ≤ Cr1/q−1ε2/s−2∥v∥p−1

L∞
H L

p
z(Ω)

,

Collecting the above estimates and plugging in r = η|λ|−1/2 yields

(7.27) |λ|1/2∥∂z(αw)∥L1
HL

q
z
≤ C(1 + η1/q−1|λ|−1/2qε2/s−2)∥v∥p−1

L∞
H L

p
z(Ω)

+ Cη−1|λ|1/2∥∂zw∥L1
HL

q
z
.

Step 2. We consider βw, which satisfies

λ∗βw −∆(βw) = βF − β∇HΠ− 2(∂zβ)(∂zw)− (∂2zβ)w in Ω′,

∂z(βw) = 0 on Γ′
u, βw = 0 on Γ′

b, ∂z(βw) periodic on Γ′
l.

Applying Lemma 5.4 in L1
HL

q
z we obtain

|λ|1/2∥∂z(βw)∥L1
HL

q
z
≤ C(∥βF∥L1

HL
q
z
+ ∥(∂zβ)(∂zw)∥L1

HL
q
z
+ ∥(∂2zβ)w∥L1

HL
q
z
+ ∥β(∇HΠ)∥L1

HL
q
z
).

A calculation similar to Step 1 then gives

(7.28) |λ|1/2∥∂z(βw)∥L1
HL

q
z
≤ C(1 + η1/q|λ|−1/2qε2/s−2)∥v∥p−1

L∞
H L

p
z
+ Cη−1|λ|1/2∥∂zw∥L1

HL
q
z
.

Substituting (7.27) and (7.28) into (7.26) and choosing sufficiently large η enable us to absorb the term
|λ|1/2∥∂zw∥L1

HL
q
z
from the right-hand side, which leads to

|λ|1/2∥∂zw∥L1
HL

q
z
≤ C(1 + |λ|−1/2qε2/s−2)∥v∥p−1

L∞
H L

p
z(Ω)

This completes the proof. �

With the preparations above, we are now in the position to prove Proposition 7.7.

Proof of Proposition 7.7. By (7.24) and Lemma 7.8 we have

(7.29) ∥v∥p
L∞
H L

p
z(Ω)

≤ C|λ|−1/2∥f∥L∞
H L

p
z(Ω)∥v∥

p−1
L∞
H L

p
z(Ω)

+ I2,

with I2 as defined in (7.24). Substituting (7.25) and integrating by parts, we find that

I2 = (v, δε,x′
0
|v|p−2v∗)Ω′ = (v, λ∗w −∆w +∇HΠ)Ω′ = (λv −∆v +∇Hπ,w)Ω′ = (∂zf, w)Ω′

= −(f, ∂zw)Ω′ ,

where we have used that (v,∇HΠ)Ω′ = 0 = (∇Hπ,w)Ω′ since divHv = 0 = divHw for the third and
f |Γu∪Γb = 0 for the last equality. Using 1/p+ 1/q = 1 and applying Proposition 7.9 we obtain

|I2| ≤ ∥f∥L∞
H L

p
z(Ω)∥∂zw∥L1

HL
q
z
≤ C|λ|−1/2∥f∥L∞

H L
p
z(Ω)∥v∥

p−1
L∞
H L

p
z(Ω)

(
1 + |λ|−1/2qε2/s−2

)
.

We set ε = |λ|−
p

2(p−2) for |λ| > 1 and s = min{ 4p
3p+2 ,

p
p−1} ∈ (1, q]. This yields

− 1

2q
+

(
1− 1

s

)
p

p− 2
= −1

2
+

1

2p
+

(
1− 1

s

)
p

p− 2
≤ −1

4
+

1

2p
< 0

which implies that 1 + |λ|−1/2qε2/s−2 ≤ 2 for |λ| > 1 and therefore

(7.30) |I2| ≤ C|λ|−1/2∥f∥L∞
H L

p
z(Ω)∥v∥

p−1
L∞
H L

p
z(Ω)

, |λ| > 1.

The desired estimate then follows from (7.29) and (7.30) after dividing by ∥v∥p−1
L∞
H L

p
z(Ω)

. �

Proof of Claim 7.1. Estimate (7.1) now follows from (7.8) and Proposition 7.5, whereas estimate (7.2)
follows from Proposition 7.7. Estimate 7.3 follows from (7.1), (7.2) and Claim 6.1. �
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8. Proof of the main results

Theorem 3.4 is a direct consequence of Claims 6.1 and 7.1.
For the non-linear problem in the space X we will make use of the following estimates.

Lemma 8.1. Let p > 3. Then exists a constant C > 0 such that for all t > 0 and vi ∈ Xσ satisfying
∇vi ∈ X and vi

∣∣
Γb

= 0 with ui = (vi, wi) as in (2.2) for i = 1, 2 we have

∥etAP(u1 · ∇)v2∥L∞
H L

p
z
≤ Ct−1/2∥∇v1∥L∞

H L
p
z
∥v2∥L∞

H L
p
z
,(i)

∥∇etAP(u1 · ∇)v2∥L∞
H L

p
z
≤ Ct−1/2∥∇v1∥L∞

H L
p
z
∥∇v2∥L∞

H L
p
z
,(ii)

∥∇etAP(u1 · ∇)v2∥L∞
H L

p
z
≤ Ct−1∥∇v1∥L∞

H L
p
z
∥v2∥L∞

H L
p
z
,(iii)

as well as

∥etAP(u1 · ∇)v2∥L∞
H L

p
z
≤ C

(
t−1/2∥∇vi∥L∞

H L
p
z
∥vj∥L∞

H L
p
z
+ ∥∇v1∥L∞

H L
p
z
∥∇v2∥L∞

H L
p
z

)
(iv)

where {i, j} = {1, 2}.

Proof. We begin by noting that

∥(u1 · ∇)v2∥L∞
H L

p
z
≤
(
∥v1∥L∞(Ω) + ∥w1∥L∞(Ω)

)
∥∇v2∥L∞

H L
p
z
.

So, using Sobolev embeddings, the Poincaré inequality and X ↪→ Lp(Ω)2 we obtain

∥vi∥L∞(Ω) ≤ C∥vi∥W 1,p(Ω) ≤ C∥∇vi∥Lp(Ω) ≤ C∥∇vi∥L∞
H L

p
z
.

Similarly one has

∥wi∥L∞(Ω) ≤ C∥divHvi∥L∞
H L

p
z
≤ C∥∇vi∥L∞

H L
p
z
.

This allows us to obtain (ii) via Claim 6.1 and 7.1 as well as

∥∇etAP(u1 · ∇)v2∥L∞
H L

p
z
≤ Ct−1/2∥(u1 · ∇)v2∥L∞

H L
p
z
≤ Ct−1/2∥∇v1∥L∞

H L
p
z
∥∇v2∥L∞

H L
p
z
.

To prove (i) we proceed analogously as above to obtain

∥v1 ⊗ v2∥L∞
H L

p
z
≤ C∥∇vi∥L∞

H L
p
z
∥vj∥L∞

H L
p
z
, ∥w1v2∥L∞

H L
p
z
≤ C∥∇v1∥L∞

H L
p
z
∥v2∥L∞

H L
p
z

where {i, j} = {1, 2} and since divui = 0 we can write

(u1 · ∇)v2 = ∇ · (u1 ⊗ v2) = ∇H · (v1 ⊗ v2) + ∂z(w1v2)

which allows us to apply Claim 6.1 and 7.1 yielding

∥etAP(u1 · ∇)v2∥L∞
H L

p
z
= ∥etAP∇ · (u1 ⊗ v2)∥L∞

H L
p
z

≤ ∥etAP∇H · (v1 ⊗ v2)∥L∞
H L

p
z
+ ∥etAP∂z(w1v2)∥L∞

H L
p
z

≤ Ct−1/2
(
∥v1 ⊗ v2∥L∞

H L
p
z
+ ∥w1v2∥L∞

H L
p
z

)
≤ Ct−1/2∥∇v1∥L∞

H L
p
z
∥v2∥L∞

H L
p
z
,

and estimate (iii) is obtained analogously via

∥∇etAP(u1 · ∇)v2∥L∞
H L

p
z
≤ Ct−1

(
∥v1 ⊗ v2∥L∞

H L
p
z
+ ∥w1v2∥L∞

H L
p
z

)
≤ Ct−1∥∇v1∥L∞

H L
p
z
∥v2∥L∞

H L
p
z
.

To prove (iv) we observe that wi = 0 on Γu ∪ Γb implies that

P∂z(w1v2) = ∂z(w1v2) = −(divHv1)v2 + w1∂zv2

and the right-hand side is further estimated via

∥(divHv1)v2∥L∞
H L

p
z
≤ C∥∇v1∥L∞

H L
p
z
∥v2∥L∞(Ω) ≤ C∥∇v1∥L∞

H L
p
z
∥∇v2∥L∞

H L
p
z
,

and

∥w1∂zv2∥L∞
H L

p
z
≤ ∥w1∥L∞(Ω)∥∂zv2∥L∞

H L
p
z
≤ C∥∇v1∥L∞

H L
p
z
∥∇v2∥L∞

H L
p
z
.
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Applying Claim 6.1 then yields that for {i, j} = {1, 2} we have

∥etAP∇H · (v1 ⊗ v2)∥L∞
H L

p
z
≤ Ct−1/2∥v1 ⊗ v2∥L∞

H L
p
z
≤ Ct−1/2∥∇vi∥L∞

H L
p
z
∥vj∥L∞

H L
p
z
,

as well as

∥etAP∂z(w1v2)∥L∞
H L

p
z
≤ C∥∇v1∥L∞

H L
p
z
∥∇v2∥L∞

H L
p
z

which implies (iv) and completes the proof. �

It has been proven in [7] that the operator Ap,σ possesses maximal Lq-regularity. In [9] the authors
applied this to develop a solution theory for initial data

a ∈ Xγ := (Lpσ(Ω), D(Ap))1−1/q,q ⊂ B2−2/q
pq (Ω)2 ∩ Lpσ(Ω)

where p, q ∈ (1,∞) satisfy 1/p+ 1/q ≤ 1. In particular, one has the following result.

Lemma 8.2. Let a ∈ Xγ . Then there exists a unique strong solution to the primitive equations (2.1) with
boundary conditions (2.3) satisfying

v ∈ C([0,∞);Xγ).

This enables a key step in the proof of our main result as it guarantees the existence of smooth reference
solutions vref to the primitive equations given sufficiently smooth reference data aref. In order to construct
v as a solution to problem (2.1) with initial data a we construct V := v − vref by an iterative method
using initial data a0 := a− aref. Before we do so, we establish an auxiliary lemma.

Lemma 8.3. Let (an)n∈N be a sequence of positive real numbers such that

am+1 ≤ a0 + c1a
2
m + c2am for all m ∈ N

and constants c1 > 0 and c2 ∈ (0, 1) such that 4c1a0 < (1− c2)
2. Then am < 2

1−c2 a0 for all m ∈ N.

Proof. Let x0 be the smallest solution to the equation x = a0 + c1x
2 + c2x. Then

0 < x0 =
(1− c2)−

√
(1− c2)2 − 4c1a0
2c1

=
1

2c1

4c1a0

(1− c2) +
√
(1− c2)2 − 4c1a0

<
2

1− c2
a0,

and since p(x) = a0+c1x
2+c2x is an increasing function on [0,∞) it follows that p(x) ≤ x0 for x ∈ [0, x0].

The condition c2 ∈ (0, 1) further yields

(1− c2) +
√
(1− c2)2 − 4c1a0 < 2

from which it follows that a0 < x0 and thus the claim is easily derived by induction. �

We now prove our main result.

Proof of Theorem 3.1. Step 1: Decomposition of data.
Given an initial value a ∈ Xσ we will split it into a smooth part aref and a small rough part a0, where

a = aref+a0, as follows: Since Aσ is densely defined onXσ we take aref ∈ D(Aσ) such that a0 := a−aref can
be assumed to be arbitrarily small in Xσ. Now let q ∈ (1,∞) be such that 1/q+1/p ≤ 1 and 2/q+3/p < 1.
The latter condition on q then yields the embedding Xγ ↪→ C1(Ω)2. Due to D(Aσ) ⊂ D(Ap,σ) ⊂ Xγ it
follows from Lemma 8.2 that taking aref as initial data of the primitive equations, there exists a function
vref ∈ C([0,∞);Xγ) solving the primitive equations with initial data vref(0) = aref.

Step 2: Estimates for the construction of a local solution.
We will show that there exists a constant C0 > 0 such that if a0 ∈ Xσ satisfies ∥a0∥L∞

H L
p
z
< C0 then

there exists a time T > 0 and a unique function

V ∈ S(T ) := {V ∈ C([0, T ];Xσ) : ∥∇V (t)∥L∞
H L

p
z
= o(t−1/2)},

where

∥V ∥S(T ) = max

{
sup

0<t<T
∥V (t)∥L∞

H L
p
z
, sup
0<t<T

t1/2∥∇V (t)∥L∞
H L

p
z

}
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such that v = vref + V solves problem (2.1) on (0, T ) with initial value v(0) = a. In order to construct V
we define the iterative sequence of functions (Vm)m∈N via

V0(t) = etAa0, Vm+1(t) = etAa0 +

∫ t

0

e(t−s)AFm(s) ds(8.1)

where

Fm := −P ((Um · ∇)Vm + (Um · ∇)vref + (uref · ∇)Vm)

and Um = (Vm,Wm), uref = (vref, wref) with the vertical component w given by the horizontal component
v via the relation (2.2). We will now estimate this sequence in S(T ) for some value T > 0 to be fixed later
on. Since Pa0 = a0 we have

∥V0∥S(T ) ≤ C∥a0∥L∞
H L

p
z
, T ∈ (0,∞)

by Lemma 6.1. For m ≥ 1 we will first consider the gradient estimates. We have already estimated the
term ∇etAa0, whereas for the convolution integrals we have∥∥∥∥∥

∫ t/2

0

∇e(t−s)AP ((Um(s) · ∇)Vm(s)) ds

∥∥∥∥∥
L∞
H L

p
z

≤ C

(∫ t/2

0

(t− s)−1s−1/2 ds

)
Km(t)Hm(t)

= Ct−1/2Km(t)Hm(t)

by Lemma 8.1 (iii) where

Km(t) := sup
0<s<t

s1/2∥∇Vm(s)∥L∞
H L

p
z
, Hm(t) := sup

0<s<t
∥Vm(s)∥L∞

H L
p
z

and via Lemma 8.1 (ii) we obtain∥∥∥∥∥
∫ t

t/2

∇e(t−s)AP (Um(s) · ∇Vm(s)) ds

∥∥∥∥∥
L∞
H L

p
z

≤ C

(∫ t

t/2

(t− s)−1/2s−1

)
Km(t)2

≤ Ct−1/2Km(t)2.

Finally applying Lemma 8.1 (ii) to the two remaining mixed terms yields∥∥∥∥∫ t

0

∇e(t−s)AP (Um(s) · ∇)vref(s)) ds

∥∥∥∥
L∞
H L

p
z

≤ C

(∫ t

0

(t− s)−1/2s−1/2 ds

)
sup

0<s<t
∥∇vref(s)∥L∞

H L
p
z
Km(t)

= C sup
0<s<t

∥∇vref(s)∥L∞
H L

p
z
Km(t),∥∥∥∥∫ t

0

∇e(t−s)AP (uref(s) · ∇)Vm(s)) ds

∥∥∥∥
L∞
H L

p
z

≤ C sup
0<s<t

∥∇vref(s)∥L∞
H L

p
z
Km(t).

We set R := sup0≤t≤T0
∥∇vref(t)∥L∞

H L
p
z
and note that 0 < R <∞ by Lemma 8.2, since vref ∈ C([0,∞);Xγ)

and 2/q+3/p < 1 implies that Xγ ⊂ B
2−2/q
pq (Ω)2 ↪→ C1(Ω)2 via embedding theory, cf. [25, Section 3.3.1].

Taking these estimates together yields

t1/2∥∇Vm+1(t)∥L∞
H L

p
z
≤ C1

(
∥a0∥L∞

H L
p
z
+Km(t)Hm(t) +Km(t)2 +Rt1/2Km(t)

)
.(8.2)

To estimate ∥Vm+1(t)∥L∞
H L

p
z
we apply Lemma 8.1 (i) to obtain∥∥∥∥∫ t

0

e(t−s)AP ((Um(s) · ∇)Vm(s)) ds

∥∥∥∥
L∞
H L

p
z

≤ C

(∫ t

0

(t− s)−1/2s−1/2 ds

)
Km(t)Hm(t)

= CKm(t)Hm(t)
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whereas for the mixed terms Lemma 8.1 (iv) yields

∥e(t−s)AP(Um(s) · ∇)vref(s)∥L∞
H L

p
z
≤C
(
(t− s)−1/2∥∇vref(s)∥L∞

H L
p
z
∥Vm(s)∥L∞

H L
p
z

+ ∥∇Vm(s)∥L∞
H L

p
z
∥∇vref(s)∥L∞

H L
p
z

)
and therefore∥∥∥∥∫ t

0

e(t−s)AP((Um(s) · ∇)vref(s)) ds

∥∥∥∥
L∞
H L

p
z

≤ C

(∫ t

0

(t− s)−1/2 ds

)
RHm(t) + C

(∫ t

0

s−1/2 ds

)
RKm(t)

= CRt1/2(Hm(t) +Km(t)),

and the other mixed term can be treated analogously due to the symmetry of the right-hand side in (iv).
Taking these estimates together yields

∥Vm+1(t)∥L∞
H L

p
z
≤ C1

(
∥a0∥L∞

H L
p
z
+Km(t)Hm(t) + t1/2Hm(t) + t1/2Km(t)

)
.(8.3)

Since the right-hand sides of (8.2) and (8.3) are increasing functions we obtain for t > 0 that

Km+1(t) ≤ C1

(
∥a0∥L∞

H L
p
z
+Km(t)Hm(t) +Km(t)2 +Rt1/2Km(t)

)
,

Hm+1(t) ≤ C1

(
∥a0∥L∞

H L
p
z
+Km(t)Hm(t) +Rt1/2Hm(t) +Rt1/2Km(t)

)
.

(8.4)

Now let T ∈ (0, T0) where T0 > 0 is chosen in such a way that

8C1RT
1/2
0 < 1.

Then for all 0 < t ≤ T < T0 we have

∥Vm+1∥S(t) ≤ C1∥a0∥L∞
H L

p
z
+ 2C1∥Vm∥2S(t) +

1

4
∥Vm∥S(t).

By Lemma 8.3 it follows that if 8C2
1∥a0∥L∞

H L
p
z
< (1− 1/4)2, then for all m ∈ N we have

∥Vm∥S(t) ≤
8

3
C1∥a0∥L∞

H L
p
z
, t ∈ (0, T ].(8.5)

The property limt→0+ t
1/2∥∇Vm(t)∥L∞

H L
p
z
= 0 is then easily obtained via induction and Claim 6.1 (e).

Step 3: Convergence.
We now show that (Vm)m∈N is a Cauchy sequence in S(T ) if ∥a0∥L∞

H L
p
z
is sufficiently small. For this

purpose we consider the new sequence

Ṽm := Vm+1 − Vm, m ≥ 0.

Using the previous estimates we already know that ∥Ṽ0∥S(T ) < ∞. To estimate this sequence further we
use

Fm − Fm−1 =
(
Ũm−1 · ∇

)
Vm + (Um−1 · ∇) Ṽm−1 +

(
Ũm−1 · ∇

)
vref + (Uref · ∇) Ṽm−1

and proceed as above to obtain

t1/2∥∇Ṽm(t)∥L∞
H L

p
z
≤ C2

(
2Hm(t)K̃m−1(t) + 2H̃m−1(t)Km−1(t) +Km(t)K̃m−1(t)

+Km−1(t)K̃m−1(t) + 2Rt1/2K̃m−1

)(8.6)

as well as

∥Ṽm(t)∥L∞
H L

p
z
≤ C2

(
K̃m−1(t) [Hm(t) +Hm−1(t)] +Rt1/2

[
K̃m−1(t) + H̃m−1(t)

])
,(8.7)
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where

K̃m(t) := sup
0<s<t

s1/2∥∇Ṽm(t)∥L∞
H L

p
z
, H̃m(t) := sup

0<s<t
∥Ṽm(t)∥L∞

H L
p
z
.

By (8.5) it follows that if

max{2RT 1/2
0 , 16C1∥a0∥L∞

H L
p
z
} < 1/4C2,

then for m ≥ 1 and 0 < t ≤ T < T0 we have

∥Ṽm(t)∥S(t) ≤ C2

(
16C1∥a0∥L∞

H L
p
z
+ 2Rt1/2

)
∥Ṽm−1(t)∥S(t) <

1

2
∥Ṽm−1(t)∥S(t).

Therefore, since S(T ) is a Banach space, (Vm)m∈N converges in S(T ). We denote the limit by V and see
that it satisfies

V (t) = etAa0 −
∫ t

0

e(t−s)AP
(
(U(s) · ∇)V (s) + (U(s) · ∇)vref(s) + (uref(s) · ∇)V (s)

)
ds(8.8)

for t ∈ (0, T ) and thus v := V + vref is a solution to the primitive equations (2.1).
Step 4: Extending to a global solution.
Using V ∈ S(T ), the embedding L∞

HL
p
z(Ω) ↪→ Lp(Ω), as well as the semigroup estimates

tϑ∥etAPf∥D((−Ap,σ)ϑ) ≤ C∥f∥Lp(Ω), t1/2∥etAP∇ · f∥Lp(Ω) ≤ C∥f∥Lp(Ω), t > 0, ϑ ∈ [0, 1]

compare [11, Lemma 4.6] and [7, Theorem 3.7], one easily obtains that V (t0) ∈ D((−Ap,σ)ϑ) for t0 > 0,

and thus v(t0) ∈ D((−Ap,σ)1/p) as well, so v can be extended to a global solution that is strong on (t0,∞).
Step 5: Uniqueness.
To see that v is a unique solution and thus strong on (0, t0) as well, we consider v(1) and v(2) both to

be solutions in the sense of Theorem 3.1 with initial value a and set

t∗ := inf{t ∈ [0,∞) : v(1)(t) ̸= v(2)(t)}.
Assume that t∗ ∈ (0,∞). Then using continuity of the solutions

a∗ := v(1)(t∗) = v(2)(t∗) = a∗ref + a∗0

where a∗0 ∈ Xσ is sufficiently small and a∗ref ∈ D(Aσ). Let v
∗
ref be the reference solution to the initial data

a∗ref and

V (i)(t) := v(i)(t∗ + t)− v∗ref(t
∗), i = 1, 2.

Then V (1), V (2) ∈ S(T ∗) both satisfy the condition (8.8) for arbitrary t ∈ (0, T ∗), T ∗ ∈ (0,∞). We set

Ṽ := V (1) − V (2) and observe that proceeding analogously as before one obtains

H̃(t) ≤ C3

(
t1/2(H̃(t) + K̃(t)) +H(1)(t)K̃(t) +K(2)(t)H̃(t)

)
,

K̃(t) ≤ C3

(
2t1/2K̃(t) +H(1)(t)K̃(t) +K(2)(t)H̃(t) +K(1)K̃(t) +K(2)K̃(t)

)
,

where H̃,H(i), K̃,K(i) are defined analogously to above. This yields

∥Ṽ ∥S(t) ≤ C3

(
t1/2 +H(1)(t) +H(2)(t) +K(1)(t) +K(2)(t)

)
∥Ṽ ∥S(t), t ∈ (0, T ∗).(8.9)

By taking T ∗ > 0 to be small the terms (T ∗)1/2 and K(1)(T )∗,K(2)(T ∗) can be taken to be arbitrarily
small due to ∥∇V (i)(t)∥ = o(t−1/2), which in the case t∗ = 0 follows from the regularity of v and in the
case t∗ > 0 this follows from ∥∇v(t∗) ∈ L∞

HL
p
z(Ω)

2.

As for H(1) and H(2), using the same arguments that derived (8.3) one obtains for t ∈ (0, T ∗) that

H(i)(t) ≤ C1

(
∥a∗0∥L∞

H L
p
z
+K(i)(t)H(i)(t) +R∗t1/2H(i)(t) +R∗t1/2K(i)(t)

)
,(8.10)

where R∗ := sup0≤t≤T∗∥∇v∗ref(t)∥L∞
H L

p
z
. Now, we choose T ∈ (0, T ∗) so small that

K(i)(T )H(i)(T ∗) +R∗T 1/2H(i)(T ∗) +R∗T 1/2K(i)(T ∗) ≤ ∥a∗0∥L∞
H L

p
z
.
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Now, taking ∥a∗0∥L∞
H L

p
z
to be sufficiently small, using that the constants Ci > 0, i = 1, 2, 3, are independent

of ∥a∗0∥L∞
H L

p
z
, we obtain that the pre-factor in (8.9) is smaller 1. Hence, it follows that ∥Ṽ ∥S(t) = 0 for

t ∈ (0, T ) and thus v(1) = v(2) on [0, t∗ + T ) which is a contradiction.
Step 6: Additional regularity.
By [11, Theorem 6.1] we thus have

v ∈ C1((0,∞);Lpσ(Ω)) ∩ C((0,∞);W 2,p(Ω))2, π ∈ C((0,∞;W 1,p(G)).

The additional regularity v ∈ C([0,∞];Xσ) follows from the strong continuity of the semigroup on Xσ.
For the pressure we have π(t) ∈W 1,p(G) ↪→ C0,α([0, 1]2) for α ∈ (0, 1− 2/p). To obtain the regularity

of ∇Hπ, observe that

∇Hπ = −Bv − (1− P)(u · ∇)v = −Bv − (1−Q)(u · ∇)v

where we used that (1− P)f = (1−Q)f . In the proof of Claim 6.1 we have already proven that Bv(t) ∈
C0,α([0, 1]2) for α ∈ (0, 1− 3/p) if v(t) ∈ W 2,p(Ω)2. Likewise, since 1−Q is continuous on C0,α

per ([0, 1]
2)2

and v ∈ C((0,∞);W 2,p(Ω))2, we obtain that the remaining terms belong to C((0,∞);C0,α([0, 1]2))2. �

Proof of Theorem 3.2. Here, we make use of the fact that the relevant estimates in Claim 6.1 and Claim 7.1
can also be applied in L∞

HL
p
z(Ω)

2, compare Remark 3.5 (c).
Let a = a1+a2 be as in Theorem 3.2. Next, we introduce a decomposition setting a0 := a2+(a1−aref)

where

aref ∈ D(Aσ), a1 ∈ Xσ and a2 ∈ L∞
HL

p
z(Ω)

2 ∩ Lpσ(Ω),
where aref is such that a0 satisfies the smallness condition of Theorem 3.1.

Then the same iteration scheme as in the previous proof can be used to construct V for the initial value
a0 and, in turn, v to the initial value a.

The property
v ∈ C([0,∞);Lpσ(Ω)) ∩ L

∞((0, T );L∞
HL

p
z(Ω))

2

follows from the boundedness and exponential stability of the semigroup on Lpσ(Ω) and L
∞
HL

p
z(Ω)

2∩Lpσ(Ω),
as well as the strong continuity on Lpσ(Ω). Since the solution regularizes at t0 > 0, compare Step 4 in the
previous proof, we further obtain v ∈ C((0,∞);Xσ) from the strong continuity on Xσ.

The condition

lim sup
t→0+

t1/2∥∇v∥L∞
H L

p
z(Ω) ≤ C∥a2∥L∞

H L
p
z
,(8.11)

is verified as follows. Since Claim 6.1 yields

lim sup
t→0+

t1/2∥∇etA(a1 − aref)∥L∞
H L

p
z
= 0, t1/2∥∇etAa2∥L∞

H L
p
z
≤ C4∥a2∥L∞

H L
p
z
, t > 0,

one obtains
lim sup
t→0+

t1/2∥∇V0(t)∥L∞
H L

p
z
≤ C4∥a2∥L∞

H L
p
z
.

We now prove lim supt→0+ t
1/2∥∇Vm(t)∥L∞

H L
p
z
≤ 2C4∥a2∥L∞

H L
p
z
by induction. Assuming the claim holds

for m ∈ N we obtain

lim sup
t↘0

t1/2∥∇Vm+1(t)∥L∞
H L

p
z
≤
(
1 + 2C1∥a0∥L∞

H L
p
z
+ 4C4∥a2∥L∞

H L
p
z

)
C4∥a2∥L∞

H L
p
z

in the same manner as (8.2). Assuming that ∥a0∥L∞
H L

p
z
< 1/4C1 and ∥a2∥L∞

H L
p
z
< 1/8C4 it follows

that the claim holds for all m ∈ N and by taking the limit the same estimate holds for V . Using
vref ∈ C([0,∞);C1(Ω)2), we obtain that v = V + vref satisfies (8.11).

To prove uniqueness we make the following modifications. If v(1) and v(2) are both solutions in the
sense of Theorem 3.2, we again define t∗ := inf{t ∈ [0,∞) : v(1)(t) ̸= v(2)}.

In the case t∗ > 0 we have a∗ = v(1)(t∗) = v(2)(t∗) ∈ D((−Ap,σ)ϑ) for any ϑ ∈ [0, 1], compare Step 4
of the proof of Theorem 3.1. Choosing 2ϑ − 3/p > 0 we have that D((−Ap,σ)ϑ) ↪→ Xσ and thus we can
decompose a∗ = a∗ref + a∗0 as before and the same argument applies.
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If we instead have t∗ = 0 we continue to use the decomposition a = aref+a0 where a0 = a2+(a1−aref).
In this case we have limt→0+K

(i)(t) ≤ C∥a2∥L∞
H L

p
z
for an absolute constant C > 0 and thus the quantities

on the right-hand side of (8.9) can again be taken to be sufficiently small, where on the right-hand side
of (8.10) one has ∥a0∥L∞

H L
p
z
instead of ∥a∗0∥L∞

H L
p
z
, which again yields uniqueness.

This completes the proof. �
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