Effects of nitrogen loading under low and high phosphorus conditions on above- and below-ground growth of hybrid larch F1 seedlings

Author(s)
Fujita, Saki; Wang, Xiaona; Kita, Kazuhito; Koike, Takayoshi

Citation
iForest : Biogeosciences and Forestry, 11, 32-40
https://doi.org/10.3832/ifor2395-010

Issue Date
2018-02

Doc URL
http://hdl.handle.net/2115/68380

Rights
Copyright © 2018 by the Italian Society of Silviculture and Forest Ecology, © iForest - All the material included on this site is distributed under the license Creative Commons Attribution-NonCommercial 4.0 International.

Rights(URL)
https://creativecommons.org/licenses/by-nc/4.0/

Type
article

File Information
iForest_ifor2395-010_Fujita.pdf
Effects of nitrogen loading under low and high phosphorus conditions on above- and below-ground growth of hybrid larch F_1 seedlings

Saki Fujita (1), Xiaona Wang (2), Kazuhiro Kita (3), Takayoshi Koike (4)

Under present environmental conditions, hybrid larch F_1 (Larix gmelinii var. japonica × Larix kaempferi) is a promising afforestation species as it has a high growth rate and tolerance against grazing damage, disease and cold. However, the input of nitrogen (N) to forests due to the increase of anthropogenic N is causing imbalances of N compared to other nutrients, especially phosphorus (P), thus affecting the root growth of healthy seedlings. However, knowledge on how different N and P conditions affect F_1 root growth is still limited. In this study, various N (3 levels) and P (no addition and addition) conditions were imposed to investigate the effect of N loading on larch F_1 seedlings under different P conditions. Needle N: P ratio, aboveground growth, belowground growth as well as fine root production were measured. The results showed that needle N: P ratio was higher under low P loading, and aboveground growth of seedlings increased with N loading at both low and high P conditions. Relative fine root production was decreased by N loading. On the other hand, fine root to total dry proportion was increased by N loading at no P addition, suggesting that limited P availability could increase fine root production. Total root proportion to total dry mass was decreased by N loading at both P conditions. We concluded that N loading has different effects on above- and below-ground growth of larch F_1 and its effects may also differ according to P conditions, indicating that both N and P conditions should be carefully considered when planting hybrid larch F_1.

Keywords: Nitrogen Deposition, Phosphorus, Fine Root Production, N: P Ratio, Hybrid Larch F_1.
reported detrimental effects of N loading on root growth and biomass of larch F. seedlings by conventional and exponential fertilization methods. Indeed, high N loading decreased root length and surface, which resulted in decreased shoot develop- ment. Moreover, they noted that when enough N is available for seedlings, above-ground growth was prioritized over below-ground growth. Mao et al. (2014) investigated the effect of N loading on 2-year-old F, seedlings at low soil P conditions to evaluate P limitation induced by N increase. However, their hypothesis that N loading had the same increasing effect on growth at both low and high P conditions in forest brown soil (Dystric Cambisols). Mao (2013) found that both N and P loading increased the surface area of fine roots in Vitric Andisols (low nutrient condition soil). As fine roots play the role of absorbing nutrients and water, fine root growth is vital for seedling survival and drought tol- erance. Furthermore, fine roots are also strongly influenced by nutrient availability (Burton et al. 2000), and can be easily altered by changes in N and P conditions. Previous studies on the effect of N loading on hybrid larch F, have focused on a single growing season (Koike et al. 2004, Watanabe et al. 2011, Mao 2013, Mao et al. 2014, Qu 2016). However, the effect of nutrient conditions may change according to loading duration, and the effect on below- ground growth may also change. There- fore, there is a need to better understand how a longer loading duration affects the below-ground growth of hybrid larch F. Our objective was to investigate the effects of varying N and P conditions on above- and below-ground growth of hybrid larch F. We hypothesized that N loading under low P conditions will increase N: P ratio, causing P limitation. Therefore, N loading will only have positive effects on growth under high P loading conditions. Also, root growth will decrease by N loading, and this will be more significant with P loading, since aboveground growth will be prioritized instead of investments made for nutrient acquisition.

Materials and methods

Plant material and soil conditions

Thirty-six hybrid larch F, (Larix gmelinii var. japonica × Larix kaempferi) seedlings produced at the Hokkaido Forestry Research Institute (Bibai, Japan) were used. In 2012, the 2-year-old seedlings were taken out of a stock room and planted in 30 L pots filled with Akadama soil and Kanuana pumice soil at a volume ratio of 1:1. This soil mix was chosen to simulate Vitric Andosols, which are widely distributed across the Hokkaido Island. Both Akadama and Kanuana pumice soils are derived from vol- canic soil and are high in aeration, water and fertilization retention, and water avail- ability. These soils lack nutrients and absorb phosphoric acid, which make it diffi- cult for plants to absorb P. Akadama soil is slightly acidic (pH = 5.2), whereas Kanuama pumice soil is acidic (pH = 4.8).

In spring 2015, seedlings were replanted into 44 L pots with the same soil mix to prevent their roots from becoming pot- bound (pot effect). Seedlings were grown at the experimental nursery of Hokkaido University (43° 07' N, 141° 38' E, elevation 15 m a.s.l.) under natural (open air) condi- tions. Annual average precipitation was 1274.5 mm and 1360.0 mm in 2015 and 2016, respectively, while annual average temper- ature was 10.0 °C and 9.3 °C, respectively, as measured at the Sapporo Regional Headquarters (JMA: 43° 03'6" N, 141° 38' E, elevation 19.7 m a.s.l.). When there was no rainfall for a week, seedlings were irrigated until the pots were fully watered. The snow free period is from mid-November to late April. The accumulated snow depth is approximately 1.2 m during mid-January to early March.

Loading treatments

To investigate the effects of N deposition at low and high P conditions, 3 levels of N and 2 levels of P were imposed (Mao 2013, Mao et al. 2014). The loading treatment be- gan in 2012 and continued until 2016 (4 years). The 3 N levels were: 0, 50 and 100 kg N ha⁻¹ yr⁻¹ and were labeled as N0, N50, N100, respectively. N50 treatment simu- lates the typical estimation of N deposition at Asian regions (Nakaji et al. 2001, Gal- loway et al. 2003) and the N100 treatment reflected an excessive N loading. Regarding P loading, the high treatment was set at 50 kg P ha⁻¹ yr⁻¹ (hereafter: P50) with refer- ence to common agricultural practices, while 0 kg P ha⁻¹ yr⁻¹ was set as low P treat- ment (hereafter: P0). Six different treatments were obtained by combining the three N with the two P levels, which were labeled as follows: N100P50, N50P50, NoP0, N100P0, NoP0, and NoP0 (control). There were 6 seedlings in each treat- ment for a total of 36 seedlings. Kanuama soil and Akadama soils have almost no nu- trients, thus Hyponex® fertilizer (N: P: K = 6:10:5, Mg: 0.05%, Mn: 0.001%, B: 0.005% - Hyponex Japan, Japan) was added in 2015 as top dressing in mid-May and at the end of June with 1000× dilution by deionized water. By Hyponex addition, 12.5 kg N ha⁻¹ yr⁻¹ and 21.1 kg P ha⁻¹ yr⁻¹ was added. The amount added by Hyponex was subtracted from the N and P loading in 2015. However, since Hyponex was given to all seedlings, treatments No received 12.5 kg N ha⁻¹ yr⁻¹ and treatments P0 received 21.1 kg P ha⁻¹ yr⁻¹ in 2015.

Ammonium nitrate (NH₄NO₃) was used as nitrogen source to simulate N deposition from acid rain and aerosols in Japan (Kaneyasu et al. 2014), while monopotas- sium phosphate (KH₂PO₄) was used as P source. Both were dissolved and given with 500 mL of deionized water. In Hok- kaido, a considerable amount of N is re- leased from snowmelt, therefore N was ap- plied 3 times at a ratio of 2:1:1 (100 kg N ha⁻¹ yr⁻¹ : 25, 25, 25 kg N ha⁻¹ yr⁻¹) in mid-June, mid- July and mid-August. As for P, it was ap- plied 3 times at a ratio of 2:1:1 (16.7, 16.7, and 16.7 kgP ha⁻¹ yr⁻¹) at the same time as N. In 2016, N and P were applied in 4 times at a ratio of 2:1:1:1 for N (100 kg N ha⁻¹ yr⁻¹: 40, 20, 20, 20 kg N ha⁻¹ yr⁻¹, 50 kg N ha⁻¹ yr⁻¹: 20, 10, 10, 10 kg N ha⁻¹ yr⁻¹) and a ratio of 1:1:1:1 for P (12.5, 12.5, 12.5, 12.5 kg P ha⁻¹ yr⁻¹). This was to shorten the time between N and P applications and to prevent N and P from being washed away with rain as much as possible. Large plates were also placed un- der the pots to prevent leaching.

Sampling and analysis

Aboveground

To examine needle N and P concentra- tion, a small proportion of needles located at the top part (i.e., elongation shoot and its branches) of all 36 seedlings were ran- domly collected before and after N and P loading treatments (2015: May 25 and Sep- tember 3; 2016: June 12 and August 15). The sampled needles were dried at 70°C for 72 hours.

Leaf litter was also collected on Decem- ber 15, 2015 and November 12, 2016 by cov- ering each whole seedling with a litter trap made with 1 mm mesh net, as described in Miyaura & Hozumi (1988). Traps were placed in mid-October of each year, right after the needles began to change color. The litter collected in 2015 was also used as total needle biomass. Collected leaves were dried at 70°C for 72 hours, and then weighed.

Needle N concentration was measured with a NC analyzer (Elemtar® VarioEl III, Germany), and the inductively coupled plasma-mass emission spectrometer ICP- AES® (IRIS/IRIS Advantage ICAP, Thermo Fi- sher Scientific Inc., MA, USA) was used to measure needle P concentration. Needle N: P ratio was calculated by dividing needle N concentration by needle P concentration (eqn. 1):

\[
N : P = \frac{N}{P} \text{ (1)}
\]

where N and P are the nitrogen and phosphorus concentration in needles, respec- tively.

**Height (cm) and stem basal diameter (mm) of seedlings were measured 6 times from spring 2015 to autumn 2016 (April 8, 2015; June 2, 2015; September 30, 2015; No- vember 20, 2015; May 13, 2016; August 31, 2015). Stem basal diameter was recorded as the average of two perpendicular mea- surements. The growth rate (GR, %) of height and stem basal diameter was calcu- lated for each measurement interval (from time t-1 to t) as follows (eqn. 2):

\[
GR = \frac{M_t - M_{t-1}}{M_{t-1}} \times 100 \text{ (2)}
\]
where M_i and M_r are the values measured at time t and t_1, respectively.

The aboveground biomass was measured in September 2015 and 2016 by harvesting the 4 tallest seedlings in each treatment. The selection of the four more robust seedlings from each treatment was done to avoid any bias related to possible mechanical injuries suffered by seedlings due to the heavy snowfall occurring in the experimental area (see above).

The aboveground biomass was separated into stem, branch and needle components. Each component was dried at 70 °C for 72 hours, and then weighed. The other 12 seedlings were harvested in mid-November after collecting leaf fall.

Belowground

Fine roots were measured in 2015 by soil core samples (Mao 2015). Two soil cores from each pot were taken, and the fine roots inside the soil core were measured. Soil cores were approximately 30 cm deep and 3 cm in diameter (Daiki Co. Ltd, Tokyo, Japan), taken in symmetrical directions, approximately 10 cm away from the stem. The fine root sampling was done 5 times in 2015 (June 26, July 30, September 3, October 23 and November 14). Each soil sample was approximately 1% of the total pot volume. Circular plastic tubes were placed at the sampling locations in the pots, so that samplings could be carried out at the same place every time. The holes made after the sampling were refilled with similar conditioned soil. Using this procedure, the fine root biomass obtained from the soil cores reflected the fine root production between the sampling dates except for the first sampling (June 26, 2016). The soil cores were preserved at 4 °C. The obtained fine roots were carefully washed with water and a brush. They were scanned with a scanner (CanoScan LIDE 200®, Canon, Japan), dried at 70 °C for 72 hours, and then weighed. The root analysis software WinRHIZO TRON® 2012a (Regent Instruments Canada Inc., Canada) was used to measure root length (cm). Specific root length (SRL) was calculated for the total sampling core according to Oosten et al. (2007).

Roots were harvested after the aboveground harvest in September 2016 (4 seedlings per treatment). Roots were divided into coarse (> 5 mm) and fine roots (< 5 mm), dried at 70 °C for 72 hours, and then weighed.

We calculated the relative fine root production (FRP, g g⁻¹) from the total fine root production and the estimated total root biomass of 2015, as follows (eqn. 3):

$$FRP = \frac{T \times (frp)}{E(trb)}$$

where $T(frp)$ is total fine root production of 2015 (initial sampling excluded), and $E(trb)$ is the estimated total root biomass of 2015. $E(trb)$ was calculated from the relationships between stem basal diameter, aboveground biomass and belowground biomass (Fig. 1a, Fig. 1b) obtained from harvest measurement data of 2015 and 2016. Data of 2015 was obtained in spring 2015 from 19 additional seedlings ($n = 24$ for each treatment) which were subjected to the same N and P treatment, but were not included in the main experiment. The data of 2016 were obtained from the sampling material harvested in September (4 tallest seedlings in each treatment). To estimate total root biomass of NoP0 (control), harvest data from 2015 was used. This was because the height for NoP0 was significantly small and did not fit the regression line made with the data used in 2016. For the rest of the treatments, harvest data from 2016 were used.

Statistics

A fully randomized scheme with 3 levels of N (0, 50, 100 kg N ha⁻¹) and 2 levels of P was adopted in this study. Two-way ANOVA ($n = 36$, except litter: $n = 20$) was used to evaluate the effect of N, P, and their interaction on aboveground growth, fine root production and nutrient condition. Biomass was evaluated using data from the 24 robust seedlings harvested in autumn 2015. All measurements were done once, except the measurement of stem basal diameter which was the average of 2 measurements. Regarding the litter, since there were only 12 seedlings in total (2 seedlings per treatment), we measured 2 samples per seedling for measurement robustness. All analysis was done using R version 3.3.2, except the regression analysis, which was carried out using the software package Microsoft EXCEL 2013®.

Results

Aboveground

Needle N, P concentration and needle N: P ratio were measured to evaluate nutrient conditions of larch seedlings (Tab. 1). Both in 2015 and 2016, N loading increased the N concentration in needles for both P50 and P0 treatments. In 2016, needle N concentration was higher at P0 treatment. In both 2015 and 2016, needle P concentration was higher in seedlings subjected to P50 treatment than under the P0 treatment. In 2015, significant effects of N and P loading on needle N: P ratio were detected ($p < 0.10$), with values generally lower for seedlings grown under the P50 treatment. In 2016, only P had a significant effect and the needle N: P ratio was significantly higher for the P0 seedlings. Litter N concentration was significantly lower than needle N concentration of growing season needles. However, in N0P0, the litter N concentration was significantly higher compared to other treatments in both years (2015 and 2016).

N and P had similar effects on aboveground growth of seedlings (Fig. 2a, Fig. 2b, Tab. 2). Final height was increased by both N and P loading. Total height growth rate of 2015 was affected by both N and P loading, and N and P showed a significant interaction effect. Total growth rate of 2016 was overall smaller than that of 2015, and was significantly affected by N addition. Final stem basal diameter (SBD) was increased by both N and P. Concerning SBD growth rate of 2015, N had an increasing effect. In 2016, N loading had a significant decreasing effect on all seedlings, except those of the NoP0 treatment.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Needle N</td>
<td>Needle P</td>
</tr>
<tr>
<td>N0P0</td>
<td>9.78 ± 0.33</td>
<td>0.67 ± 0.02</td>
</tr>
<tr>
<td>N0P50</td>
<td>7.54 ± 0.31</td>
<td>1.21 ± 0.14</td>
</tr>
<tr>
<td>N0P100</td>
<td>14.98 ± 0.60</td>
<td>1.05 ± 0.05</td>
</tr>
<tr>
<td>N0P50</td>
<td>16.24 ± 0.57</td>
<td>1.13 ± 0.03</td>
</tr>
<tr>
<td>N0P100</td>
<td>21.83 ± 0.40</td>
<td>0.94 ± 0.03</td>
</tr>
<tr>
<td>N100P0</td>
<td>20.93 ± 0.39</td>
<td>1.47 ± 0.14</td>
</tr>
<tr>
<td>N100P50</td>
<td>20.93 ± 0.57</td>
<td>1.13 ± 0.03</td>
</tr>
<tr>
<td>N</td>
<td>ns (0.92)</td>
<td>ns (0.92)</td>
</tr>
<tr>
<td>P</td>
<td>ns (0.43)</td>
<td>* (5.87)</td>
</tr>
<tr>
<td>N × P</td>
<td>ns (1.13)</td>
<td>ns (0.10)</td>
</tr>
</tbody>
</table>

Effects of nitrogen and phosphorus on larch seedlings growth
Fig. 1 - Regression relationship between: (a) stem basal diameter and aboveground biomass; and (b) aboveground biomass and total root biomass. The Regression equation, R^2 and p value from regression analysis are reported close to each line. The black lines represent the data from 2016 (harvest, $n = 4$ for each treatment), and the gray lines represent data from 2015 ($n = 19, 2-4$ seedlings for each treatment).

Fig. 2 - Height growth rate (a) and stem basal diameter growth rate (b) for 2 growing seasons from spring 2015 to autumn 2016 for each N and P treatment ($n = 6$ for each treatment). N0 (dotted lines), N50 (dashed lines) and N100 (solid line) represent the different N loading treatments (N0: 0 kg N ha$^{-1}$ yr$^{-1}$, N50: 50 kg N ha$^{-1}$ yr$^{-1}$, N100: 100 kg N ha$^{-1}$ yr$^{-1}$). P0 (gray) indicates treatments without P loading (0 kg P ha$^{-1}$ yr$^{-1}$), while P50 (black) represents treatments with P loading (50 kg P ha$^{-1}$ yr$^{-1}$). Measurement intervals are reportde on the horizontal axis. Bars represent the standard error.

Tab. 2 - Mean value (\pmSE) of each treatment on final height (H) (cm), final stem basal diameter (SBD) (mm), total height growth (cm), height growth rate of 2015 (%), height growth rate of 2016 (%), total SBD growth (mm), SBD growth rate of 2015 (%) and SBD growth rate of 2016 (%). (N0, N50, N100): different N loading treatments at 0, 50 and 100 kg N ha$^{-1}$ yr$^{-1}$, respectively. P0 indicates treatments without P loading (0 kg P ha$^{-1}$ yr$^{-1}$), while P50 represents treatments with P loading (50 kg P ha$^{-1}$ yr$^{-1}$). p values (F values in brackets) of two-way ANOVA are also shown. (**): $p < 0.001$; (***): $p < 0.01$; (*): $p < 0.05$; (ns): not significant.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Final H (cm) \pmSE</th>
<th>Final SBD (mm) \pmSE</th>
<th>Total H growth (cm)</th>
<th>2015 H growth rate (%)</th>
<th>2016 H growth rate (%)</th>
<th>Total SBD growth (mm)</th>
<th>2015 SBD growth rate (%)</th>
<th>2016 SBD growth rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0P0</td>
<td>55.37 ± 4.18</td>
<td>12.63 ± 0.71</td>
<td>29.98 ± 1.71</td>
<td>66.87 ± 1.43</td>
<td>33.66 ± 1.71</td>
<td>5.69 ± 0.29</td>
<td>36.76 ± 4.03</td>
<td>38.70 ± 3.64</td>
</tr>
<tr>
<td>N0P50</td>
<td>71.33 ± 2.23</td>
<td>25.55 ± 0.84</td>
<td>17.57 ± 0.91</td>
<td>22.34 ± 1.17</td>
<td>10.12 ± 0.62</td>
<td>4.92 ± 0.24</td>
<td>29.14 ± 2.52</td>
<td>18.47 ± 1.28</td>
</tr>
<tr>
<td>N50P0</td>
<td>98.18 ± 9.24</td>
<td>20.11 ± 0.63</td>
<td>40.92 ± 3.77</td>
<td>63.27 ± 3.47</td>
<td>6.74 ± 0.53</td>
<td>8.68 ± 0.26</td>
<td>52.61 ± 1.43</td>
<td>17.41 ± 3.10</td>
</tr>
<tr>
<td>N50P50</td>
<td>133.02 ± 6.44</td>
<td>23.44 ± 1.23</td>
<td>32.98 ± 2.63</td>
<td>29.20 ± 2.60</td>
<td>5.16 ± 1.29</td>
<td>7.93 ± 0.50</td>
<td>38.11 ± 2.08</td>
<td>16.11 ± 1.69</td>
</tr>
<tr>
<td>N100P0</td>
<td>140.00 ± 7.26</td>
<td>24.24 ± 0.77</td>
<td>44.35 ± 2.81</td>
<td>43.05 ± 2.63</td>
<td>2.82 ± 0.55</td>
<td>8.30 ± 0.33</td>
<td>44.81 ± 1.72</td>
<td>10.06 ± 1.07</td>
</tr>
<tr>
<td>N100P50</td>
<td>148.32 ± 7.64</td>
<td>15.78 ± 0.59</td>
<td>65.60 ± 3.25</td>
<td>67.87 ± 2.95</td>
<td>6.30 ± 0.65</td>
<td>7.86 ± 0.32</td>
<td>33.12 ± 1.27</td>
<td>10.86 ± 1.04</td>
</tr>
<tr>
<td>N**</td>
<td>** (64.78) **</td>
<td>** (88.35) **</td>
<td>** (11.32) **</td>
<td>** (6.39) **</td>
<td>** (6.57) **</td>
<td>** (8.01) **</td>
<td>ns (2.28)</td>
<td>** (7.81) **</td>
</tr>
<tr>
<td>P**</td>
<td>** (10.70) **</td>
<td>** (15.59) ns (0.00)</td>
<td>0.1 (3.22)</td>
<td>ns (0.99)</td>
<td>ns (0.93)</td>
<td>(5.64)</td>
<td>0.1 (3.03)</td>
<td></td>
</tr>
<tr>
<td>N × P</td>
<td>ns (1.92)</td>
<td>ns (0.79)</td>
<td>* (3.86)</td>
<td>* (3.33)</td>
<td>ns (1.49)</td>
<td>ns (0.18)</td>
<td>0.1 (3.09)</td>
<td></td>
</tr>
</tbody>
</table>
Effects of nitrogen and phosphorus on larch seedlings growth

Tab. 3 - Mean value (±SE) of each treatment on stem, branch, needle, above, total, fine root, coarse, total root biomass (g) from harvest in 2016 (n = 4 for each treatment). (N0, N50, N100): different N loading treatments at 0, 50 and 100 kg N ha⁻¹ yr⁻¹, respectively. P0 indicates treatments without P loading (0 kg P ha⁻¹ yr⁻¹), while P50 represents treatments with P loading (50 kg P ha⁻¹ yr⁻¹). p values (F values in brackets) of two-way ANOVA are also shown. (**): p < 0.001; (†): p < 0.01; (•): p < 0.05; (ns): not significant.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total biomass</th>
<th>Stem biomass</th>
<th>Branch biomass</th>
<th>Needle biomass</th>
<th>Fine root biomass</th>
<th>Coarse root biomass</th>
<th>Total root biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0P0</td>
<td>73.23 ± 4.00</td>
<td>12.93 ± 0.76</td>
<td>14.23 ± 0.38</td>
<td>16.58 ± 2.34</td>
<td>7.40 ± 0.45</td>
<td>24.10 ± 1.66</td>
<td>31.50 ± 4.21</td>
</tr>
<tr>
<td>N0P50</td>
<td>178.71 ± 11.05</td>
<td>39.68 ± 4.90</td>
<td>28.90 ± 1.65</td>
<td>31.58 ± 2.71</td>
<td>21.30 ± 1.82</td>
<td>57.25 ± 5.55</td>
<td>78.56 ± 7.08</td>
</tr>
<tr>
<td>N0P100</td>
<td>166.27 ± 9.87</td>
<td>39.20 ± 1.24</td>
<td>39.33 ± 4.76</td>
<td>45.80 ± 7.41</td>
<td>20.96 ± 2.28</td>
<td>42.70 ± 2.74</td>
<td>63.60 ± 4.98</td>
</tr>
<tr>
<td>N50P50</td>
<td>324.58 ± 12.80</td>
<td>93.40 ± 2.31</td>
<td>69.20 ± 4.80</td>
<td>69.30 ± 6.87</td>
<td>22.98 ± 2.04</td>
<td>69.70 ± 6.35</td>
<td>92.68 ± 8.33</td>
</tr>
<tr>
<td>N100P0</td>
<td>330.68 ± 6.44</td>
<td>92.28 ± 2.63</td>
<td>78.23 ± 4.73</td>
<td>65.78 ± 1.80</td>
<td>26.10 ± 1.40</td>
<td>68.30 ± 1.69</td>
<td>94.40 ± 0.52</td>
</tr>
<tr>
<td>N100P50</td>
<td>460.38 ± 4.82</td>
<td>111.73 ± 1.17</td>
<td>119.85 ± 3.82</td>
<td>105.25 ± 5.41</td>
<td>30.40 ± 2.08</td>
<td>93.15 ± 3.80</td>
<td>123.55 ± 2.68</td>
</tr>
</tbody>
</table>

Tab. 4 - Mean value (±SE) of each treatment on coarse root, fine root, total root, stem, branch, needle, and above total biomass proportion (%). (N0, N50, N100): different N loading treatments at 0, 50 and 100 kg N ha⁻¹ yr⁻¹, respectively. P0 indicates treatments without P loading (0 kg P ha⁻¹ yr⁻¹) and P50 represents treatments with P loading (50 kg P ha⁻¹ yr⁻¹). p values (F values in brackets) of two-way ANOVA are also shown. (**): p < 0.001; (†): p < 0.01; (•): p < 0.05; (ns): not significant.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stem (%)</th>
<th>Branch (%)</th>
<th>Needle (%)</th>
<th>Fine root (%)</th>
<th>Coarse root (%)</th>
<th>Total root (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0P0</td>
<td>17.21 ± 0.76</td>
<td>19.22 ± 0.55</td>
<td>21.88 ± 1.57</td>
<td>9.81 ± 0.14</td>
<td>31.80 ± 0.56</td>
<td>41.61 ± 0.67</td>
</tr>
<tr>
<td>N0P50</td>
<td>21.73 ± 1.57</td>
<td>16.57 ± 0.92</td>
<td>18.00 ± 1.03</td>
<td>11.74 ± 0.41</td>
<td>31.96 ± 2.13</td>
<td>43.70 ± 2.39</td>
</tr>
<tr>
<td>N0P100</td>
<td>20.23 ± 0.84</td>
<td>18.24 ± 0.36</td>
<td>23.73 ± 0.89</td>
<td>12.20 ± 0.79</td>
<td>25.60 ± 0.30</td>
<td>37.80 ± 0.95</td>
</tr>
<tr>
<td>N50P50</td>
<td>29.30 ± 1.30</td>
<td>21.28 ± 1.18</td>
<td>21.44 ± 0.92</td>
<td>6.94 ± 0.36</td>
<td>21.03 ± 1.21</td>
<td>27.97 ± 1.53</td>
</tr>
<tr>
<td>N100P0</td>
<td>27.91 ± 0.60</td>
<td>23.47 ± 0.70</td>
<td>19.93 ± 0.47</td>
<td>7.97 ± 0.52</td>
<td>20.72 ± 0.54</td>
<td>28.69 ± 0.63</td>
</tr>
<tr>
<td>N100P50</td>
<td>24.29 ± 0.28</td>
<td>26.06 ± 0.84</td>
<td>22.83 ± 0.83</td>
<td>6.59 ± 0.43</td>
<td>20.23 ± 0.79</td>
<td>26.82 ± 0.42</td>
</tr>
</tbody>
</table>

Total biomass, stem biomass, branch biomass and needle biomass of seedlings showed a significant increase after N and P loading (Tab. 3). Also, a significant interaction between P and N addition was detected on leaf and stem biomass. N and P had different effects on proportion of stem, branch, and needle biomass to total dry biomass (Tab. 4). Stem proportion was increased by N loading. An interaction effect was also observed. The proportion of branch and needle biomass over the total seedling biomass was increased only by N loading.

Belowground

Treatments with N and P loading showed larger fine root biomass values from core samples compared to treatments with no N or P (Fig. 3). This is because seedling size differed according to the different N and P conditions, and so the initial sampling results from core sampling also differed. Similar results were observed throughout the season. There was a severe decrease of fine root in between the first and the second core sampling, likely due to the fact that all fine roots at sampling points in the pots were removed with the first sampling. However, at the next sampling date fine root production showed a slight trend with two peaks, one in later summer and another in late autumn (Fig. 3), though large differences existed among different treatments.

As shown in Fig. 4a and Tab. 5, N loading decreased relative fine root production and this was especially observed at Po. SRL was not affected by neither N nor P loading (Fig. 4b, Tab. 5). Seedlings subjected to N loading showed an increased needle: fine root biomass ratio in the P50 treatments; however, N loading did not show any significant effect on the above ratio at Po SRL.

Both fine and coarse root biomass of seedlings were increased by both N and P loading (Tab. 3). Furthermore, there were no significant effects of N and P loading on coarse root biomass.
For both 2015 and 2016, N loading significantly increased needle N concentration. High needle N concentration commonly occurs with N loading (Ryan et al. 1996), and this was also observed in our study. Needle P concentration was significantly higher at P50 treatments, showing that P addition increased needle P concentration. However, the needle P concentration of 2016 was smaller compared to 2015. The reason for this may be that Hyponex was added in 2015 as top dressing but not in 2016. Therefore, seedlings may have been experiencing higher P conditions and absorbed more P in 2015 compared to 2016, especially at P0 treatments.

In 2015, both N and P loading had positive effects on aboveground biomass. Therefore, P may have not been the critical limiting factor for aboveground growth; rather, N was the limiting factor. Li et al. (2016) compared the effect of N and P loading on two larch species (Larix kaempferi and L. olgensis). They found that N and P loading increased the productivity of both species; however, P loading suppressed L. kaempferi productivity but increased L. olgensis. Therefore, for L. kaempferi N loading did not induce P deficiency; rather, P loading induced N limitation, which could indicate that in the latter species the demand for N is much higher than that for P. Since F. is a hybrid of L. kaempferi similar characteristics of N and P demand may have been inherited (Szmidt et al. 1987, Wang et al. 2017). A significant interaction effect of N and P loading on leaf and stem biomass was observed in this study, where P loading had a significantly higher increasing effect on seedlings subjected to N50 and N100 treatments. Based on the above evidence, it can be hypothesized that when nutrient availability is high, seedling investments in stem growth (height) and photosynthesis (needle) are prioritized.

Although seedlings were replanted in larger pots to prevent root growth inhibition (pot effect), possibilities of growth restriction can also be considered at the following treatments: N100P50, N50P50,
Effects of nitrogen and phosphorus on larch seedlings growth

N100P0 and N50P0, since negative effects of N loading on height and stem basal diameter growth rates were observed in 2016 (Fig. 2a, Fig. 2b). No significant changes may have also simultaneously occurred where the nutrient content in 2016 was not enough to support seedling growth after transplantation in 2015. Furthermore, as loading treatment was applied for as much as four years, continuous loading may have altered plants nutrient demand in N and P (Braun et al. 2010). Needle P concentration was also lower in 2016 and so N loading may have caused P deficiency, and consequently, shortage of P may have decreased above-ground growth in 2016 compared to 2015.

Our results showed that N loading tends to increase the above-ground proportion of the total seedling biomass, especially at P50. It can be assumed that when N availability is high, seedlings have enough nutrients to support above-ground plant activities such as photosynthesis and so investments to the above-ground is prioritized instead of below-ground. If this is so, N loading may induce imbalances between above- and below-ground growth.

Belowground

Regarding the seasonal changes of fine root production obtained from soil core samplings, a slight trend of two growing peaks was observed. This result was also observed by Satoh (1995), although the latter growing peak was relatively later in the autumn. This was especially seen in high N loading treatments. Therefore, the favorable nutrient condition of N and P may have prolonged the growing season of fine roots.

N loading decreased relative fine root production of seedlings under the P0 treatments. Our starting hypothesis was that at P50 fine root production would decrease more than in the P0 treatments. In our experiment, treatments other than NoPo had relatively low relative fine root production values. Therefore, P may have not been the limiting factor for fine root production and N was the determining factor in 2015. Fine root production may have been enhanced by seedlings grown at NoPo (low nutrient conditions) to absorb more nutrients. Both N and P loading did not affect SRL in our study. However, significant differences may have occurred in previous studies and has shown that P deficiency enhances fine root growth for efficient P absorption (Lynch 1995, Lynch & Brown 1998, Gilroy & Jones 2000). In our study, seedlings subjected to the P0 treatments may have experienced a P deficiency. Under high P conditions, fine root proportion was decreased by N loading. On the other hand, under low P conditions, the fine root proportion increased at P50, although decreased at N100. Therefore, under high N and P conditions fine root proportion was decreased. At low P conditions, N loading may only have increasing effects up to a certain extent, while an excess of N loading may have decreased fine root proportion in F seedlings.

Needle: fine root biomass ratio was significantly higher under N loading at P50 treatments, indicating that more investments were made to the above-ground growth. This result was in agreement with previous studies where sufficient availability of water and nutrients result in smaller amounts of fine roots and a smaller percentage of assimilates is transported to roots (Erisman et al. 1998). This phenomenon could also decrease the seedling’s tolerance to other stress, such as drought, since roots have the vital role of absorbing not only nutrients but also water (Hodge et al. 2009). At P0 treatments, N did not increase needle: fine root biomass ratio, so it can be speculated that investments were made to fine roots as well as needle production.

The core sampling method may not be fully suitable to accurately evaluate fine roots, as the amount of soil sampled was relatively small compared to the total root biomass (1% of the total pot volume). To accurately evaluate fine root growth using soil core samples, more samplings are needed and more soil volume should be explored, though this could damage the root system and cause a decline in overall seedling growth. Using the in-growth method in parallel to core samples, may have increased the accuracy of fine root evaluation without harming the seedling. Evaluation of fine roots is strongly altered by the methodology (Nadelhoffer 2000), therefore more improvements of fine root measurement methodologies and techniques, such as a non-destructive Mini-rhizotron (MR-fine root observation tubes) method (Wang et al. 2016) could increase the accuracy of estimations.

Conclusion

N loading had different effects on above- and below-ground growth of hybrid larch F seedlings. Although, above-ground growth was increased by N loading under both low and high P conditions, below-ground growth was suppressed. This could affect seedlings’ tolerance or susceptibility to other stress, such as drought, since roots have the vital role of water absorption. Root growth of F, could be altered by increasing N deposition under low P soil conditions. Furthermore, high N loading at low P conditions altered litter quality. This could indirectly accelerate the input of N to soils. To efficiently use larch F, as an afforestation species, considerations should be taken on the location of plantation site, related to imbalances in N and P conditions, especially high N loading at P deficient soils.

Acknowledgements

We thank Dr. Ivan Brunner of WSL of Switzerland for helpful discussion and comments on the manuscript. We are grateful to Dr. Cong Shi, Mr. Testuto Sugai and Dr. Eugenios Agathokleous of Hokkaido University for constructive discussion. Gratitude in also given to Dr. Toshiyuki Hirata and Dr. Yoshitaka Uchida of Hokkaido University for the use of the NC Analyzer. We thank Dr. Toshihiro Watanabe of Hokkaido University for the use of WinRHIZO TRON software. This research was in part by Grant-in-aid of basic research, type B (to TK: No.26292075) of Japan Society of Promotion of Science.

References

2004. Ported by previous research (compared to seedlings with low needle N: aboveground growth.

N and P loading did not affect SRL in our experiment, treatments other than N0P0 (low nutrient condition of N and P may be enhanced by seedlings grown at N0P0). It can be assumed that when N availability is high, seedlings have enough nutrients to support above-ground plant activities such as photosynthesis and so investments to the above-ground is prioritized instead of below-ground. If this is so, N loading may induce imbalances between above- and below-ground growth. Consequently, shortage of P may have decreased above-ground growth in 2016 compared to 2015.

Our results showed that N loading tends to increase the above-ground proportion of the total seedling biomass, especially at P50. It can be assumed that when N availability is high, seedlings have enough nutrients to support above-ground plant activities such as photosynthesis and so investments to the above-ground is prioritized instead of below-ground. If this is so, N loading may induce imbalances between above- and below-ground growth. Consequently, shortage of P may have decreased above-ground growth in 2016 compared to 2015.

Our results showed that N loading tends to increase the above-ground proportion of the total seedling biomass, especially at P50. It can be assumed that when N availability is high, seedlings have enough nutrients to support above-ground plant activities such as photosynthesis and so investments to the above-ground is prioritized instead of below-ground. If this is so, N loading may induce imbalances between above- and below-ground growth. Consequently, shortage of P may have decreased above-ground growth in 2016 compared to 2015.

Our results showed that N loading tends to increase the above-ground proportion of the total seedling biomass, especially at P50. It can be assumed that when N availability is high, seedlings have enough nutrients to support above-ground plant activities such as photosynthesis and so investments to the above-ground is prioritized instead of below-ground. If this is so, N loading may induce imbalances between above- and below-ground growth. Consequently, shortage of P may have decreased above-ground growth in 2016 compared to 2015.
Fujita S et al. - iForest 11: 32-40

Effects of nitrogen and phosphorus on larch seedlings growth

