Title:
On the extraordinary snow on the sea ice off East Antarctica in late winter, 2012

Authors:
Takenobu Toyota¹, Robert Massom²³, Olivier Lecomte⁴, Daiki Nomura¹,
Petra Heil²³, Takeshi Tamura³⁵⁶, Alexander D. Fraser¹³

Submitted to Deep-Sea Research II

Affiliation

¹*: Institute of Low Temperature Science, Hokkaido University N19W8, Kita-ku, Sapporo, 060-0819, Japan (toyota@lowtem.hokudai.ac.jp)
*Corresponding author
Tel: +81-11-706-7431 Fax: +81-11-706-7142

²: Department of the Environment, Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia

³: Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia

⁴: Université Catholique de Louvain, Louvain-la-Neuve, Belgium

⁵: National Institute of Polar Research, Tokyo, Japan

⁶: SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo 190-8518, Japan
Abstract

In late winter-early spring 2012, the second Sea Ice Physics and Ecosystems Experiment (SIPEX II) was conducted off Wilkes Land, East Antarctica, onboard R/V *Aurora Australis*. The sea-ice conditions were characterized by significantly thick first-year ice and snow, trapping the ship for about 10 days in the near coastal region. The deep snow cover was particularly remarkable, in that its average value of 0.45 m was almost three times that observed between 1992 and 2007 in the region. To reveal factors responsible, we used in situ observations and ERA-Interim reanalysis (1990 – 2012) to examine the relative contribution of the different components of the local-regional snow mass balance equation i.e., snow accumulation on sea ice, precipitation minus evaporation (*P-E*), and loss by i) snow-ice formation and ii) entering into leads due to drifting snow. Results show no evidence for significantly high *P-E* in the winter of 2012. Ice core analysis has shown that although the snow-ice layer was relatively thin, indicating less transformation from snow to snow-ice in 2012 as compared to measurements from 2007, the difference was not enough to explain the extraordinarily deep snow. Based on these results, we deduce that lower loss of snow into leads was probably responsible for the extraordinary snow in 2012. Statistical analysis and satellite images suggest that the reduction in loss of snow into leads is attributed to rough ice surface associated with active deformation processes and larger floe size due to sea-ice expansion. This highlights the importance of snow-sea ice interaction in determining the mean snow depth on Antarctic sea ice.

Keyword: Antarctic snow on sea ice, Snow accumulation around the Antarctic, Snow-ice formation, loss of snow into leads, ERA-Interim

Regional index term: East Antarctica
1. Introduction

Snow on sea ice is a very important factor in shaping the polar climate and ecosystems. While sea ice plays a significant role in the exchange of energy between the ocean and the atmosphere that determines the polar climate (Serreze et al., 2007), snow modifies the properties of sea ice in several ways. Thermodynamically, snow significantly enhances the insulating effect of sea ice through its higher albedo, its lower thermal conductivity, and its lower volumetric specific heat capacity compared to sea ice (Ishii and Toyota, 2012; Ledley, 1991; Sturm and Massom, 2010). On the other hand, snow contributes to the growth of sea ice through its transformation to snow ice when an excessive snow load depresses the snow/ice interface below the sea level and the resultant water-saturated snow refreezes (Jeffries et al., 2001; Maksym and Jeffries, 2000). Furthermore, it has been revealed that snow plays an important role in the biogeochemical system as a reservoir and carrier of chemical components precipitated from the atmosphere (e.g. Kanna et al., 2014; Nomura et al., 2010) and as a control on the amount of light available for growth of algae within the sea ice and underlying water column (Eicken, 1992).

The strength of these effects depends on the snow depth relative to sea-ice thickness, and it is shown from numerical modeling studies that the sensitivity of snow depth to ice growth or decay is high in Antarctica where relatively thin sea ice predominates compared with the Arctic (Fichefet and Morales-Maqueda, 1999). Indeed, whereas snow-ice formation is uncommon in the Arctic sea ice, it occurs over large areas and snow ice accounts for an estimated 10-40% of total Antarctic sea-ice thickness (Jeffries et al., 1994, 1997). This contribution is shown to be particularly high off Wilkes Land, East Antarctica, where sea ice is relatively thin and snow accumulation rates are
relatively high compared with other Antarctic areas (Maksym and Markus, 2008). Therefore, to interpret the long-term trend of the sea-ice characteristics in this area, it is important to know the interannual variability of snow properties including the accumulation rates, which are presumed to control snow depth.

Unfortunately, this is a major challenge, due to a lack of long-term observations and the following factors. While satellite passive microwave remote sensing provides large-scale estimates of snow-depth distribution over the entire Antarctic sea-ice zone (Markus and Cavalieri, 1998; Powell et al., 2005), comparison of large-scale snow-depth distribution with in situ data obtained off East Antarctica indicates significant underestimation of actual snow thickness in regions of rough ice (Worby et al., 2008) i.e., independent information on ice-surface roughness is required to improve snow-thickness retrieval accuracy from the satellite data (Markus et al., 2011). Other work has attributed an apparent discrepancy between snow accumulation and observed snow depth to “loss” due to snow ice formation and wind transport into leads between ice floes (Leonard and Maksym, 2011). An apparent discrepancy exists between the fraction of snow ice to total ice thickness off East Antarctica from satellite-derived snow depth and meteorological reanalysis snowfall products (Maksym and Markus, 2008) compared to in situ observations (Worby et al., 1998) i.e., ~30% versus ~13%, respectively. Although snow loss into leads is considered to be significant over the entire Southern Ocean (Eicken et al., 1994; Leonard and Maksym, 2011), observational data have not been collected off East Antarctica (to the authors’ knowledge). Therefore, the fate of snow accumulated on sea ice in this region is still an open question.

According to the previous observations off East Antarctica conducted intermittently for winters between 1992 and 2007, mean snow depth was about 0.15 m with only a
small interannual variability (Toyota et al., 2011). However, during SIPEX II, conducted in the same region in late winter 2012, it was found that the mean snow depth amounted to 0.45 ± 0.26 (standard deviation, hereafter referred to as sd) m, i.e., it was about three times thicker than the previous results. This indicates the possibility of a large interannual variability in snow depth in this area, and that the apparent small variability obtained prior to 2012 might be due to sampling bias. To understand the real interannual variability in snow depth and its controlling factors off East Antarctica, more complete data analysis using both meteorological dataset and field data is required.

The aim of this paper is to clarify what caused significantly deep snow depth off East Antarctica in 2012 compared with previous observations, with a view to estimating the snow mass balance on the wintertime sea-ice cover in the region and to improve understanding of snow-sea ice interaction processes and how they vary. To do so, we examine the interannual variability of snow accumulation rates on sea ice in winter for the whole Antarctic region using meteorological reanalysis (ERA-Interim) for 1990 to 2012, to enable direct comparison with previous observations. Snow accumulation rates are estimated by calculating precipitation minus evaporation ($P-E$) from the moisture budget. We analyzed the whole Antarctic sea-ice area in order to i) accommodate the effect of sea-ice drift/motion on snow accumulation patterns, and ii) resolve any strong interannual variability in precipitation on a hemispheric scale. From the field observations, we estimate the snow-depth distribution and the thickness of snow ice from the ice cores, focusing on comparing 2007 and 2012. Though the data are rather limited, this analysis allows us to quantitatively estimate the fate of snow on sea ice in this region.
2. Data

2-1. Field measurements

The field data used in this study are from 5 ice stations conducted from the R/V Aurora Australis in the seasonal sea-ice zone off Wilkes Land, East Antarctica between September 23 and November 11, 2012. This dataset is composed of four kinds of measurements: 1) snow, sea-ice thickness, and freeboard profiles (drill hole measurements) at 1 m intervals along 11 transect lines (each 100 m long) in total; 2) detailed vertical profiles of snow properties at 18 snow pits on 5 floes; 3) diurnal observations of temperature profiles and snow properties; and 4) vertical profiles of sea-ice properties derived from the ice-core samples.

The snow pit measurements included detailed assessment of snow stratigraphy, snow type classification (based upon the International Classification for Seasonal Snow on the Ground [Fierz et al., 2009]), and vertical profiles of temperature, grain size, density and salinity. Snow density and salinity were measured using a standard 3 cm-high snow sampler with a volume of 100 cm3. To avoid contamination by seawater, snow-pit observations were completed before the sea ice was penetrated by drilling.

Diurnal observations included measurements of vertical temperature profiles, salinity and density within the basal layer, and were conducted every two hours at four ice stations on September 27-28, October 3-4, October 6-8, and October 13-14 when the ship remained alongside a floe for longer than one day. The observation sites were located on relatively flat areas a few tens of metres away from both the transect line and the ship to avoid any interference. Diurnal observations were intended to examine the temporal evolution of temperature profiles on a diurnal time scale and its effect on the snow metamorphism. The results are used to discuss the localized feature of
precipitation (section 5) and the effect of snow wetness on vertical heat flux through
snow (Lecomte and Toyota, DSR2 [this volume]).

In addition, and to estimate the contribution of snow ice, we analyzed 32 sea ice
cores from 14 ice stations in 2007 and 7 from 6 ice stations in 2012. The relative lack of
ice stations in 2012 was indicative of the difficult conditions encountered in that year.
However, we regard the data as representative to some extent because we selected
relatively flat areas for the sampling locations to avoid local scale variability. For each
sample, we made vertical thin sections in the freezer laboratory aboard the R/V Aurora
Australis to see the crystal alignments. After sectioning the cores vertically into
segments a few to 10 cm thick and melting them, we measured δ^{18}O and salinity to see
the vertical profiles. The δ^{18}O was determined with a DELTA plus mass spectrometer at
Hokkaido University and a SIRA-Isoprep water-equilibration mass spectrometer at
University of Tasmania with the analytical precisions of 0.02‰ and <0.04‰,
respectively. Salinity was measured with a conductivity sensor (Cond 330i, WTW,
Germany) with a nominal accuracy of 0.1.

2-2. Meteorological reanalysis dataset

We used the 6-hourly ERA-Interim reanalysis to calculate net precipitation
(precipitation minus sublimation/evaporation) from 1990 to 2012. With this dataset, we
calculated net precipitation from the atmospheric moisture budget equation (Bromwich,
1988; Cullather et al., 1998; Yamazaki, 1992). The horizontal resolution of the dataset is
1.5° by 1.5° and the analysis area is the whole Antarctic region south of 60° S, most of
which is covered with sea ice in winter (Fig. 1). The whole Antarctic region is further
divided into five sectors to examine the regional characteristics. Figure 1a shows the
divisions of the Antarctic region with our observation area in 2007 and 2012 i.e., 63.0°
to 66.0° S and 115.5° to 127.5° E (1.97 x 10^5 km^2). To calculate the vertically-integrated
moisture flux and precipitable water, we used air pressure, horizontal wind components,
air temperature, and dew point temperature at the surface, and relative humidity, air
temperature, horizontal wind components at 10 standard levels (950, 900, 850, 800, 700,
600, 500, 400, 300, 200 hPa). Since specific humidity is concentrated below 700 hPa
and is essentially zero above 200 hPa and throughout the year, the data above 200 hPa
were neglected. Although a snowfall product is provided by the ERA-Interim dataset,
we took this traditional method following Cullather et al. (1998). This is because i) true
snow-accumulation rates on sea ice are determined not only by snowfall amount but
also by P-E, and accurate estimation of evaporation from the snow surface is difficult;
and ii) the estimation of P-E calculated based on the moisture budget equation seems
more consistent from the standpoint of moisture conservation if winds and specific
humidity are properly reproduced.

3. Analytical method

3-1. Estimation of snow accumulation

For the Antarctic continent, the surface snow accumulation and precipitation rates (B
and P respectively) are related by the following equation (Bromwich, 1988; Cullather et
al., 1998):

\[\langle B \rangle = \langle P \rangle - \langle E \rangle - \langle D \rangle - \langle M \rangle, \]

(1)

where \(E \) is the net sublimation rate (i.e., sublimation minus deposition of hoarfrost); \(D \)
is the deposition rate of snow by drifting; \(M \) is the divergence of melt water runoff; and
angled brackets and overbar represent areal and time averages, respectively. For the
Antarctic continent as a whole, the contribution of D and M in Eq.1 is small relative to P and E (Bromwich, 1988). Therefore, for a first-order discussion, the snow accumulation is determined by net precipitation (P minus E).

In the case of snow on sea ice, there are two additional terms: rate of conversion of snow into snow-ice (I) and rate of loss of snow into open water leads and cracks (L) (Leonard and Maksym, 2011). Wind-blown snow redistribution on sea ice is considered to have no essential effect on snow-mass balance for annual averages on a large horizontal scale (Bromwich, 1988, 1990). Therefore the snow-mass balance on sea ice is represented by the following equation:

$$\langle B \rangle = \langle P \rangle - \langle E \rangle - \langle I \rangle - \langle L \rangle$$ \hfill (2)

In this study, we examine the budget of snow on sea ice on a seasonal time scale. Therefore, $\langle B \rangle$ corresponds to the mean snow depth observed during the SIPEX II. The net precipitation, $\langle P \rangle - \langle E \rangle$, is estimated from the following moisture budget equation using the ERA-Interim reanalysis dataset:

$$P - E = \frac{\partial PW}{\partial t} - \bar{V} \cdot \frac{1}{g} \int_{ps}^{pt} q \bar{V} \, dp,$$ \hfill (3)

where PW is precipitable water; g is the gravitational acceleration; p is pressure in hPa; p_s and p_t are the pressure in hPa at the surface and the top of atmosphere, respectively; \bar{V} is the horizontal wind vector; and q is specific humidity in g kg$^{-1}$ at each level and calculated from the following equation:

$$q = \frac{0.622}{p - 0.378 e} \times 1000$$ \hfill (4)

where e is water vapour pressure in hPa. This is calculated from relative humidity and air temperature using the Tetens formula, and PW is then obtained by vertically integrating q from the surface (p_s) to 200 hPa level (p_t), as follows:

$$PW = \frac{1}{g} \int_{ps}^{pt} q \, dp$$ \hfill (5)
Since \(q \) is essentially zero above 200 hPa, we set \(p_t \) to 200 hPa. Eq.3 means that \(P \) and \(E \) are sink and source terms of \(PW \), respectively. Assuming that Eq.3 can be applied on a daily time scale, we calculate \(P-E \) on a daily basis by substituting the daily mean values of \(q \) and \(q\vec{V} \) into Eq.3. Next, to estimate the total net precipitation (\(= \langle P \rangle - \langle E \rangle \) in Eq.2), the daily \(P-E \) data were summed for each winter.

In this analysis, the integration period is important because it directly affects the total snow accumulation. Here, we set it from May 1 to September 30 for every year on the basis that advancing sea ice usually starts to cover the observation area at the beginning of May (Fig.2; see also Massom et al., 2013). Although there are some interannual variations in the growth phase of sea-ice area, we decided to fix the integration period because it is quite difficult to determine the beginning date of snow accumulation on the specific sea ice in the observation area and to predict the fate of that floe.

In calculating \(P-E \), Cullather et al. (1998) corrected the divergent wind so as to satisfy the conservation of columnar dry-air mass, following Trenberth (1991). However, in this study we refrained from this correction for the following reasons. While the correction method of Trenberth (1991) is based on the assumption that the wind-related error occurs uniformly through the full depth of the atmosphere, the influential layer from the standpoint of the moisture budget is only near the surface. Therefore, this method may not necessarily be appropriate for the moisture budget equation. In addition, and according to Cullather et al. (1998), the mass correction only works effectively in the coastal regions such as the Antarctic Peninsula, and the difference made by applying this correction to the net precipitation rate is relatively small over the sea-ice area i.e., (-40 to 0 kg m\(^{-2}\) yr\(^{-1}\)).
Values for term $\langle I \rangle$ in Eq.2 are estimated from the ice-core samples collected during the cruises in 2007 and 2012, through analysis of vertical profiles of crystallography in thin section and $\delta^{18}O$ for melted samples i.e., snow ice layer is granular with a negative $\delta^{18}O$. The criterion for $\delta^{18}O$ is based on the observational results of the seawater $\delta^{18}O$ just below the sea ice (-0.41‰ to -0.23‰), taking into account the fractionation during the freezing (Toyota et al., 2013). This criterion is the same as that used for Antarctic sea ice by Jeffries et al. (1997) and for Sea of Okhotsk ice by Toyota et al. (2004). To estimate the thickness of snow that is converted into snow-ice (h_s), we introduce a compression parameter β describing how snow is compressed in the snow-ice formation process, following Leppäranta and Kosloff (2000):

$$h_s = \beta \cdot h_{si}, \quad (6)$$

where h_{si} is the analyzed snow-ice thickness. Based on the observations at Lake Pääjärvi in southern Finland, Leppäranta and Kosloff (2000) estimated β to be 1.5. In this study, we use the same value because the process is considered to be similar. Then, the amount of loss of snow into leads and cracks, $\langle L \rangle$, is obtained as a residual of Eq. 2.

3-2. Validation of the method

While net precipitation rate obtained from the moisture budget equation has been validated over the ice sheet (Bromwich et al., 1995; Yamazaki, 1992), validation is more difficult over the sea ice due to a lack of monitoring sites for snow accumulation. In this study, we validate this method by checking to what extent the ERA-Interim dataset reproduced the ship-based data obtained in 2012, and by comparing the calculated annual mean $P-E$ with past studies.
Figure 3 shows the time series of sea level pressure (SLP), air temperature (SAT),
vapour pressure, wind components, and specific humidity recorded every 10 minutes
onboard the ship, together with 6-hourly ERA-Interim surface data at the grids closest
to the ship positions being plotted. Specific humidity in g kg\(^{-1}\) was calculated from Eq. 4.
Since the observation period of SLP was limited to October 9 to 29, \(q \) is also limited to
the same period. It is shown in Fig. 3 that, as a whole, all the elements of the ERA-
Interim reproduced the observations well, except for some discrepancies on a small
scale. When we compare the daily mean data from these two datasets, the correlation
coefficients are 0.97 (+1.4 and 2.6 hPa) for SLP; 0.91 (+0.5 and 1.8 °C) for SAT; 0.87
(+0.6 and 3.1 m s\(^{-1}\)) for the zonal component of wind; 0.89 (-0.4 and 1.9 m s\(^{-1}\)) for the
meridional component of wind; 0.88 (0.0 and 0.4 hPa) for vapour pressure; and 0.81
(-0.01 and 0.29 g kg\(^{-1}\)) for specific humidity (numbers in parenthesis are the bias
estimated from the difference of the daily mean values (ERA-Interim – ship data) and
the root mean square error, respectively). In particular, variations in SLP for both
datasets are almost coincident, showing that the ERA-Interim dataset could reproduce
cyclone events in this region well. Since it is known that the precipitation in this region
is primarily controlled by cyclone activities (Cullather et al., 1998), it is expected that
the net precipitation can be estimated well from ERA-Interim data if the moisture flux
given by \(q \, \vec{V} \) is also accurately reproduced. Therefore we check the validity of \(q \) and
the wind components next.

As for \(q \), the average for ERA-Interim is 1.77 ± 0.31 g kg\(^{-1}\), which is almost
coincident with 1.78 ± 0.48 g kg\(^{-1}\) observed on the ship. Regarding wind, both
directional components are slightly underestimated for the ERA-Interim compared with
the ship-based data (Fig. 4). This is probably because the anemometer of the R/V Aurora
Australis is installed at 30 m above sea level, while the surface wind level for ERA-
Interim is 10 m. According to boundary layer theory, the aerodynamic roughness length
is of the order of 0.1-1 cm for undeformed sea ice and 1-10 cm for deformed sea ice
(Leppäranta, 2005). If the mean horizontal wind speed is assumed to increase
logarithmically with height, as is typical for the neutral atmospheric condition, it
follows that the wind speed monitored at 30 m a.s.l. can be greater by 10-20% at most
than that at 10 m a.s.l., which can explain the difference between the two datasets. Thus,
we consider that ERA-Interim reproduced both components of the real surface wind
well in this region. This also justifies the lack of correction made to the ERA-Interim
wind speed.

Next, to validate the $P-E$ obtained by this method, the annual mean for each grid cell
and for the period of 1990 to 2012 is plotted in Fig. 5. The spatial distribution of $P-E$ in
Fig. 5 is characterized by relatively high values off Wilkes Land, East Antarctica and
west of the Antarctic Peninsula (600-800 kg m$^{-2}$ yr$^{-1}$) and relatively low values in the
Weddell and Ross seas (100-300 kg m$^{-2}$ yr$^{-1}$). These values are similar to those from
past studies estimated by the moisture budget using meteorological dataset (Cullather et
al., 1998; Massom et al., 2001) and the glaciological dataset on Antarctica (Favier et al.,
2013; Giovinetto and Bentley, 1985; Lanaerts et al., 2012; Vaughan et al., 1999). Thus,
we assume that our method can reproduce the real net precipitation to some extent.

Finally, we check the $P-E$ values calculated by this method against the ERA-Interim
snowfall product. A comparison of both datasets for 2007 and 2012 in the observation
area shows that while they had similar seasonal variations in both years, the annual
snowfall amount was larger than the calculated $P-E$ by about 200 kg m$^{-2}$ yr$^{-1}$. Whereas
the snowfall amount is 827 kg m$^{-2}$ yr$^{-1}$ (2007) and 846 kg m$^{-2}$ yr$^{-1}$ (2012), the calculated
P-E is 620 kg m\(^{-2}\) yr\(^{-1}\) (2007) and 625 kg m\(^{-2}\) yr\(^{-1}\) (2012). If we assume that the difference between these datasets came from sublimation, the value of about 200 kg m\(^{-2}\) yr\(^{-1}\) corresponds to about 18 W m\(^{-2}\) of the upward latent heat flux on the surface, which is similar to the value of 28 W m\(^{-2}\) estimated for the Antarctic pack-ice zone (ice concentration > 85%) by Weller (1980). In fact, the difference between the snowfall amount and the calculated P-E (207 kg m\(^{-2}\) yr\(^{-1}\) for 2007 and 221 kg m\(^{-2}\) yr\(^{-1}\) for 2012) is almost coincident with the ERA-Interim evaporation product (194 kg m\(^{-2}\) yr\(^{-1}\) for 2007 and 211 kg m\(^{-2}\) yr\(^{-1}\) for 2012). This supports our calculation method.

4. Results

4.1 Meteorological conditions

Time series of near-surface pressure (\(p_s\)), air temperature (\(T_a\)) and wind components (\(U, V\)) monitored on the ship while in the sea-ice area are presented in Fig. 3. It is noted that \(p_s\), \(T_a\) and \(U, V\) varied with high amplitude, associated with the occasional passage of cyclones. This situation is similar to past results in this region during 1995 (Massom et al., 1998), 2003 (Massom, unpublished data), and 2007 (Toyota et al., 2011). \(T_a\) ranged from -25 to 0\(^{\circ}\)C, and diurnal variability of up to several degrees began to appear from early October; this compares to a variation of ~5 to 10 K associated with cyclonic activity which has a period longer than several days. The zonal wind component (\(U\)), ranging from -20 to 10 m s\(^{-1}\), was generally stronger than the meridional wind component (\(V\)) (-5 to 10 m s\(^{-1}\)), indicating the dominance of the circumpolar winds.

Wind speed in the 2012 observation period often exceeded 10 m s\(^{-1}\) but seldom reached 20 m s\(^{-1}\). The average was 6.9\(\pm\)4.3 m s\(^{-1}\), which is somewhat weaker than the 9.7\(\pm\)5.8 m s\(^{-1}\) observed in the same region in 2007. Even when a strong wind (>10 m
s-1) was blowing, it was less persistent in late winter to spring than in past years i.e., 1995 (Massom et al., 1998) and 2007 (Toyota et al., 2011).

Regarding lateral snow redistribution across the sea ice, past observations have shown that unconsolidated snow begins to drift at a wind speed of 5 m s-1, and that snow drifting almost always occurs when the wind speed at 5 m exceeds 8 m s-1 (Andreas and Claffey, 1995). Moreover, drift-snow transport increases nearly exponentially with wind speed (Budd et al., 1966; Takeuchi, 1980). Therefore, taking into account the altitude of the anemometer on the ship, in our case wind speeds of 5 m s-1 and 10 m s-1 are taken to be good indicators for the onset of snow drift and significant drift-snow transport, respectively. Based on measurements every 10 minutes, wind speeds of > 5 m s-1 were recorded for 59% of the observation period in 2012, compared to ~83% in 1995 (Massom et al., 1998) and 72% in 2007. Moreover, wind speeds of >10 m s-1 were less frequent in 2012 (21%) than in 2007 (44%). Therefore, drift-snow transport in this region may be less of a factor in 2012, compared to previous observations.

4.2 Statistics of snow and sea ice

Transect measurements during SIPEX II yielded mean ice thickness, freeboard, and snow depths of 2.33 ± 1.64 m (n = 447), 0.12 ± 0.18 m (n = 442), and 0.45 ± 0.26 m (n = 1106), respectively. The relatively high sd values indicate that both ice and snow thickness distributions were highly heterogeneous. Results obtained from the 11 transect lines and 18 snow pits are listed in Table 1. For comparison, past statistical data obtained in winter off East Antarctica are also shown in Table 2, revealing that while such a high heterogeneity is similar to previous results i.e., in 1995 (Massom et al.,
1998), during ARISE 2003 (Massom, unpublished), and during SIPEX in 2007 (Toyota et al., 2011), the mean values of ice thickness, freeboard, and snow depth are all significantly larger in 2012. Moreover, Table 1 shows that this feature is common for almost all of the transect lines in 2012. In particular, the mean snow depth of 0.45 m is about three times deeper than that previously recorded in situ in the region. The relatively high mean snow thickness of 0.21±0.18 m in 2003 is composed of mean snow depths of 0.36±0.22 m (n = 2947) for rough ice and 0.17±0.16 m (n = 1909) for smooth ice (Massom et al., 2006). Impressively, the mean snow depth of 0.45 m in 2012 is even larger than that for the rough ice class in 2003.

To examine the snow conditions in more detail, the histograms of snow depth and sea ice thickness are analyzed for 2007 and 2012 (Fig.6 and Fig.7, respectively). Figure 6 shows a significant difference in snow-depth distribution between these two years. In 2007, there is a prominent peak at 0.05-0.10 m and the frequency decreases exponentially with increasing snow depth (to a maximum of 0.65-0.70 m). In 2012, on the other hand, the distribution is multi-modal and flatter, with a significant proportion of the snow being between 0.50-1.00 m. Similar properties are found for the sea-ice thickness distribution (Fig.7). Whereas a prominent peak appears at 0.6-0.8 m and the frequency decreases rapidly with ice thickness in 2007, the modal thickness is 1.0-1.2 m with a more gradual decrease with thickness in 2012. Taken together, these results suggest a relationship between the unusual ice-thickness distribution and the extraordinary snow depth in 2012.

To examine this, the correlation coefficients among ice thickness, snow depth, freeboard, and surface elevation are shown in Table 3, compared to 2007. One of the most prominent differences between these two years is that the correlation between
snow depth and ice thickness is non-significant in 2012 unlike 2007 i.e., \(r = 0.38 \) versus 0.82, respectively (Tab. 3). In general and on a scale of \(\sim 100 \) m, the mean snow depth on Antarctic sea ice tends to be highly correlated with the mean ice thickness (Jeffries et al., 1998; Toyota et al., 2011; Worby et al., 1996). This is because the freeboard of Antarctic sea ice is often near zero and the ratio of snow depth to ice thickness is kept almost constant due to the transformation of snow into snow ice when excessive snow loading induces negative freeboard (Jeffries et al., 1998; Maksym and Markus, 2008). Given the high mean freeboard (0.12 m) accompanied by significantly thicker ice (mean 2.33 m) in 2012, the lower correlation between snow depth and ice thickness suggests that the above process, associated snow-ice formation, was less of a factor in 2012. Significantly lower salinity in the basal snow layer (6.8) in 2012, compared with the values (13-17) in past observations (Tab. 2), also supports this hypothesis. This is because the salinity of the basal snow layer is largely determined by the infiltration of flooded seawater or capillary suction of brine from the ice surface (Sturm and Massom, 2010) and the wet saline layer is considered to lead to snow-ice formation.

Our results (Tab. 3) also suggest that the high freeboard in 2012 may have affected snow depth in another way. In general, higher freeboard often accompanies the increase in ice surface roughness (i.e., sd of freeboard) as deformation processes play a key role in the ice thickening process in the Antarctic seasonal ice zone (Worby et al., 1996), and ice thickness (and freeboard) is highly correlated with ice-surface roughness (Toyota et al., 2011). This is confirmed by the high correlation of \(Hi \) with the mean and sd of \(Fb \) (Tab. 3). Taken together, these results strongly suggest that enhanced ice-surface roughness in 2012, produced by enhanced deformation, strongly affected the snow redistribution to contribute to the significantly different snow-depth distribution (Fig. 6).
This is supported by the poor correlation between mean snow depth and sd of surface elevation \((r= 0.18)\) in 2012 compared with 2007 \((r= 0.81)\) in Table 3 because the snow redistribution is considered to be affected by the roughness of surface elevation. The high degree of deformation in 2012 is also confirmed by the enhanced keel variation of the underside of sea ice measured with an Autonomous Underwater Vehicle during the same cruise (Williams et al., 2015).

In summary, two possible processes for the extraordinary snow conditions in 2012 are suggested from the statistics of snow and sea ice conditions: a reduction in snow ice formation and a change in snow redistribution processes.

4.3 Estimates of snow ice thickness and ice age

Here we estimate the thickness of snow-ice layers from the samples collected to quantify the snow-ice formation for each year. The analysis of 32 ice samples in 2007 showed that core length ranged from 0.19 m to 1.86 m with the average being 0.85±0.44 m. Since this is close to the mean ice thickness along the transects (i.e., 0.98±0.58 m; Tab. 2), estimates of snow-ice can be regarded as being representative. Snow-ice layers were present in 27 (84.4%) of the samples, mostly at the top of the ice cores, and their thickness ranged from zero to 0.38 m with the average being 0.13±0.14 m. The fraction of total snow-ice layers to ice-core length is 15.0% i.e., 4.10 m versus 27.28 m. This value is comparable with past results obtained in this region (about 13%; Worby et al., 1998).

By comparison and for the 7 ice samples in 2012, core lengths ranged from 0.82 m to 1.95 m with the average being 1.20±0.39 m, somewhat thicker than in 2007. Snow-ice layers were present in only 2 (28.6%) of the samples, and only at the top of
the ice cores. The thicknesses of snow-ice layers ranged from zero to 0.30 m, with the average being 0.06 ± 0.11 m, which is nearly half that in 2007. In 2012, the fraction of total snow-ice layer (0.40 m) to total ice-core length (8.37 m) was 4.8%, which is also significantly lower than that in 2007 (and past results). Thus, it is found that limited snow-ice formation occurred in 2012 compared with past observations. This is consistent with the results shown in the previous section.

When comparing spatially- and/or temporally-separated observations of sea ice and overlying snow properties, we also need to consider the age of the ice floes on which the samples were collected. For this purpose, bulk ice salinity of an ice core is a good indicator because it decreases with the increase of ice age (approximated by thickness) due to brine drainage and is significantly reduced due to the flushing process after surviving the summer (Untersteiner, 1968). Thus the bulk ice salinity of second-year ice is usually much lower (1-3 psu) than that of first-year ice (4-15 psu) (Cox and Weeks, 1974; Kovacs, 1996). Therefore we calculated bulk ice salinity for each sample; this is plotted as a function of ice thickness (Fig.8), showing that bulk salinity ranges from 4 to 10 with a weak negative correlation with ice thickness (r = -0.32), and when averaged for the ice samples thicker than 1 m, it is 5.12 ± 1.11 for 2012, which is almost the same as 5.53 ± 1.11 for 2007. This result indicates that all of the ice samples collected in 2007 and 2012 can be regarded as first-year ice and there is no significant difference in ice age between these two years.

4.4 Net snow-accumulation rate

Next, we estimate \(\langle P \rangle - \langle E \rangle \) in Eq.2 using the ERA-Interim meteorological data. The time series averaged over the observational area (Fig. 1) in 2007 and 2012 are
shown in Fig. 9. Sea-level pressure varied by up to 5-10 hPa with a period of several
days (Fig. 9a), especially in winter as a result of strong cyclonic activity in this region
(as shown by Jones and Simmonds [1993]). Associated with this, SAT (Fig. 9b) and PW
(Fig. 9c) also varied highly in autumn to winter in both years. The fact that the SAT was
negative throughout the winter, as shown in Fig. 9b, justifies our assumption that the loss
of snow due to melting is negligible at this time. It is noteworthy that in winter, the SAT
varied from about -24°C to nearly -1°C, accompanied by high variability in PW ranging
from 1 kg m⁻² to 12 kg m⁻². Therefore, although overall PW is lower in autumn to winter
than in summer, the calculated P-E tends to have a larger value in autumn compared to
winter with a noticeable peak in early winter (Fig. 9d), as previously shown by
Cullather et al. (1998), Ligtenberg et al. (2012), and Yamazaki (1992). It is important to
note in Fig. 9 that there are no significant differences either in the meteorological
conditions or P-E between 2007 and 2012.

Monthly values of P-E in 2007 and 2012, plotted with the 1990-2012 average in
Fig. 10a, show both a characteristic seasonal variation of P-E in this observational
region and no significant difference of P-E in winter between 2012 and 2007 as far as
the observational region is concerned. The total P-E from May to September was
estimated to be 313 ± 49 kg m⁻² on average (1990-2012), and the values of 292 kg m⁻² in
2007 and 325 kg m⁻² in 2012 are both within a sd of the average. Although the value in
2012 is somewhat larger than that in 2007, the difference of 33 kg m⁻² in water
equivalent corresponds to only 0.03 m in snow depth, when weighted by the snow
density for the individual year. This is insufficient to explain the observed difference in
snow depth (i.e., 0.31 m) between 2007 and 2012. To examine this for other years, the
interannual variability of P-E during winter is plotted in Fig. 10b. It is shown here that
the $P-E$ in 1992, 1994, and 1995 (when observations were conducted off East Antarctica) was larger than that in 2012. Thus, these results indicate that $P-E$ is not a controlling factor which contributed to the difference in the snow-accumulation rate on sea ice.

Next, to examine the difference between 2007 and 2012 on a larger scale, we plotted the circum Antarctic spatial pattern of winter $P-E$ south of 60°S (Fig.11). The general feature is that $P-E$ is relatively high in the regions west of the Antarctic Peninsula and off East Antarctica, and relatively low in the Ross and Weddell seas in both years. This spatial pattern is consistent with past results using the meteorological datasets (Cullather et al., 1998; Massom et al., 2001). At the same time, Figure 11 shows no significant difference in $P-E$ within the observation area between these two years - although in the region between 150° and 180°E (east of the observation area), there is a higher $P-E$ area in 2012. However, in light of the fact that the monthly mean zonal component of wind in the observation area was about -2 m s⁻¹ in 2012, the eastward ice drift is estimated to be approximately 777 km (14 degrees) at most, assuming that the Nansen number (the ratio of ice drift to wind speed) is 3% (Leppäranta, 2005). Therefore it is unlikely that our measurements were affected by this high $P-E$ area.

To place the above results in longer-term context, mean PW and mean $P-E$ in each winter over 1990-2012 and for the five Antarctic sectors (from Fig. 1) are plotted in Fig. 12. Although mean PW is highest in the Bellingshausen and Amundsen seas sector, $P-E$ is consistently by far the largest in the SW Pacific Ocean sector (including off Wilkes Land), again reflecting the strong cyclonic activity there (Jones and Simmonds, 1993). Mean $P-E$ values in winter for the total period are i) Indian Ocean: 202 ± 24 kg m⁻²; ii) SW Pacific Ocean: 286 ± 26 kg m⁻²; iii) Ross Sea: 211 ± 14 kg m⁻²; iv)
The values of mean $P-E$ in winter for the individual sectors in 2012 (i.e., 194, 308, 220, 176, and 144 kg m$^{-2}$ for the same sectors, respectively) are all within one sd of the average, and there is no evidence that the precipitation in 2012 was significantly higher or lower in any sector around Antarctica.

4.5 Snow-mass balance

In this section, we synthesize the results to throw light on the most likely causes of the unusually large mean snow depths observed in 2012 from the snow mass balance equation of Eq.2. Direct comparison with 2007, when similar data were available, sheds light on this. In fact, the mean snow depth, $P-E$, and snow ice thickness estimated for 2007 were similar to past observations – again highlighting the unusual nature of snow conditions in 2012 in the SIPEX II experimental region off Wilkes Land (East Antarctica). The results obtained for both years are listed in Table 4, where $\langle B \rangle$ was given by the mean snow depths observed, and $\langle P \rangle - \langle E \rangle$ was calculated by integrating the daily $P-E$ (s.w.e.) in the observation area for the winter (May to September) and dividing it by the mean snow density of each year. Although the area for integration was fixed to a relatively limited region, values of $\langle P \rangle - \langle E \rangle$ obtained (i.e., 292 kg m$^{-2}$ for 2007 and 325 kg m$^{-2}$ for 2012) are close to those for a wider SW Pacific sector (of 289 kg m$^{-2}$ for 2007 and 308 kg m$^{-2}$ for 2012). $\langle I \rangle$ was estimated from Eq.6, where h_{si} is given by the mean thickness of the estimated snow-ice layers.

In Table 4, it is noticeable that in both years the value of $\langle L \rangle$ represents nearly half or more fraction of $\langle P \rangle - \langle E \rangle$. This suggests that a significant amount of the net precipitation is lost to leads and cracks due to snow drift. This is consistent with past
studies. Eicken et al. (1994) estimated a loss of snow into leads of 100 kg m\(^{-2}\) yr\(^{-1}\) (nearly half of the annual \(P-E\)) in the Weddell Sea, and Leonard and Maksym (2011) modeled snow loss into leads of >50% over the entire Antarctic sea ice zone. It is important to note in Table 4 that although each term of \(\langle P\rangle - \langle E\rangle\), \(\langle I\rangle\), and \(\langle L\rangle\) contributed partially (0.03 m, 0.10 m, and 0.18 m, respectively) to the enhancement in \(\langle B\rangle\) (0.31 m) in 2012, \(\langle L\rangle\) is the most important factor among them. This indicates that while the restriction of snow ice formation due to higher freeboard affected the mean snow depth, the snow redistribution due to snow drift and the resultant loss of snow into leads was more important in driving the snow depth distribution on the sea ice in this region and at this time.

However, it should be kept in mind that the relative importance of \(\langle P\rangle - \langle E\rangle\), \(\langle I\rangle\), and \(\langle L\rangle\) may change somewhat according to physical parameters although the significant contribution of \(\langle L\rangle\) is true. For example, if a snow density of 336 kg m\(^{-3}\) (the average of 2007 and 2012), was used for both years, the \(P-E\) contribution in the snow volumetric balance difference between these two years would have a value of 0.10 m, leading to evenly distributed contributions of \(\langle P\rangle - \langle E\rangle\) (= 0.10 m), \(\langle I\rangle\) (= 0.10 m), and \(\langle L\rangle\) (= 0.11 m) to the observed difference of \(\langle B\rangle\) (= 0.31 m).

4.6 Possible processes for controlling \(\langle L\rangle\)

Next, we examine what caused the difference in \(\langle L\rangle\) in 2012. The significant difference in the histogram of snow depth in Fig. 6 also suggests a difference in the snow redistribution process due to snow drift between these two years. There seem to be two possibilities: one is the meteorological conditions, especially wind speed, and the other is the surface conditions of the sea ice, related to the ice thickening process as
discussed in Section 4.2. Regarding wind speed, it was pointed out in Section 4.1 that the ship-based mean wind speed was somewhat weaker in 2012 than in 2007. As snow transport due to drift increases with increasing wind speed (Budd et al., 1966; Takeuchi, 1980), weaker prevailing wind conditions over a wider region and for an extended season could possibly have affected \(\langle L \rangle \). However, there is no evidence in the time series of the monthly mean wind speed averaged over the observation area that the wind speed in 2012 was significantly weaker compared with other years (Fig. 13a). There may be a possibility that ERA-Interim could not accurately reproduce the real wind speed. Even so, in light of the fact that even in the years when the mean wind speed was stronger than in 2007 (i.e. 1994, 1995, 2003) the mean snow depth was kept almost constant, it is unlikely that the wind speed was a controlling factor. Therefore, it is more likely that the significantly lower \(\langle L \rangle \) in 2012 is attributable to sea ice surface conditions.

Two types of such conditions could affect \(\langle L \rangle \): the surface roughness and the spacing and width of the leads, both of which are closely related to sea ice deformation. The first condition was already discussed in Section 4.2. Regarding the latter one, the spacing distribution of leads is considered to be closely related to floe size distribution. To qualitatively compare the floe size distributions between 2007 and 2012, NASA MODIS satellite images extracted from exactly the same region (Fig. 1) are shown in Fig. 14. Note that the regions of the two images are exactly the same but separated by about a month (due to cloud cover limitations). Considering that sea-ice extent is almost stable in September to October, however, it should be considered that these images represent the ice conditions in the winter of each year to some extent. Although it is difficult to estimate the floe-size distribution exactly using this imagery, a comparison
of the two images shows that overall the floe size in the observation area was larger in 2012 than in 2007. This may be explained as follows: according to Fig.14, sea-ice extent was greater in 2012 than in 2007 and consequently the observation area was further poleward from the ice edge in 2012, and thus less affected by breakup due to waves penetrating from the open ocean. It is likely that such large ice floes in 2012 reduced the opportunity for blowing snow particles to enter leads, resulting in the significant reduction of $\langle L \rangle$. To confirm this, we compare the sea-ice edge contours for all the years with East Antarctic observations (Fig.15). It is shown that extensive sea ice coverage off East Antarctica especially in 2003 and 2012, coincided with relatively deep snow observation (Table 2). In light of the fact that the mean ice thickness was much thicker and the ice surface was much rougher in 2012 compared to 2003, this may support our speculation that the effects of rough ice surface and large floe-size distribution are both important to the abnormally deep snow in 2012.

Based on all these results, we deduce that rougher ice surface caused by highly active deformation processes and larger floe conditions associated with a wider expansion of the sea-ice area are mostly responsible for the extraordinarily deep snow in 2012.

5. Summary and discussion

During the SIPEX II voyage off Wilkes Land, East Antarctica in late winter 2012, we encountered unprecedented deep snow on sea ice. The mean snow depth measured along transects on five ice floes amounted to 0.45 ± 0.26 m, nearly three times the values of past observations in this region. In this paper we examined what caused such extraordinary snow conditions, based on the snow-mass balance which is composed of
snow accumulation on sea ice $\langle B \rangle$, net precipitation $\langle P \rangle - \langle E \rangle$, consumption into snow
ice formation $\langle I \rangle$, and loss into leads due to snow drift $\langle L \rangle$ during the winter (May to
September). In the estimation of each term, net precipitation was calculated from the
moisture budget equation, using the ERA-Interim Reanalysis dataset. Although it is
difficult to estimate the exact accuracy of the calculated $\langle P \rangle - \langle E \rangle$, the ERA-Interim
reproduced the real surface air temperature, pressure, humidity, and wind well.
Moreover, the spatial distribution of the annual $\langle P \rangle - \langle E \rangle$ averaged for the period of
1990 to 2012 matched well with past results (Cullather et al., 1998) and was consistent
with the estimates from glaciological data for the Antarctic (Giovinetto and Bentley,
1985). $\langle I \rangle$ was estimated based on the ice core samples collected in 2007 and 2012,
while $\langle L \rangle$ was estimated as the residual of the snow-mass balance. Since $\langle I \rangle$ was
obtained in 2007 and 2012, our discussion was focused mainly on the comparison
between these two years, with 2007 assumed to be typical of past observations.

From the analysis of $\langle P \rangle - \langle E \rangle$ using the ERA-Interim dataset for 1990 to 2012, there
appears to be no evidence for a significantly greater amount of net precipitation in 2012
compared with other years, not only for the limited observation area but also for the
wider area off East Antarctica. These results indicate that on both local and hemispheric
scales the precipitation amount in winter 2012 was not significantly different from past
years and therefore it is unlikely that $P-E$ was a controlling factor which caused the
anomalously deep snow in 2012. On the other hand, the SIPEX II observations were
characterized by significantly thick sea ice. The mean ice thickness measured along the
transects amounted to 2.33 ± 1.64 m, more than twice the thickness obtained by past
observations. Significantly thick ice accompanied much higher freeboard (0.12 ± 0.18
m), which acted to reduce the snow ice formation. Indeed, it was revealed from the
analysis of ice-core samples that the mean thickness of snow-ice layers was 0.06 ± 0.11 m in 2012, nearly half the value of 0.13 ± 0.14 m in 2007. This means that \overline{I} was reduced in 2012 as compared to 2007. Although this effect contributed partly to the increase in mean snow depth in 2012, it is still not enough to explain the difference of mean snow depth between these two years. By substituting these results into Eq.2, it was found that \overline{L} amounts to 0.57 m in 2007 and 0.39 m in 2012, nearly half or more of $\overline{P}-\overline{E}$. This indicates that \overline{L} is a controlling factor of snow accumulation in both years, and possibly worked most efficiently to produce the difference in mean snow depth between 2007 and 2012.

As possible reasons for the significant difference in \overline{L} between these two years, there seem to be two factors which can affect \overline{L}: the surface roughness and the spacing and width of the leads, both of which are closely related to the sea ice growth processes. Regarding rough surface conditions, the significantly thicker ice in 2012, possibly produced by unusually rigorous deformation activities, accompanied very rough ice surface. This is also confirmed by the much larger sd of freeboard in 2012 (0.18 m) compared with 2003 and 2007 (~0.10 m) in Table 2. It is possible that enhanced surface roughness affected the snow redistribution and accumulation.

However, the reason for the highly active deformation processes of sea ice in 2012 remains unresolved. It is difficult to explain this simply from the interannual variability in ERA-Interim wind speed or wind divergence on a grid scale (~100 km), which are presumed to largely affect the deformation intensity, in light of the fact that they did not show any significant and unusual features in 2012 (Fig.13).

On the other hand, the spacing and width of leads might have reduced the loss of drifting snow into leads, with floe-size distribution affecting the observed snow depth.
on the sea ice. Taken together, these results confirm earlier findings (e.g., Eicken et al., 1994; Massom et al., 2006; Toyota et al., 2011; Leonard and Maksym, 2011) that snow-sea ice interaction processes beyond snow-ice formation play a significant role in determining the mean snow depth on Antarctic sea ice.

In this paper, we have focused on the fate of snow accumulated on sea ice on a scale of more than 100 km. In addition, we would like to point out a localized feature of the snow accumulation on sea ice from our observational results based on the fact that snow accumulation often occurs on scales that are significantly smaller than the grid interval of the ERA-Interim dataset. As an example, we show one result of the diurnal snow-pit observations conducted on October 6-8 in 2012. Associated with a passage of a deep low pressure system, strong southeasterly winds blew over this area (Fig. 3) and significant precipitation occurred on October 7 (Fig. 9d). According to the diurnal snow-pit measurements, snow depth increased from 0.41 m at 18:50 (LST) on October 6 to 0.65 m at 13:30 on October 8. The increase of 0.24 m in snow depth depressed the snow/ice boundary by about 0.08 m and induced flooding of brine within sea ice on the ice surface, accompanying an increase in basal snow layer salinity from 5.8 psu on October 6 to 57.8 at 13:30 and even 69.1 at 18:45 on October 8. On this day, the calculated mean $P-E$ in the observational area is to be 7.4 kg m$^{-2}$, corresponding to only 0.02 m (Fig. 9d). This demonstrates a strong localized feature in the spatial distribution of snow accumulation and the effect that it had on snow properties, reminding us that the variability of snow properties on a small scale should be taken into account when discussing the fate of snow on a regional scale.

Finally, although this study underlines the importance of snow-sea ice interactions for determining the snow-depth distribution off East Antarctica, several questions
remain unanswered regarding what caused the strong sea-ice deformation off Wilkes Land in the winter-spring of 2012, how much the surface roughness of sea-ice affects drift-snow transport, and what caused such expansion of sea ice extent in 2012. To address these questions will require further continuous observations and theoretical studies on the relationship between snow accumulation/loss and sea ice surface roughness, rheology and floe-size distribution on various scales, and in various seasons.

Acknowledgments

The authors deeply appreciate the support given by the captain, crew and scientists aboard the R/V *Aurora Australis* during SIPEX II. Special thanks are given to the chief scientist of SIPEX II, Dr. K. Meiners, for his dedicated assistance. We gratefully thank C. Dietz and C. Cook (Central Science Laboratory, UTAS) for δ^{18}O measurements and Dr. A. Moy (AAD) for further processing and collating the δ^{18}O data. Discussions with Dr. T. Maksym and Dr. G. Williams were very helpful. Comments by two anonymous reviewers were also helpful to improve the paper. This work was supported by AAS 4073 and partly by JSPS KAKENHI 21510002 [Grant-in-Aid for Scientific Research (C)] for TT and 25·03748 for AF, and by the Australian Government’s Cooperative Research Centre program through the Antarctic Climate & Ecosystems Cooperative Research Centre. For RM and PH, the work contributes to AAS projects 4116 and 4072 and 4301, respectively.

1. Values deduced from profiles measurements.

Journal of Geophysical Research, 100(C3), 4821-4831.

Journal of Glaciology, 13, 109-120.

Journal of Climate, 11, 334-367.

Polar Biology, 12, 3-13.

Jeffries, M.O., S. Li, R.A. Jana, H.R. Krouse, B. Hurst-Cushing, 1998. Late winter first-year ice profile thickness variability, seawater flooding and snow ice formation
in the Amundsen and Ross Seas. *Antarctic Research Series*, 74, 69-87, AGU.

Experiment) in the East 2003: Validation of satellite derived sea ice data products.

PloS One, 8 (5), e64756, doi:10.1371/journal.pone.0064756.

Journal of Glaciology, 26(94), 481-492.

overlying the sea ice off East Antarctica in late winter 2007.

Figure captions:

Figure 1. Geographical map showing the location of the observation area.

The whole Antarctic area with the ERA-Interim grid cells used for analysis, and the five sectors used in the analysis. The thick solid line denotes the ice edge on September 30, 2012 (maximum).

(a) The square area off East Antarctica denotes the observational area in Fig. 1b.

(b) Magnified map around the observation area. The two square areas delineated by broken and solid lines depicts the observational area in Fig.1a and the MODIS images in Fig.14, respectively. The numbers denote the ice station number, while the asterisk shows the position of the ship when it was beset in the sea ice from October 26 to November 5, 2012.

Figure 2. The seasonal evolution of sea-ice extent around Antarctica in

(a) 2007 and (b) 2012.

The green, red, yellow, and blue lines denote the ice edge location on March 1, May 1, July 1, and September 1, respectively (based on 15% ice concentration).

Note that the sea ice began to cover the observation area approximately after May in both years. The data source is

http://www.iup.uni-bremen.de/seaice/amsredata/asi_daygrid_swath/l1a/s6250/

for 2007 and http://www.iup.uni-bremen.de:8084/ssmisdata/asi_daygrid_swath/
s6250 for 2012.

Figure 3. Comparison of ERA-Interim data and ship-based observations for

(a) sea level pressure; (b) surface air temperature;
(c) zonal component and (d) meridional component of surface wind;
(e) surface wind speed; (f) surface vapour pressure; and
(g) specific humidity at the surface.

Figure 4. Scatter plots comparing the ERA-Interim data and ship-based observations for
(a) daily mean zonal wind and (b) daily mean meridional wind.

Figure 5. Spatial distribution of annual net precipitation ($P-E$) averaged for the
period 1990 to 2012 around Antarctica south of 60°S (in kg m$^{-2}$ year$^{-1}$).

Figure 6. Histograms of snow depth measured in-situ along observational transect lines
in (a) 2007 and (b) 2012.

Figure 7. Histograms of sea-ice thickness measured in-situ along observational transect
lines in (a) 2007 and (b) 2012.

Figure 8. Scatter plots comparing bulk ice salinity and ice thickness.

In the figure, open circles denote 2007 samples and triangles 2012 samples.

Figure 9. Time series of (a) sea level pressure; (b) surface air temperature;
(c) precipitable water; and (d) $P-E$.

Thin and thick lines correspond to 2007 and 2012, respectively.

Figure 10. Time series of calculated $P-E$ in the observational area.

(a) Seasonal variation of monthly $P-E$ for 2012 (thick solid line), 2007
(thin solid line), and the average for the period 1990 to 2012 (broken line).

(b) Interannual variability of winter $P-E$ (May to September) for the period
1990 to 2012. Open circles correspond to the years when the
snow observations were conducted (Table 2).

Figure 11. Spatial distribution of calculated $P-E$ for the winters of (a) 2007 and (b) 2012
The square area denotes the observational area in 2007 and 2012.
Figure 12. Interannual variability of (a) $P-E$ and (b) precipitable water for the individual Sectors marked on Fig. 1a. In Fig 12a, “A&B” denotes Amundsen and Bellingshausen Seas.

Figure 13. Interannual variability in the ERA-Interim data for the period 1990 to 2012 for: (a) surface wind speed; and (b) divergence of the wind.

Figure 14. Satellite MODIS images showing the ice conditions on (a) September 10, 2007 and (b) October 5, 2012. See Fig. 1b for the location of the images. The width of the images is approximately 750 km.

Figure 15. Satellite-derived sea-ice extent on September 30 in the years when observational programmes were conducted off East Antarctica.
Figure 1
Figure 2
Figure 3
Figure 3 (Continued)
Figure 4

(a) Wind speed (E-W): $y = 0.915x$

(b) Wind speed (N-S): $y = 0.984x$
Figure 5
Figure 6 Histograms of snow depth.
Figure 7 Histogram of ice thickness.
Figure 8
Figure 9
Figure 9 (Continued.)
Figure 10
Figure 11
Figure 12
Figure 13
Table 1. The results of observation along each transect line

<table>
<thead>
<tr>
<th>Transect No.</th>
<th>Date (2012)</th>
<th>Length of transect (m)</th>
<th>H<sub>i</sub> (m)</th>
<th>F<sub>b</sub> (m)</th>
<th>H<sub>s</sub> (m)</th>
<th>T<sub>i</sub> (°C)</th>
<th>Snow pit number</th>
<th>Snow density (kg m<sup>-3</sup>)</th>
<th>Basal snow salinity (psu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St.2-1</td>
<td>Sep.27-28</td>
<td>100</td>
<td>1.64</td>
<td>0.09</td>
<td>0.35</td>
<td>-5.1</td>
<td>3</td>
<td>350</td>
<td>10.2</td>
</tr>
<tr>
<td>St.2-2</td>
<td>Sep.27-28</td>
<td>100</td>
<td></td>
<td>-</td>
<td>0.31</td>
<td>-7.2</td>
<td>2</td>
<td>363</td>
<td>12.9</td>
</tr>
<tr>
<td>St.3-1</td>
<td>Oct. 4</td>
<td>100</td>
<td>1.79</td>
<td>0.12</td>
<td>0.55</td>
<td>-7.8</td>
<td>3</td>
<td>365</td>
<td>6.9</td>
</tr>
<tr>
<td>St.3-2</td>
<td>Oct. 4</td>
<td>100</td>
<td></td>
<td>-</td>
<td>0.47</td>
<td>-8.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>St.4</td>
<td>Oct. 8</td>
<td>100</td>
<td>1.37</td>
<td>-0.02</td>
<td>0.48</td>
<td>-4.3</td>
<td>3</td>
<td>348</td>
<td>12.0</td>
</tr>
<tr>
<td>St.6-1</td>
<td>Oct.14</td>
<td>100</td>
<td>1.73</td>
<td>0.10</td>
<td>0.28</td>
<td>-5.7</td>
<td>2</td>
<td>351</td>
<td>0.7</td>
</tr>
<tr>
<td>St.6-2</td>
<td>Oct.14</td>
<td>100</td>
<td></td>
<td>-</td>
<td>0.52</td>
<td>-5.2</td>
<td>2</td>
<td>332</td>
<td>0.5</td>
</tr>
<tr>
<td>St.7-1</td>
<td>Oct.20-23</td>
<td>100</td>
<td>4.87</td>
<td>0.29</td>
<td>0.52</td>
<td>-3.7</td>
<td>3</td>
<td>334</td>
<td>3.5</td>
</tr>
<tr>
<td>St.7-2</td>
<td>Oct.20-23</td>
<td>100</td>
<td></td>
<td>-</td>
<td>0.47</td>
<td>-4.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>St.7-3</td>
<td>Oct.20-23</td>
<td>100</td>
<td></td>
<td>-</td>
<td>0.56</td>
<td>-4.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>St.7-4</td>
<td>Oct.20-23</td>
<td>100</td>
<td></td>
<td>-</td>
<td>0.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>All</td>
<td>mean</td>
<td>100</td>
<td>2.33</td>
<td>0.12</td>
<td>0.45</td>
<td>-5.8</td>
<td>18</td>
<td>350</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td></td>
<td>1.64</td>
<td>0.18</td>
<td>0.26</td>
<td>3.1</td>
<td>46</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>

(*) H_i: mean ice thickness, F_b: mean freeboard, H_s: mean snow depth, T_i: mean snow/ice interface temperature

Basal snow salinity means the salinity at the basal 3 cm layer of snow.

Snow density and basal snow salinity were obtained by averaging the data at all the snow pits along each transect line. Along the transects of St.3-2, St.6-2, St.7-2, St.7-3, and St.7-4, only the snow depth measurement was conducted.

See Fig.1b for the locations of ice stations.
<table>
<thead>
<tr>
<th>Month & Year</th>
<th>Longitude (E)</th>
<th>Snow depth (m)</th>
<th>Ice thickness (m)</th>
<th>Freeboard (m)</th>
<th>Mean snow density (kg/m³)</th>
<th>Basal snow salinity (psu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct.-Nov. 1992</td>
<td>62-102</td>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sep.-Oct. 1994</td>
<td>75-150</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aug. 1995</td>
<td>138-141</td>
<td>0.13</td>
<td>~ 0.6 (mode)</td>
<td>~ 0.05</td>
<td>360</td>
<td>17.0</td>
</tr>
<tr>
<td>Sep.-Oct. 2003</td>
<td>109-118</td>
<td>0.21 ± 0.18</td>
<td>0.96 ± 0.69</td>
<td>0.04 ± 0.07</td>
<td>306</td>
<td>13.3</td>
</tr>
<tr>
<td>Sep.-Oct. 2007</td>
<td>115-130</td>
<td>0.14 ± 0.13</td>
<td>0.98 ± 0.58</td>
<td>0.07 ± 0.10</td>
<td>322</td>
<td>13.3</td>
</tr>
<tr>
<td>Sep.-Oct. 2012</td>
<td>119-122</td>
<td>0.45 ± 0.26</td>
<td>2.33 ± 1.64</td>
<td>0.12 ± 0.18</td>
<td>350</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Table 2. Comparison with past results conducted around this region in winter
Table 3. Correlation coefficients between ice condition parameters

(a) 2007
(N = 11)

<table>
<thead>
<tr>
<th></th>
<th>Hi (Ave)</th>
<th>Fb (Ave)</th>
<th>Hs (Ave)</th>
<th>Se (Ave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi (Ave)</td>
<td>1.00</td>
<td>0.76</td>
<td>0.86</td>
<td>0.82</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>1.00</td>
<td>0.16</td>
<td>0.58</td>
</tr>
<tr>
<td>Fb (Ave)</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
<td>0.76</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>Hs (Ave)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Se (Ave)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(b) 2012
(N = 5)

<table>
<thead>
<tr>
<th></th>
<th>Hi (Ave)</th>
<th>Fb (Ave)</th>
<th>Hs (Ave)</th>
<th>Se (Ave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi (Ave)</td>
<td>1.00</td>
<td>0.71</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>1.00</td>
<td>0.67</td>
<td>0.73</td>
</tr>
<tr>
<td>Fb (Ave)</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>Hs (Ave)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Se (Ave)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(sd)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) Hi, Fb, Hs, and Se denote mean ice thickness, freeboard, snow depth, and surface elevation, respectively.
Freeboard is the height of ice surface, while surface elevation is the height of snow surface.
Values greater than 0.8 were stressed in bold letters.
Note that each parameter averaged for each transect line is used for this analysis.
Table 4. Snow volmetric balance in winter

<table>
<thead>
<tr>
<th>Year</th>
<th>$$</th>
<th>$<P>-<E>$</th>
<th>$<I>$</th>
<th>$<L>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.14±0.13</td>
<td>0.90</td>
<td>0.19±0.21</td>
<td>0.57</td>
</tr>
<tr>
<td>2012</td>
<td>0.45±0.26</td>
<td>0.93</td>
<td>0.09±0.17</td>
<td>0.39</td>
</tr>
<tr>
<td>Difference</td>
<td>0.31±0.23</td>
<td>0.03</td>
<td>0.10±0.12</td>
<td>0.18</td>
</tr>
</tbody>
</table>

(*) $$ denotes the spatially averaged snow accumulation rate.
$<P>-<E>$ is the spatially averaged precipitation minus sublimation.
$<I>$ denotes the snow thickness consumed for the snow ice formation.
$<L>$ denotes the snow thickness lost into leads due to snow drift.
The numbers are all in meters. The error in Difference was estimated from the difference between the two years assuming the Normal distribution.