<table>
<thead>
<tr>
<th>Title</th>
<th>Phylogeography of Littorina sitkana in the northwestern Pacific Ocean: evidence of eastward trans-Pacific colonization after the Last Glacial Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Azuma, Noriko; Zaslavskaya, Nadezhda I.; Yamazaki, Tomoyasu; Nobetsu, Takahiro; Chiba, Susumu</td>
</tr>
<tr>
<td>Citation</td>
<td>Genetica, 145(2): 139-149</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-04</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/68683</td>
</tr>
<tr>
<td>Rights</td>
<td>The final publication is available at Springer via http://dx.doi.org/10.1007/s10709-017-9952-3.</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>Azuma.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Phylogeography of *Littorina sitkana* in the northwestern Pacific Ocean: evidence of eastward trans-Pacific colonization after the Last Glacial Maximum

Noriko Azuma¹*, Nadezhda I. Zaslavskaya², Tomoyasu Yamazaki³, Takahiro Nobetsu⁴, Susumu Chiba⁵

¹Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido, Japan.
²A. V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Pal’chevskogo Str., Vladivostok 690041, Russia.
³Shellfish Museum of Rankoshi, 1401, Minatocho, Rankoshi, Hokkaido, Japan.
⁴Shiretoko Nature Foundation, 6-27 Yunosawa, Rausu, Menashi, Hokkaido, Japan.
⁵Department of Aquatic Bioscience, Tokyo University of Agriculture, 196, Yasaka, Abashiri, Hokkaido, Japan.

Running title: Phylogeography of Sitka Periwinkle

Corresponding author: Noriko Azuma
E-mail: norikoazuma@gmail.com
Phone and FAX +81-138-40-5551
Abstract

We investigated genetic diversity and population structure of the Sitka periwinkle *Littorina sitkana* along the coastlines of the northwestern Pacific (NWP) to evaluate the possibility of trans-Pacific colonization of this species from the NWP to the northeastern Pacific (NEP) after the Last Glacial Maximum. We sampled *L. sitkana* from 32 populations in the NWP, and sequenced a region of the mitochondrial cytochrome *b* oxidase gene for population genetic analyses. The results were compared with those of previous reports from the NEP. The genetic diversity of *L. sitkana* was much higher in the NWP than in the NEP. Genetic connectivity between the NWP and NEP populations was indicated by an extremely abundant haplotype in the NEP that was also present in eastern Hokkaido and the Kuril Islands. To confirm these results, we compared sequences of the longest intron of the aminopeptidase N gene (APN54) in the nuclear genome in four populations of *L. sitkana* in the NWP with previous results from the NEP. Again, much higher genetic diversity was found in the NWP than in the NEP and genetic connectivity was supported between the Kuril Islands and the NEP. These results imply postglacial colonization of this species from the NWP to the NEP, probably along the Kuril and Aleutian Island chains. This study is the first report of possible trans-Pacific postglacial colonization of a direct-developing gastropod, inferred from genetic data.

Keywords: Trans-Pacific, gastropod, postglacial colonization, Sitka periwinkle
The Last Glacial Maximum (LGM) is believed to have had a strong influence on the demography and distribution of numerous species (reviewed by Hewitt 2000). In the Northern Hemisphere, many species are thought to have survived in southern refugia during the LGM and then recolonized from south to north after the ice receded (Hewitt 2004), in line with the ‘expansion-contraction’ (EC) model proposed by Provan and Bennett (2008). According to this model, southern populations maintained higher genetic diversity than northern populations (Taberlet et al. 1998; Hewitt 1999). On the other hand, several amphi-Pacific marine species, distributed throughout the North Pacific Ocean, show greater genetic diversity in the northwestern Pacific (NWP) than in the northeastern Pacific (NEP) (Sato et al. 2004; Cassone and Boulding 2006; Liu et al. 2007; Canino et al. 2010; Cox et al. 2014). Such species appear to have the axis of the EC model orientated not north–south, but east–west. This implies that transoceanic colonization occurred across the North Pacific, comparable to that suggested for some amphi-Atlantic species (e.g. Wares and Cunningham 2001).

We selected an amphi-Pacific gastropod, the Sitka periwinkle *Littorina sitkana* (Philippi 1846), as a model species to investigate trans-Pacific colonization after the LGM. *Littorina sitkana* is distributed in the North Pacific from Oregon to the Bering Sea, the Sea of Okhotsk and the northern Sea of Japan, typically on rocky and boulder shores between the mean low water and the littoral fringe (Behrens Yamada 1977; Ohgaki 1983; Reid 1996; Hasegawa 2000). It is a direct developer, lacking a planktonic larval stage (Buckland-Nicks et al. 1973; Buckland-Nicks and Chia 1990; Reid 1996) and its populations are therefore likely structured by limited gene flow. In the NWP, allozyme analyses have detected regional differentiation in Russia (Zaslavskaya and Pudovkin 2005) and northern Japan (Nohara 1999). Nevertheless, when using the mitochondrial DNA (mtDNA) cytochrome *b* oxidase (Cytb) gene as a genetic marker, the species exhibited no population structure and low genetic diversity in the NEP (Kyle and Boulding 2000; Lee and Boulding 2009; Marko et al. 2010). Some studies on the population genetics of this species in the NEP have revealed genetic variation in nuclear DNA markers (Sokolova and Boulding 2003; Lee and Boulding 2009; Botta et al. 2014). However,
sampling has been limited to a narrow area of Vancouver Island, Canada, which is not sufficient to investigate genetic structure on a geographical scale. So far, no studies have examined phylogeography using common markers for \textit{L. sitkana} in both the NEP and the NWP, in order to deduce population structure throughout its amphi-Pacific distribution. The aim of the present study is to investigate the genetic structure of \textit{L. sitkana} populations in the NWP and to evaluate the effects of environmental change during glacial-interglacial periods, especially the LGM and post-LGM, on this species. We used Cytb as a marker, which had previously been used to analyse a wide range of NEP populations of \textit{L. sitkana}, in order to compare population structure and genetic diversity in the NWP and the NEP. Additionally, partial sequence of the longest intron of the aminopeptidase N gene (APN54), was employed as a nuclear DNA (nDNA) marker. Previous data on the APN54 in the NEP are limited to populations from the southwestern coast of Vancouver Island (Lee and Boulding 2009; Botta et al. 2014) and thus permit only limited phylogenetic comparison between NEP and NWP populations. The results of a previous study based on mtDNA analyses (Marko et al. 2010) were suggestive of post-LGM recolonization and expansion of the \textit{L. sitkana} population in the NEP, but no plausible location of an ice age refugium in the NEP was found. We identified genetic connectivity between the NEP and the NWP and high diversity in the NWP from the results of both mtDNA and nDNA markers, suggesting that the ice age refugium of the present NEP population was in the NWP. The present study represents, to our knowledge, the first report identifying a possible location of the ice age refugium of an amphi-Pacific gastropod. We further discuss the evolution of this species in relation to environmental factors, such as water temperature, topography and ocean currents, which limited or promoted gene flow and determined its genetic structure.

\textbf{Materials and methods}

\textit{Sampling, DNA sequencing and analysis of haplotype genealogy}
Samples of *L. sitkana* were picked by hand from 32 populations: two in Primorye, one in Sakhalin, eight in the Kuril Islands, 19 in Hokkaido and two in Honshu (Table 1, Fig. 1). Following the elimination of cryptic species (see Azuma et al. 2011), we used 1022 individuals of *L. sitkana sensu stricto* for analyses. Genomic DNA was extracted from a piece of muscle (approximately 1 mm3) of ethanol-fixed specimens using the Pure Gene Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol and then resuspended in 100 µL Tris-EDTA buffer.

A partial sequence of the Cytb gene was amplified by PCR in a 30-µl reaction mixture containing template DNA (approximately 5 ng), dNTPs, a pair of primers (F: CCTTCCCGCACCTTCAAATCTTTC, R: GCAAAGAAGCGATGGAGGGTAGC; Lee & Boulding, 2009) and ExTa (Takara Bio, Shiga, Japan), according to the manufacturer’s instructions. The thermal-cycling profile included precycling denaturation at 95 °C for 1 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 50 °C for 20 s and extension at 72 °C for 25 s. The PCR products were then examined by electrophoresis on a 2% agarose gel, purified with magnetic beads (AMPure Agencourt; Beckman-Coulter, Brea, CA, USA), cycle-sequenced using the above-mentioned forward primer and the BigDye® Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and loaded onto an automated sequencer, ABI PRISM® 3130 (Applied Biosystems). The obtained sequences were aligned and edited to 428 bp using Bioedit software (Hall 1999) to define the haplotypes and subsequently deposited in the DDBJ/GenBank database under the accession nos AB665092, AB665093, AB665096–AB665098, AB691553–AB691573 and LC146771–LC146792. The haplotype genealogy was resolved as a parsimony network using the TCS Network Program (Clement et al. 2000) under a 95% connection limit.

For comparison with the results of the mtDNA marker, sequence variation of the APN54 intron in nDNA was examined. Alleles from samples of four populations in Hokkaido and the Kuril Islands were sequenced by PCR and cloning methods. The target DNA region was amplified by PCR in a 20-µl reaction mixture containing template DNA (approximately 20 ng), dNTPs, a pair of primers (AP54F2 and AP54R2, Sokolova and Boulding 2004) and DNA polymerase (Amplitaq Gold, Thermo Fisher Scientific, Waltham, MA), according to the manufacturer’s instructions. The thermal cycling
profile included precycling denaturation at 95 °C for 10 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 58 °C for 15 s and extension at 72 °C for 25 s, then final extension at 72 °C for 25 min. PCR products were ligated in a vector using Takara Mighty Cloning Kit and cloned with TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA). Then, eight to 16 clones were selected for each individual and sequenced using primers similar to the PCR primers and the BigDye® Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems) on an ABI PRISM® 3130 (Applied Biosystems).

Collected sequences were edited and aligned using Bioedit software (Hall 1999) and deposited in DDBJ/GenBank with accession nos LC189242–LC189260. The sequence genealogy, including alleles from the NEP (Lee and Boulding 2009; Botta et al. 2014), was resolved as a parsimony network using the TCS Network Program (Clement et al. 2000).

Population genetic analyses using mtDNA marker

The haplotype (h) and nucleotide (π) diversities of the total sample and of each local population were estimated using Arlequin v. 3.5 (Excoffier and Lischer 2010). The population genetic structure was analysed by estimating pairwise F_{ST} between populations (Weir and Cockerham 1984), evaluating the isolation-by-distance (IBD) model (Wright, 1943) and conducting analysis of molecular variance (AMOVA; Excoffier et al. 1992) using Arlequin v. 3.5 (Excoffier and Lischer 2010). The genetic distance between populations based on the pairwise F_{ST} was visualized on a two-dimensional surface by nonmetric multidimensional scaling (nMDS) plots using statistical software R v. 2.9.0 (R Development Core Team 2005). For the IBD test, the matrix of geographic distances between sampling sites and the F_{ST} matrix were compared, and the significance of correlations was evaluated using the Mantel test with 10,000 permutations. In the AMOVA, the hierarchical population structure indicated by nMDS plotting based on F_{ST} was tested in the following two partitions: (1) three regional groups suggested by F_{ST}: Region 1 (populations 6–10; see Table 1 for codes), Region 2 (4, 11, 26–31), Region 3 (1–3, 5, 12–25, 32); (2) two regional groups: Region 1 (6–10), Region 2 (4, 11, 26–31). The second partition was used to confirm independence between Regions 1 and 2, which are geographically close but separate according to the results of the F_{ST} analysis.
To infer the demographic history of *L. sitkana*, mismatch distribution (MMD) analysis and the neutrality test of Fu’s F_S and Tajima’s D were conducted using Arlequin v. 3.5 (Excoffier and Lischer 2010). The times since population expansion and range expansion were estimated based on the results of the MMD analysis, assuming a sequence-divergence rate of 0.5–1.01% per million years (Myr). This rate was estimated based on a comparison of *L. sitkana* with its congeners *L. saxatilis* (Olivi 1792), *L. arcana* (Hannaford-Ellis 1978) and *L. fabalis* (Turton 1825). The average sequence divergence between the most frequent haplotype observed in the present study and the homologous region in *L. saxatilis*, *L. arcana* and *L. fabalis* (GenBank accession nos AJ237711, AJ237712, AJ237714, AJ237715, AJ237717, AJ237720 and AJ237721) was 8.08%, and the divergence time between *L. sitkana* and the lineage including these three species was 8–16 million years ago (Mya) (Fig. 2 in Reid et al. 2012), giving the rate of 0.5–1.01% per Myr.

Analyses using nDNA marker

Alleles of APN54 were assigned for each individual and expected heterozygosity was calculated in Arlequin v. 3.5 (Excoffier and Lischer, 2010). Genetic diversities in the NWP and NEP were compared at population level.

Results

Genealogy and spatial distribution of Cytb haplotypes

A total of 48 Cytb haplotypes were detected (Fig. 2A). Among them, K2 was the most abundant, occurring in 35.0% of all individuals examined, followed by U16 in 26.8%. Haplotype U9 had an identical sequence to those that were most abundant in NEP population (GenBank accession nos GQ2686–2751). Haplotypes were categorized into four hap-groups, each consisting of one abundant core haplotype (K2, U16, U9 or U2) and less common haplotypes, probably derived from core haplotypes by one or a few nucleotide substitutions. The regional distribution indicated
region-specific abundance of the hap-groups (Fig. 2B, Fig S1). The U16 group was abundant along
coasts of the Sea of Japan and the Sea of Okhotsk, the K2 group along the Pacific Ocean, the U9
group in the Kuril Islands, and the U2 group along the Hokkaido coast of the Sea of Okhotsk.

Spatial population structure based on distribution of Cytb haplotypes

As shown in Table 1, h in each population ranged from 0.000 (populations 4, 8, 10, 11) to 0.742 (16),
π ranged from 0.000 (4, 8, 10, 11) to 0.0049 (32) and the mean values of h and π were 0.354 and
0.0017, respectively. The low h and π values in populations in the Kuril Islands may be attributable to
the small sample sizes rather than actual low diversity. When samples with fewer than 20 individuals
were eliminated, the lowest h and π were observed in populations 30 and 31. The h and π values of the
total sample were estimated at 0.979 and 0.0038, respectively, suggesting that the examined samples
contained various haplotypes of shallow divergence.

Pairwise F_{ST} values were significantly different from 0 in 83.2% of pairwise comparisons, even
after Bonferroni correction, and F_{ST} values were higher than 0.5 in 37% of pairs, indicating that there
was genetic differentiation probably due to limitation of gene flow among populations (Table S1). The
nMDS plots based on F_{ST} showed that populations could be roughly clustered into three regions (Figs
1 and 3): Region 1, consisting of the islands of Iturup and Simushir in the Kuril Islands; Region 2,
consisting of the Pacific coasts of Hokkaido, Honshu, Kunashir Island and Zeleny Island; and Region
3, consisting of other areas, i.e. the coasts of the Sea of Japan and the Sea of Okhotsk, with the
exception of the islands of Iturup and Simushir. It should be noted that although Regions 1 and 2 were
geographically contiguous, genetically they were very different. When visualized based on genetic
distance, these two regions were discrete, with Region 3 between them.

The Mantel test for the IBD model showed a significant correlation ($P=0.002$) between genetic
F_{ST} and geographic distance.

As shown in Table 2, AMOVA supported a hierarchically clustered population structure in the
three regional groups suggested by F_{ST}, and it strongly supported isolation between Regions 1 and 2.
Results of the MMD analysis for all samples showed that the observed frequencies of haplotype differences deviated significantly from the sudden-expansion model in both the sum of squared deviation (SSD; $P=0.03$) and Harpending’s raggedness index ($P=0.02$) at the $P<0.05$ level. However, deviation from spatial expansion assuming a constant deme (local population)-size model was not significant, using either the SSD ($P=0.05$) or Harpending’s raggedness index ($P=0.11$). The τ values corresponding to the spatial expansion were estimated to be 1.95 (0.4% of 428 bp). Given that $\tau = 2ut$ (where $2u =$ divergence rate, $t =$ time from expansion) and $2u = 0.5–1.01\%$ per Myr, the spatial expansion dates were estimated to be 0.81–0.37 Mya (i.e. Upper Pleistocene).

Both Fu’s F_S (-26.25, $P=0.0000$) and Tajima’s D (-1.71, $P = 0.0130$) indicated that the observed haplotype frequency deviated significantly from that expected under neutral molecular evolution.

Genetic analyses using nDNA markers

Although sample size and population numbers were limited, 19 unique sequences were detected in the NWP populations. Table 3 shows that genetic diversity of APN54 in each local population was higher in the NWP than in the NEP, even when ignoring sequence diversity. Furthermore, the haplotype network shown in Figure 4 including NEP alleles (FJ53656–FJ53661 and KM592256) showed that sequence diversity was much higher in the NWP than in the NEP. Two alleles found in the Kunashir Islands could not be included in this network, because they were too separated from the others with more than 25 mutation steps (number of nucleotide sites of indel/substitution). Nevertheless, these alleles were included in the L. sitkana clade when a phylogenetic tree was constructed using neighbour-joining or maximum parsimony methods including alleles from other species (result not shown). This indicated that there was a extremely high level of sequence diversity in APN54 in the NWP population. Sequences IP16 and KN3, closely related to NEP alleles, were found in the Kuril Islands.
Discussion

Comparison of genetic diversity and observed haplotypes/alleles in Littorina sitkana between the northwestern and northeastern Pacific

The haplotype and nucleotide diversity indices of the mtDNA gene Cytb for all NWP samples examined in the present study were 0.979 and 0.0038, respectively, and are markedly higher than the indices for the total NEP sample, which were 0.141 and 0.0003, respectively (Marko et al. 2010).

Moreover, the mean diversity indices \(h \) and \(\pi \) within each population in the NWP (mean sample size = 31.94; Table 1) were 0.354 and 0.0017, respectively, which were higher than those for the total NEP sample \((n=96;\text{ Marko et al. 2010})\). The higher genetic diversity in the NWP than in the NEP indicates that, on a palaeontological time scale, *L. sitkana* has a longer history in the NWP than in the NEP.

The sequence of the most abundant Cytb haplotype in the NEP (GenBank accession nos GQ2686–2751) is identical to haplotype U9 in the present study. The U9 hap-group was abundant in the Kuril Islands, suggesting that this island chain acted as a migration route for *L. sitkana*, connecting both sides of the North Pacific. The NWP and NEP populations were therefore genetically continuous, probably through the Kuril and Aleutian Islands.

Results of the analysis of the nDNA marker are consistent with this hypothesis. Genetic diversity was again much higher in the NWP than in the NEP, and genetic connectivity between NWP and NEP via the Kuril Islands was supported by the finding of IP16 and K3 alleles, which connect NWP and NEP alleles in the network (Fig. 4), in the Kuril Islands.

Spatial population structure within the northwestern Pacific inferred from mtDNA marker analysis

In the NWP, genetic diversity of mtDNA was sufficient to detect a spatial population structure, unlike the NEP, where diversity is extremely low. The genetic structure of the *L. sitkana* population in the NWP is correlated with geography. This is indicated by the significant \(F_{ST} \) value observed between populations, the region-specific distribution of hap-groups, support for the IBD model and the significant hierarchical population structure revealed by AMOVA. These results are consistent with
previous reports on genetics of *L. sitkana* from parts of the NWP (Nohara 1999; Zaslavskaya and Pudovkin 2005), which have suggested geographic structure. As shown in the results of AMOVA and in Figure 3, the present study categorized NWP populations into three regional groups: Region 1 (Iturup and Simushir in the Kuril Islands), Region 2 (Pacific coasts of Hokkaido, Honshu and islands of Kunashir and Zeleny) and Region 3 (coasts of Sea of Japan and Sea of Okhotsk, except for islands of Iturup and Simushir). Regions 1 and 3 were genetically continuous, as were Regions 2 and 3. However, Regions 1 and 2, though spatially adjacent, were clearly separate. The deep separation between Regions 1 and 2 corresponds with the pattern of haplotype distribution. In Region 1, the U9 hap-group was dominant, while the K2 hap-group was dominant in Region 2 (where it occupied every population except the SB population; Fig S1). The genetic similarity within Region 3 along the Hokkaido coast of the Sea of Japan and the Sea of Okhotsk, similar to the results of the allozyme study of Nohara (1999), is likely a consequence of connection via the Tsushima, Tsugaru and Soya currents (Fig. 5).

We noted an exception to the regional distribution of haplotypes, in population 19 from northeastern Hokkaido. Figure 3 shows that samples from population 19, belonging to Region 3 based on its spatial position, clustered in Region 2 in the nMDS plot. This could be attributed to extremely low genetic diversity in this population. Since *L. sitkana* is easily dislodged by waves (Reid, 1996), population 19 on an exposed rocky promontory might have been small and vulnerable, leading to strong bottlenecks and genetic drift. Thus this case hints at an influence of fine-scale topology on genetic diversity.

Evolutionary history of Littorina sitkana

The ancestral lineage of *L. sitkana* is thought to have diverged from other northern Pacific *Littorina* species in the Middle Miocene; subsequently, *L. horikawai* (Matsubayashi et al. 1979) separated from *L. sitkana* in the Pliocene (Reid et al. 2012). The results of MMD analysis suggest that range expansion of *L. sitkana*, coupled with diversification, was likely associated with climatic oscillation in the Upper Pleistocene. Populations in the NWP partially persisted through the severe climatic changes.
of several glacial-interglacial cycles, including the LGM, when the NEP populations almost became extinct. In contrast to the low levels of genetic diversity in NEP populations, the present study reveals greater diversity within the NWP. This is consistent with reports of some other marine species with amphi-Pacific distributions (e.g. Sato et al. 2004; Cassone and Boulding 2006; Cox et al. 2014).

Littorina sitkana populations in NEP exhibited the patterns of genetic variation consistent with post-LGM recolonization and expansion (Marko et al. 2010). The connectivity between the NWP and NEP populations observed in the present study indicates that the origin of the NEP populations was postglacial colonization from the NWP, achieved through migration along the Kuril Islands, the Kamchatka Peninsula and the Aleutian Islands. Zaslavskaya and Pudovkin (2005) found genetic similarity on the Kuril and Commander Islands (at the western end of the Aleutians) and revealed lower genetic diversity within the Kuril-Commander group, which supports our hypothesis of the eastward migration along these islands from the NWP. Westward migration along this route from the NEP to the NWP, while consistent with the flow of the Kuril Current, is unlikely to have occurred, because the Cytb haplotype U9, occupying NEP and Iturup and Simushir Islands, was never found in Region 2 in Hokkaido, which is the destination of the Kuril Current. Although *L. sitkana* lacks a planktonic dispersal stage, colonization from the NWP to the NEP after the LGM could have been achieved by occasional rafting on seaweed, as this herbivorous gastropod is often found on ‘wracks’ of floating seaweed. Several genetic studies have supported dispersal of direct-developing benthos over a wide range by rafting (e.g. Thiel and Gutow 2005; Nikula et al. 2010; Gutow et al. 2015).

Furthermore, Gordillo and Nielsen (2013) provided strong evidence of long-distance rafting of gastropods on kelp carried by surface currents. While occasional long-distance dispersal probably promoted transoceanic colonization of the NEP, gene flow seems to have been restricted between established populations in the NWP.

Hierarchical genetic structure within the NWP suggests the possibility of isolation between populations, local extinction and subsequent recovery with limited gene flow, perhaps corresponding with the climatic oscillation. Around Hokkaido, populations on the southeast coast (Region 2) are thought to have been damaged at some time, because they show extremely low levels of genetic
diversity. The warmer waters of the Sea of Japan, with a large and stable population of L. sitkana, probably acted as an ice age refugium, where all the Cytb hap-groups persisted. Populations on the Hokkaido coast of the Sea of Okhotsk might have been damaged during the LGM and subsequently recovered under the influence of the warm Soya current, which promoted migration from the Sea of Japan and reduced genetic evidence of LGM damage. Regions 1 and 2, however, did not seem to benefit much from gene flow from the Sea of Japan. Bottleneck effects during the LGM and/or founder effects in subsequent colonization might have resulted in the observed low level of genetic diversity in these two regions.

The isolation of Region 2 from other regions revealed by the Cytb analyses serves as a case study from which to infer the origin and maintenance of genetic isolation by topography and ocean currents. Our results indicate the presence of a genetic barrier in the Nemuro Strait, between Hokkaido and Kunashir, which separates Region 2 and Region 3. At its shallowest the Nemuro Strait is around 10 m deep and therefore formed land bridge during the LGM (when sea level was at least 100 m lower than at present; Lambeck et al. 2014), thus isolating the northern (along Sea of Okhotsk) and southern (along Pacific Ocean) coastal populations of eastern Hokkaido and Kunashir. The Pacific coast of this area is washed by a cold current at the present day (Fig. 5) and it is likely that the water temperature was even lower in this region than in other coastal areas of Hokkaido during the LGM, owing to the land bridge across the Nemuro Strait, which prevented the flow of warmer water. This might have caused the extinction or decline of L. sitkana, leaving only the K2 haplotype of Cytb in this area. Subsequently, postglacial colonization from the Sea of Japan to the Pacific coast of Hokkaido did not occur, because the Soya Current promoted migration only from the Sea of Japan to the Sea of Okhotsk, but was unable to pass the Nemuro Strait (Fig. 5). Therefore, the isolation of populations along these coasts probably originated with the formation of the land bridge in the Nemuro Strait during the LGM, and has been maintained since by ocean currents (Fig. 5).

Conclusion

This is the first report to suggest trans-Pacific postglacial colonization by a coastal gastropod, inferred
from phylogeographic studies using both mtDNA and nDNA markers. In addition, our results indicate limited gene flow between local populations in a direct-developing coastal species. The discovery of isolated populations along the Pacific coast of Hokkaido should be considered in the conservation and management of marine species in this area.

Acknowledgements

We thank Prof. H. Takahashi of The Hokkaido University Museum and Dr A. A. Taran of the Sakhalin Branch of the Botanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences, for their kind help in sample collection and for their logistic support. We thank Dr Vl. A. Brykov and Dr A. V. Chernyshev of A. V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, for helping to collect samples. The authors gratefully acknowledge Dr D. G. Reid for the English language review. This study was supported by a Grant-in-Aid for Advanced Study Projects from Tokyo University of Agriculture.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

Botta AM, Rochette R, Saunders GW, Addison JA, Barbeau MA (2016) Evidence for genotypic differentiation between marine snails (*Littorina sitkana*) from the upper- and lower-intertidal zone in
Buckland-Nicks JA, Chia F-S (1990) Egg Capsule Formation and Hatching in the Marine Snail

doi:10.1007/s00227-005-0197-9

Figure legends

Figure 1

Map of sampling sites in the northwestern Pacific Ocean. Codes of localities correspond to those in Table 1. Closed rhombuses, triangles and circles indicate populations belonging to Regions 1, 2 and 3, respectively, which were categorized based on geographic position and genetic similarity (see Fig. 3).

Figure 2

A. Haplotype network of partial cytochrome-*b* gene sequence in *Littorina sitkana* and sister species *L. horikawai*, including haplotypes observed in the present study and retrieved from GenBank. Solid lines indicate single-nucleotide substitutions. Circle size indicates haplotype frequency (number of individuals). Shading of circles indicate four hap-groups.

B. Geographical distribution of hap-groups. Closed circle indicate places where members of each hap-group were found.

Figure 3

Two-dimensional nonmetric multidimensional scaling (nMDS) plot based on genetic distance (F_{ST} estimated from Cytb haplotypes). Three clusters are associated with geographical distribution: Region
1, Kuril Islands (islands of Iturup and Simushir); Region 2, Pacific Ocean coasts of Hokkaido and Honshu, Japan, and islands of Kunashir and Zeleny; Region 3, other areas (along Sea of Japan and Sea of Okhotsk except Iturup and Simushir Islands). *As an exception, population 19, Sea of Okhotsk coast of Hokkaido, appears in Region 2 cluster (see Discussion).

Figure 4

Network of the partial sequences of the APN54 gene intron in *Littorina sitkana*, including sequences observed in the present study and those retrieved from GenBank. Sequences indicated with a star, FJ53656–FJ53661 and KM594456, were found in the NEP (Botta et al. 2014; Lee and Boulding 2009), while the others were found in the NWP in the present study. Numbers on solid lines indicate the number of mutation steps (nucleotide substitutions and indels) and lines without a number indicate a single mutation step.

Figure 5

Schematic diagram of ocean currents in the sampling areas of the NWP (based on Fig. 29 in Favorite, et al. 1976; Fig. 18 in Oshima et al. 2002; and Fig. 1 in Kitamura and Kimoto 2006).
Table 1. List of *Littorina sitkana* samples examined in the present study. *h* and *π* indicate haplotype and nucleotide diversity, respectively.

<table>
<thead>
<tr>
<th>Area</th>
<th>Sample code</th>
<th>Locality</th>
<th>year/month</th>
<th>Sample size</th>
<th>h</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primorye</td>
<td>1</td>
<td>Vostok Bay</td>
<td>2012/08</td>
<td>39</td>
<td>0.230</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Ussurisky Bay</td>
<td>2012/08</td>
<td>37</td>
<td>0.156</td>
<td>0.0006</td>
</tr>
<tr>
<td>Sakhalin</td>
<td>3</td>
<td>Sakhalin Island</td>
<td>2012/08</td>
<td>19</td>
<td>0.205</td>
<td>0.0004</td>
</tr>
<tr>
<td>Kuril Islands</td>
<td>4</td>
<td>Kunashir Is., Pacific coast</td>
<td>2012/08</td>
<td>13</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Kunashir Is., Okhotsk Sea coast</td>
<td>2012/08</td>
<td>39</td>
<td>0.345</td>
<td>0.0021</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Iturup Is., Pacific coast</td>
<td>2012/08</td>
<td>17</td>
<td>0.309</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Iturup Is., Okhotsk Sea coast (east)</td>
<td>2012/08</td>
<td>38</td>
<td>0.448</td>
<td>0.0021</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Iturup Is., Okhotsk Sea coast (middle)</td>
<td>2010/08</td>
<td>2</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Iturup Is., Okhotsk Sea coast (west)</td>
<td>2010/08</td>
<td>8</td>
<td>0.678</td>
<td>0.0019</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Simushir Island</td>
<td>2010/08</td>
<td>3</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Zeleny Island</td>
<td>2010/08</td>
<td>5</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>12</td>
<td>Muroran</td>
<td>2012/06</td>
<td>40</td>
<td>0.561</td>
<td>0.0023</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Esan</td>
<td>2012/06</td>
<td>42</td>
<td>0.093</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Shirakami</td>
<td>2012/06</td>
<td>39</td>
<td>0.681</td>
<td>0.0040</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Setana</td>
<td>2012/05</td>
<td>40</td>
<td>0.391</td>
<td>0.0027</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Rankoshi</td>
<td>2013/04</td>
<td>24</td>
<td>0.742</td>
<td>0.0038</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Ofuyu</td>
<td>2013/04</td>
<td>33</td>
<td>0.670</td>
<td>0.0022</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Soya straight</td>
<td>2012/07</td>
<td>47</td>
<td>0.268</td>
<td>0.0010</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Kamui misaki (Kitamiesashi)</td>
<td>2013/04</td>
<td>36</td>
<td>0.208</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Saruru (Okoppe)</td>
<td>2011/03</td>
<td>38</td>
<td>0.506</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Masura (Abashiri)</td>
<td>2011/08</td>
<td>41</td>
<td>0.435</td>
<td>0.0026</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Shari</td>
<td>2011/06</td>
<td>41</td>
<td>0.425</td>
<td>0.0026</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Utoro</td>
<td>2011/07</td>
<td>45</td>
<td>0.578</td>
<td>0.0034</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Aburako bay</td>
<td>2011/08</td>
<td>44</td>
<td>0.659</td>
<td>0.0032</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Sakimui</td>
<td>2011/07</td>
<td>41</td>
<td>0.518</td>
<td>0.0019</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Shibetsu</td>
<td>2011/07</td>
<td>48</td>
<td>0.445</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Horomoshirii</td>
<td>2011/06</td>
<td>46</td>
<td>0.240</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Akkeshi</td>
<td>2011/11</td>
<td>42</td>
<td>0.172</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Kushiro</td>
<td>2010/10</td>
<td>42</td>
<td>0.528</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Erimo</td>
<td>2012/06</td>
<td>32</td>
<td>0.062</td>
<td>0.0001</td>
</tr>
<tr>
<td>Honshu</td>
<td>31</td>
<td>Hachinohe</td>
<td>2012/06</td>
<td>25</td>
<td>0.080</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Oma</td>
<td>2012/07</td>
<td>16</td>
<td>0.691</td>
<td>0.0049</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.94</td>
<td>0.354</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1022</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.354</td>
<td>0.0017</td>
</tr>
</tbody>
</table>
Table 2. Results of AMOVA. Category: (1) 3 groups suggested by F_{ST}, 1. Kuril Islands (Iturup and Simushir Is.), 2. Pacific Ocean along Hokkaido and Honshu, Japan, and Kunashir and Zeleny Islands, 3. others. (2) 2 groups of 1. and 2..

<table>
<thead>
<tr>
<th>Category</th>
<th>Source of variation</th>
<th>Variance component</th>
<th>% of variation</th>
<th>P value</th>
<th>Fixation indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Among groups</td>
<td>0.25424</td>
<td>26.18</td>
<td>0.000</td>
<td>$F_{CT}=0.262$</td>
</tr>
<tr>
<td></td>
<td>Among populations</td>
<td>0.30984</td>
<td>31.90</td>
<td>0.000</td>
<td>$F_{SC}=0.432$</td>
</tr>
<tr>
<td></td>
<td>Within populations</td>
<td>0.40713</td>
<td>41.92</td>
<td>0.000</td>
<td>$F_{ST}=0.580$</td>
</tr>
<tr>
<td>(2)</td>
<td>Among groups</td>
<td>0.67364</td>
<td>74.34</td>
<td>0.000</td>
<td>$F_{CT}=0.743$</td>
</tr>
<tr>
<td></td>
<td>Among populations</td>
<td>0.03144</td>
<td>3.47</td>
<td>0.000</td>
<td>$F_{SC}=0.135$</td>
</tr>
<tr>
<td></td>
<td>Within populations</td>
<td>0.20108</td>
<td>22.19</td>
<td>0.000</td>
<td>$F_{ST}=0.778$</td>
</tr>
</tbody>
</table>
Table 3. Levels of genetic diversity in a nDNA marker (APN54) in *L. sitkana* populations in
Vancouver Island, Northeastern Pacific, and Hokkaido, Northwestern Pacific.

<table>
<thead>
<tr>
<th>Area</th>
<th>Population</th>
<th>N</th>
<th>A</th>
<th>H_E</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeastern Pacific</td>
<td>Vancouver-A</td>
<td>17</td>
<td>3</td>
<td>0.219</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>Vancouver-B</td>
<td>14</td>
<td>2</td>
<td>0.071</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>Vancouver-C</td>
<td>17</td>
<td>2</td>
<td>0.258</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>CB07</td>
<td>36</td>
<td>4</td>
<td>0.349</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>PP97</td>
<td>24</td>
<td>4</td>
<td>0.548</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>PP07</td>
<td>30</td>
<td>3</td>
<td>0.213</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>PR97</td>
<td>25</td>
<td>2</td>
<td>0.411</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>PP07</td>
<td>24</td>
<td>3</td>
<td>0.493</td>
<td>2.</td>
</tr>
<tr>
<td>Northwestern Pacific</td>
<td>19 (Kitamiesashi)</td>
<td>6</td>
<td>3</td>
<td>0.667</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>16 (Rankoshi)</td>
<td>12</td>
<td>8</td>
<td>0.826</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>6 (Itrup Is.)</td>
<td>12</td>
<td>6</td>
<td>0.771</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>5 (Kunashir Is.)</td>
<td>15</td>
<td>8</td>
<td>0.837</td>
<td>3.</td>
</tr>
</tbody>
</table>

N: sample size (number of individuals), A: number of observed alleles, H_E: expected heterozygosity.
Reference column indicates 1. calculated from the data in Table S2.1 in Botta et al. 2014, 2. from Table 1 in Lee & Boulding 2009, and 3. from the observations of the present study.
Populations in Region 1
Populations in Region 2
Populations in Region 3
A) L. sikana haplotypes in Northeastern Pacific Ocean
- haplotypes in L. horikawai
- missing haplotype

U16 group
K2 group
U9 group
U2 group

LHcb4
LHcb1
7 substitutions

100 individuals
100
50
Less than 20

B) Map of distribution:
- U16
- K2
- U9
- U2
Table 1. Below diagonal: F_{ST} value between samples Bold letters indicate $F_{ST}>0.5$. Above diagonal: + indicates the pair in which F_{ST} value was significantly deviated from 0 (P<0.01) after sequential Bonferroni correction.
Fig. S1
A. Haplotype network of partial cytochrome-b gene in *Littorina sitkana* and allied species *L. horikawai* including haplotypes observed in the present study and retrieved from GenBank. Solid lines indicate single-nucleotide substitutions. Circle size indicates haplotype frequency (number of individuals). Circle colors indicate hap-group: yellow, hap-group K2; blue, hap-group U16; pink, hap-group U9; green, hap-group U2.
B. Geographical distribution of haplotypes. Pie graphs indicate the haplotype ratio in each sample. Colors in the pie graphs represent haplotypes shown in Fig. S1A.