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A Force Evaluation Free Method t¢-Body Problems:
Binary Interaction Approximation

Shun-ichi Oikawa

Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

Abstract

We recently proposed the binary interaction approximation (BIAY4eody prob-

lems, which, in principle, excludes the interparticle force evaluation if the ex-
act solutions are known for the corresponding two-body problems such as the
Coulombic and gravitational interactions. In this article, a detailed introduction to
the BIA is given, including the error analysis to give the expressions for the ap-
proximation error in the total angular momentum and the total energy of the entire
system. It is shown that, although the energy conservation of the BIA scheme is
worse than the 4th order Hermite integrator (HMT4) for similar elapsed, or the
wall-clock times, the individual errors in position and in velocity are much better
than HMT4. The energy error correction scheme to the BIA is also introduced
that does not deteriorates the individual errors in position and in velocity. It is
suggested that the BIA scheme is applicable to the tree method, the particle-mesh
(PM), and the particle-particle-particle-mesh (PPPM) schemes simply by replac-
ing the force evaluation and the conventional time integrator with the BIA scheme.

Keywords: Nbody problem, binary interaction approximation (BIA), error
analysis, energy error correction, pair-wise variable step size, parallel
computation, tree method, PPPM.
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1. Introduction

In an isolated\-body system, the equation of motion for thth particle at a
positionr; with a momentung = my; is as follows:

dp
o = F (1)

whereF;; = Fjj(r;, r;) stands for the interparticle force on thth particle due to
j-th particle at a positiom;.

WhenN > 3, itis well known that no exaginalytical solution can be obtained,
and one should be content with approximated solutions using one of numerical
integration methods. In principle, to arbitrary error levels the numerical solution
can be found [1] if one uses the arbitrary-precision arithmetic. However, it is
practically impossible for the huge number of particles, Ie>> 1, since the
number of force calculations on the right hand side of Eq. (1) is in proportion to
N2. Moreover, the number of time steps tend to increase with incredsinigus
the total CPU time should scale ag\N2+03-N2+13,

In order to reduce the CPU timefferts have been made to use parallel com-
puters, anfbr to develop special purpose hardware to calculate interparticle forces,
e.g. the GRAvity PipE (GRAPE) project [2], [3].

The dficient and fast algorithms to calculate inter-particle forces include the
tree method [4], [5], the fast multipole expansion method (FMM) and the particle-
mesh Ewalt (PPPM) method [6]. These methods reducefteetere number of
particles and thus force calculations fr&®{N?) to O(NIn N) or O(N), which
make the integration of Eq. (1) much faster than the conventional schemes of
order ofNZ.

The author has recently developed the binary interaction approximation (BIA)
to N-body problems, which removes the necessity of force evaluation in principle,
if the exact solutions are known for the corresponding two-body problems such as
the Coulombic and gravitational interactions. The first application of the BIA to
two dimensional Coulomb interactions is found in Ref. [7]. In this paper, we will
give the theoretical framework of the BIA scheme and its error analysis in Section
2 with Appendix A, and apply the BIA to two- and three-dimensional Coulomb
and gravitationaN-body systems in Section 3. The applicability of the BIA to
the PPPM method is suggested in the last Section 4.



32

33

34

35

36

37

38

39

40

41

42

Figure 1: Unperturbed relative trajectary= r (6) in an orbital plane. The scattering center is at
the origin. An impact parameter lis= by tandy.

2. BIA: Binary Interaction Approximation to N-body problems

As shown in Fig. 1 which depicts the relative motion of the particle pair
and j in the center of mass coordinate system, the scattering gneler — 26,,
is given byb = bytané,, whereb is the impact parameteh, corresponds to
x = m/2 scattering, ango the initial relative speed at=r (9 = —6y) = . Here
1 = mm;/(m + m;) is the reduced mass. In the case of charged particle systems,
b is given by

by = Giq;
O = 2’
Aneougg

and for gravitational systems

gmm; Q(m + mi)
bo=-————=- 2
HYq 90

whereg is the gravitational constant.
In the binary system, i.eN = 2 in Eqg. (1), with an impact parametbr=
botandy = by cot¥, a typical velocity changdg in the relative velocity is given
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by
Ag = 290 Sing ~ X490 ~ €9o, (2)

since, on the averag®, for a test particle igb) ~ A¢ against its closest field
particle ande = by/A¢ ~ y whereA(l is the average interparticle separation.

In N-body systems withk < 1, such as the fusion plasmas, Eqg. (2) suggests
that three-or-more body interactions can be ignored since they are of the order
of €2 <« 1 and seldom occur due to low density. It should be noted that the
Debye lengthgp, in fusion plasmas generally satisty > A¢, thus typical binary
interaction is characterized by the nondimensional pararaefiéris parameter is
of order ofU/K, whereU andK stand for the potential and kinetic energies.

2.1. BIA scheme
The exact changes Av; = Ap in momentum andar; in position for solutions
to theN-body problem given in Eqg. (1) are formally given by

N At G
mAvy;, = Z/Jij . Mdt, (3)

dt

j#

N tdr..
mAr; = mvi(O)At+Zm,-(f0A dr#t(t)dt—gi,-(omt, (4)
j#

during a time interval ofAt, wherer;; = r; — r; stands for the relative position,
gij = vi — v; the relative velocity, ang; = mm;/(m + m;) the reduced mass.

The equation of relative motion for the charged particle faj) in anN-body
system used by the binary interaction approximation, the BIA, is

dgij G rij
Hiitge = drgg rﬁ ()
In the BIA scheme, the above equation is integrated numerically or analytically,
completely ignoring the other particles, from= 0 tot = At to give Arjj =
rij (At) — ri; (0) and Agi; = gij (At) — gi; (0). The total number of integration is
nCo = N(N - 1) /2 for anN-body problem. The individual changes, during an
arbitrary intervalAt, in positionAr; and velocityAwv; of the i—th particle are as
follows

N
MAr = mpAt+ > (A - gijAt), (6)

j#i

4
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Scattering

center

Figure 2: Relative motion of the BIA scheme for the particle paifiof) in their orbital plane.
The exact motion is along the curved line (in red). If there is no interaction, the change in position
is gi; At during a time interval oAt.

N
mAv; = D HijAgi, (7)
i
fori = 1,2,---,N. Hereafter we will use the notations v;, gij, ---, for their
initial valuesr; (0), v; (0), gi; (0), ---. Note that the term within the parentheses

on the right hand side of Eq. (6), i.eArjj — gi;At = ¢rj; as shown in Fig. 2,
vanishes when the interaction between the fiaj) vanishes. In other words, the
BIA scheme is exact for free particles, in which evary = 0, and consequently
Ari = viAt, for arbitraryAt.

It should be noted that each relative motion is restricted in respective orbital
plane, thus the BIA requires the calculation/af; andAg;; in two dimensions
perpendicular to the initial angular momentdm = ri; x p;. In the case of
Li; = O, the relative motion is further reduced to one dimensional.

2.2. Consistency of the BIA scheme
In the limit of At — 0, Eq. (6) becomes as

Ar; 1 N . [ AT

and similarly Eq. (7) becomes in the same limit as

Av. B g,J _ 1 N
At—>0 At Z'ulm 0 At EZF”’ ©)

j#i



78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

which reproduces the original equation of motion given by Eqg. (1). In the termi-
nology of the numerical analysis, the BIA scheme with the properties of Egs. (8)
and (9) is said to be consistent.

2.3. Conservation of invariants in BIA
The total linear momentum

N
P= Z mo; (10)
i=1
is kept constant with the BIA scheme for arbitrary time interAgl since, from

Eq. (7) and by definitiop;; = u;;,

N-1 N

AP:Z leij (Agij +A91i)=0- (11)

i=1 j=i+l

Similarly, the change in the center of mass position of the entire system in the
BIA scheme

N
R= % ; mr; (12)
is also exact as follows; by notiriy;; = Ar;; — gi;At in Eq. (6), we have
1 N N N
AR= = ;mviAu;;p”ar” = GA, (13)

whereG = P/M andM = Y\, m stand for the mass velocity and the total mass
of the system, respectively. Here we have used that the double summatian over
andj in Eqg. (13) vanishes as

N N N-1 N
ZZ#ij5fij =Z Z,Uij (5rij +5rji):0» (14)
-1 7 i1 joiel

sincedrj = —dr;; by definition.
Other invariants of thé&l-body system, such as the total angular momentum

LzZrixmvi:Zrixp, (15)
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and the total energy
N pz N-1 N

E=K+U :Zﬁ+z Z Uij(rij)

i=1 i=1 j=i+1

include approximation errors in principle, even though corresponding errors for
each binary system are all zero, i.e.,

ALij :(rij+Arij)xApj+Arijxpj =0, (16)

and

1
AEij = (gij + EAgij) . Apj + Uij (rij + Arij) - Uij (rij) =0. (17)
As will be derived in Appendix A, the approximation errors in the total angular
momentumAL and in the total energAE in the BIA scheme are respectively
given by

N-1 N

AL = Y 3 6f x Apy, (18)
i=1 j=itl
N-1 N ~

AE = Z (6éij 'Apj +5Uij), (19)

i+1

[

I

whereéti;, 6gij, anchOi,- have been defined as

N
. HikOlik Mkl jk
ofij = Z( Iml m, ): (6” _5ri)_5rii’ (20)
k#i, j
N
A HikAgik  HikAgik\ _ )
50”‘ = Uij(rij +Arij +5fij)_uij (rij +Arij). (22)

Both AL andAE are of the order o?, which is the result of three-or-more-body
interactions, among particlésj andk # i, j, which has been ignored in the BIA
scheme. Actually§t;; = 0, 6gi; = O, and accordinglAL = 0 andAE = 0 when

N = 2. Thus, the BIA scheme is most appropriate to be appliétb@dy systems
with smalle ~ U/K < 1, such as typical fusion plasmas with- 10~".

7
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2.4. Estimation of CPU time in BIA

Itis well known that the CPU timeShY = 757 (N) required for a conventional
direct integration method (DIM) to solve the full set of equation of motion given
in Eq. (1) should scale as

TgmlJ o N2 x O(NO.S—LS) - N2‘3_3'3, (23)

of which N for interaction force calculations, and(®°3-13) for time integration
during a given time intervakt. On the other hand, with the BIA scheme the CPU
time scales adN? since a set ofC, = N(N—-1)/2 « N? independent two-
body equations of motion given in Eq. (5) can be solved with a CPU time scaling
7CPU = 7CPU(N)) of
BIA BIA
g o« N x O(2) ~ N2 (24)

3. Test Calculations

In order to show the usefulness of the BIAXbbody problems with a wide
range of the interaction parameter= U/K, three cases of < 1, € ~ 1, and
2K + U = 0 are examined in the following subsections. The embedded formula
of Runge-Kutta-Fehlberg (RKF) method [8, 9] with an absolute error tolerance of
10718 is used as the direct integration method (DIM) in this paper.

3.1. Test Calculation I: dilute gas plasma

We will apply the BIA scheme to a high temperature, low density ions of the
same specieg; = 10 keV andh = 10?° m~3, which can be found in typical fusion
plasmas. In this case the nondimensional paramaete8 x 10" < 1.

In the following calculation, positions are normalized by the interparticle
separatiolA = n"¥3 ~ 2 x 10" m, and velocitiew; by the relative thermal
speedgyn = +/2kT/u ~ 2 x 10° nys. This leads to the time be normalized by
At = Al/gyn ~ 10713 sec, i.e. the time for a particle with the thermal spggdo
travel the average interparticle separatigh= n~/3. In this case the equation of
motion for the particle paifi, j) is represented as

dgij Fij
dt r
j
for1 <i < Nandj # i. The aboveN-body system will be integrated for a
normalized time interval oAt = 1 for various number of particleN. Spatial
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distribution function at the timeé = 0 is assumed to be uniform with the average
particle distance being¢, and the velocity distribution function also be uniform
with the average relative speed being the thermal spegg.of

A 1332-body system is integrated for a time intergdl= Af/gy. Table 1
compares the DIM and the BIA in position, and in velocity, respectively, as well
as the number of time stepBl,, The subscripts in the first column indicate
the particle number whose numerical errors (or strictly speaking, deviations from
the DIM) of the BIA are the maximum among 1332 particles. The agreement
between the BIA and the DIM is excellent. It should be noted that they are the
only numerical results which the BIA scheme calculates, i.e. the number of time
steps of the BIA is unity, while that of the DIM (RKF) is 308.

Table 1: Maximum absolute deviations of the BIA from the DIM in the phase spacéx, y, 2)
andv = (u,v,w) for N = 1,332, att = At. Subscripts in the first column, e.gg2, Stand for the
particle number out of , B32 particles.
BIA DIM deviation

Xo02  1.08818622505 1.08818622504 0.00000000001

Yyoe7  3.71489346371  3.71489346372 0.00000000001

Zo1z 4.99288579168  4.99288579134 0.00000000034

Uge; 0.06534783380 0.06534783357 0.00000000023

vgs1 —0.16174100160 -0.16174100129 0.00000000031

wo1z  0.05998355045  0.05998355132 0.00000000087

Nstep 1 308

3.2. Test Calculation II: plasma oscillations

Let us consider a three dimensioak 1 body Coulomb problem, in which
there areN electrons. lons are treated as the uniformly distributed immovable
neutralizing background with a uniform charge density 6f en,, which means
the distributed ions constitute the zero-th particle in the BIA scheme. Suppose
that the background ions are contained within a sphere of r&larg electrons
are moving in the sphere. The resulting electric fiéldnd electrostatic potential
¢, due to the ion distribution, that electrons feel are given by

noer noer?

E(r)=5—, ¢(r)=- :
(1) 3rey’ v (1) 6reo

(25)
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Figure 3: FFT analysis on a scalar potential at a distant pgigh:> R. A sharp spectrum peak is

found at a normalized frequency of 0.1447, as indicated by a vertical line in red, which coincides

with the normalized plasma frequenty

The original BIA scheme given in Egs. (6) and (7) in such a case [10] is slightly

modified as
MAT;
m Av;
where
Aro,i
Avo’i

N
MATg; + Zﬂij (Nij —gijAt),

j#i

N
mAuvg; + ZﬂijAgij,

j#

sinTIAt
ri (CoslIAt — 1) + v; T

ri (coslIAt — 1) + rITSinIIAt,

(26)

(27)

(28)
(29)

are the changes in position and velocityithf electron due solely t&, i.e. the
background ions, during the time interval &f. Herell = +/nye?/3gome is the
plasma frequency in this case, whenmgis the electron mass.

Figure 3 shows the FFT analysis on a potentiéif4isian) at a distant point

lyistant > R from the N = 345 system; one distributed ion and 344 electrons. A

sharp peak at the normalized plasma frequercy V4ren/3me = 0.1447 is

10
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found by using the BIA scheme as well as the DIM, whege= 2 x 1072 is the
interaction parametéy/K based on the average interparticle separatiotJfand
thermal speed foK.

3.3. Test Calculation IlI: Gravitational N-body problems

We have applied the BIA scheme to gravitatiohkbody systems with ini-
tial conditions of X + U = 0. The interparticle potential are modified using a
Plummer radiug:

Uy (ry) = -5 (30)

Figure 4 forN = 344 compares the BIA with the 4th order Hermite integra-
tor [11] in terms of the energy conservation, and the average errors in the indi-
vidual position and velocity, i.e., the distances (standard deviationg) 3N-
dimensional configuration space atdin 3N-dimensional velocity space; both
the standard deviations based on the 5th order RKF. For example

N

BIA G, = J%Z (BIA T, —RKF ;)2 (31)

i=1

defines the error in position for the BIA, since 5th order RKF is the most accurate
scheme among the schemes used in this study.

As shown in Fig. 4, several errors ftd=344 are depicted as a function of
the time step sizét = 1/Ngep WhereNgep is the number of time-steps for a
fixed time-interval of 1x At = n"¥3/g,,. Both the BIA and 4th order Hermite
(denoted by MHT4, homemade code) are serial (one thread) codes executed on
a CPU. The relative energy errors are plotted in black, among which the RKF5
(a variable time-step scheme wilye, = 1,649) is the best as expected. The
energy erroAE/E of the HMT4 showing the 4th order decrement with increasing
NstepiS much better in attainable error level of 30at Ngep ~ 10* than the BIA
showing the 2nd order decrement with the attainable error level df Hso at
Nstep ~ 10*. However, as for the individual erross ando,, the BIA showing 2nd
order decrement is much better than the HMT4 with the 1st order decrement up to
Nstep = 10P. Such a 1st order decrement in individual errors was reported in Ref.
[1]. Although"™T s are still decreasing linearly &k, = 10° the elapsed time
has already reached around" s@c.

11
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12



189

190

191

192

193

194

195

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

Similar error tendencies fdd = 9,262 are shown in Fig. 5. In the cases for
Figs. 4 and 5, the ratio of elapsed time of the BIA to that of the HMT4 is almost the
same around 19 except for smiallfe, < 100. Thus, if we could somehow improve
the energy error of the BIA over the Hermite scheme with the same elapsed time
without deterioratingr, and o, the BIA would be the better one than the 4th
order Hermite scheme. For this purpose, we introduce an energy error correction
scheme to the BIA, in which the energy error is corrected using the following
position modificatiorr; « r/ fori =1,2,...,N:

,. ri
r == F, (32)
U

which leads to vanishing energy er®E’, since
AE" = AK + AU’ = AK + AU — AE = 0. (33)

The top-left of Fig. 6 shows that the total wall-clock time of the BIA is set sim-
ilar to that of the HMT forN=28. The energy error correction for BIA (denoted
by cBIA in the figure) works, as shown in the top-right figure without deteriorat-
ing the individual errors in position (bottom-left) and in velocity (bottom-right).
Changes, or strictly speaking errors,as occur, however, they are to small to
see in the figure. The energy error correction described in Eq. (32) is applied to
the BIA occasionally when the normalized physical timea multiple ofAt, i.e.,

t = At, 2At, ..., 100x At. Note that at arounbls., ~ 30, the energy errors for the
RKF deteriorate abruptly. This is the result of a formation of what astrophysicists
call the binary stars, in which two stars or particles are orbiting around with each
other. After this time, the deviations;s, from the RKF cannot be regarded as the
errorsin respective Bl-dimensional spaces.

4. Discussion and Conclusions

The error analysis of the binary interaction approximation (BIA) to lthe
body problems was made to give the expressions for errors in the total angular
momentum, and the total energy of tNebody system.

The BIA scheme is applied to two- and three-dimensional Coulombic and
gravitational multibody systems. The BIA conserves total linear momenta in prin-
ciple, and is gair-wisevariable time step scheme when used with the integrator
using the embedded formula such as the Runge-Kutta-Fehlberg scheme. The total

13
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Figure 6: Energy error correction on BIA position =28, K + U = 0, ands? = 104, The
elapsed times are similar among the BIA with and without energy correction and the HMT. Total
physical system time calculated is 1Q\t.
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energy conservation is greatly improved by introducing the energy error correc-
tion scheme without deteriorating the individual errors in position and in velocity.
The numerical results presented here are for low density and high temperature gas
plasma, i.e.e < 1, which is the most appropriate for the BIA, as well as the
gravitationalN-body systems withR + U = 0.

It should be noted that the BIA scheme is applicable to the tree method, the
PPPM, in both of which distant particles from the particle under consideration are
combined into onsuperparticle or distributed potential source within a mesh (or
a point source at a grid point), and neighboring particles are treated as they are.
In the BIA such super particles and distributed potential sources are treated as
particles to integrate Eq. (1) with replacihgby Nsource+ Nneighbor

Suppose a simple two-dimensioddbody problem, in which particles exist
in a square region divided into’65 meshes, as shown in Fig. 7. The filled circle
within the center mesh represents the partialeder force F;) evaluation in the
case of PPPM. The open circles in the same mesh and the 8 adjacent meshes
represent other particlgs. In conventional PPPM schemes, the forégsdue to
such neighboring particles are directly calculated and summed, and in the case of
the PPPM-BIA the interactiom\(;; andAg;;) are evaluated for a time interval of
At. The rest of the particles in the system belong to the meshes in gray, and each
mesh has its own mass or charge distribug(r), from which the remaining
forces on particle-are evaluated and summed to give the total férocen particle-

i in the conventional PPPM, whil&r;; andAg;; due top; (r) are summed to give
Ar; andAv; in the PPPM-BIA.

In conclusion, given the particle positions in each mesh as in Fig. 7, the PPPM-
BIA scheme is easily applied to tid-body system, by simply replacing the con-
ventional time integrator used in the conventional PPPM, such as the RKF, the
leap-frog and the Hermite scheme, etc., with the BIA scheme. Conventional inte-
grators require summation of forceg = Z}ii Fij several times, depending on the
integrator used, while the BIA requires the summation of the exact binary changes
uijori; andyi;Agi; only once to give the increments; andAuw;.

It should also be noted that the calculation of changgs;; andu;jAg;; can
be done completely in parallel; the BIA analyses reported in Refs. [10], [12], and
[13] used the general purpose graphics processing unit (GPGPU).
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Appendix A. Derivation of Errors L and E in BIA scheme

Appendix A.1.AL in BIA

The change in the angular momentuxh,, calculated by using the BIA scheme
iS given as

AL

Z[(ri + 0 At +61)) X Ap + (vAt + 617) X p]

)

(ri +viAt+6ri) XApj + %(Arij —gijAt) X B
j#i

. (A

N
=1
N
=1

17



27 Wheremor; = Z}Ll,uij (Arij —gijAt) = Zj“ﬂyijérij has been used, as was shown
200 IN Fig. 2. Substitutingnir; = mRy; + ;15 andp = mp; = mG;j + wijgi;, we have

AL = ZZ Rj + GijAt) x Apy + i (Arij — gijAt) X G|
i=1 J¢I
lulj J
+ E E i +giiAt) + ori| X Apj + —Ar;; X
i=1 j=#i {[m ! g” ) pj m ! pj}
= ALRC+AL", (A.2)

200 Where the first termALR® includesindividual center of mass quantities &; and
w0 Gjj, and the second terilL" does not.

N N N N
ALRG = Z (R + GijAt) x Ap; + Zz,u.,ér., X Gij
i=1 j#i i=1 j#i

2
i

I\
MZ

[(R” +G|1At)XApJ (Rji +GjiAt)XApji]

i+1

Z 3
LA
T

i+1

1l
=
1l

-

I
o

(A.3)

o1 SinceRj = R;j,Gj = Gjj andAp; + Ap; = 0. Similarly, the remaining term,

302 ALrg, is
}XAM

2

7
X

AL"

M=

'Lrln (r,J +g,JAt> lr:ij (rj, +gJ,At)

Z 5
TL
'
+
-

INg
M=

m
N

T
—+
AN

Hij Hii

7
IX

[
M=

n
X
T
+
-

XAD]

[ 1 1
»6ri - (5rj + (a + Hj)/.l” (rij +gijAt)

7
X

™
M=

i
o

T
—+
AN

m . m HMijAlij X B

7
IX

{(6ri —5rj) X Apj + (rij +gijAt) XAD] + Arij X pj}’(A4)

n
X
T
+
-

M=
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= where use was made af* + m;* = ', Since the BIA scheme gives angular

¢« Momentum conservation for each binary system, Ak;; = (rij + Arij) X Apj +
w5 Arjj X p; = 0, we have finally the error in the total angular momentum by using
w6 the BIA scheme given in Eq. (18).

AL = 303 [(on - or) -6y x .

i=1 j=i+1
sz Appendix A.2.AE in BIA
308 The total energy is given by:
N pz N-1 N
_ A N N
E_K+U_ZZm+_ _Zu.,. (A.5)
i=1 i=1 j=i+1
w0 Noting thatr;; (At) = rj; + Ar; — Arj, we have
- 1
AK = ; (vi + EAvi) -Ap, (A.6)
N-1 N
AU = > [ Uy (ri + Ar = Ary) = Uy ()| (A7)
i=1 j=i+1
310 The change in the total energK is
N N 1 N 1 N N
AK = 3o AR +5 Do D AR DL AR,
i=1 j#i i=1 k#i J#
N N N N
B oF 1 1
= ZZ(G” +—) Apj +§ZEZAQJ ZApk
i=1 j#i i=1 j# ki
= AKC® + AKY, (A.8)
au Where the first term including the mass velodsy for the pairij is
N-1 N
AKG = Z (Gij 'Apj + Gji 'Apji)
i=1 j=i+1
N-1 N
= ZGij'(Apj"‘Apji)
i=1 j=i+1
= 0, (A.9)



sz Whereas the second term not includi@g is

AK? =

3|z
>
>
+
NI -
M=
3+
M=
>
S
Ng
>
;_3

W,
1M=
M= 1=

n

T

®

~

*

I
N
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+
=

ML

7
AR
z

11
Py
I —

z
ST

+
NI
M=

7
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z
n
+
=

Il
2
<
+
NIl =
> s
<[
NG
o>
P

=z B
=l

+1
N
Z |(Agi - Ag;) - Agyi| - Apy. (A.10)

NI =

+

i
I

N
—+
A

sz Note that

>
Im
I
>
P
+
>
<

) (gij'" Ag.l) Ay + Ui iy + Arig) = Ui (i)
. (A.11)

se from which

AE =

z >
s R
+
D

gk
MZ

N-1 N
(g.,+ Aglj) Apj + ZZ Agi — Ag]) Agl]] Ap;

i+1 i=1 j=i+1

AT
LA
T

:MZ

[N

|Uij (rij + Arij + 67;) = Uy (i)

I
[y
T

+

|Z .
[y

N-1 N
Ui (rig) = Uij (rij + Aryy) +ZZ Agi — Agj) - Agi| - Ap;
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m
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i
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Uij (rij + Arij + 67;) = Uy (i)
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(A.12)

a5 Thus, we have the errors in the total angular momentum and the total energy:

AL

AE

sis where

50”‘ =

N-1 N

= Z ofij x Ap;, (A.13)
i=1 j=it1
N-1 N R

= Z (5% - Ap; +5Uij), (A.14)
i=1 j=i+1

U(rij +Arij +6fij)—U(rij +Arij). (A15)
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