Scallop species identification by decaplex PCR

Novel decaplex PCR assay for simultaneous detection of scallop species with species-specific primers targeting highly variable 5’ end of the 16S rRNA gene

Alan Marín1,3* • Claudio Villegas-Llerena2a Takafumi Fujimoto1b • Katsutoshi Arai1c

1Hokkaido University, Graduate School of Fisheries Sciences, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan.

2Department of Molecular Neuroscience, Institute of Neurology, UCL, 1 Wakefield Street, London, WC1N 1PJ, UK.

3Current address: Laboratory of Theriogenology Dr. O. J. Ginther, Department of Veterinary Medicine-FZEA, University of Sao Paulo, Avenida Duque de Caxias Norte 225, Pirassununga, SP 13630-080, Brazil.

*Correspondent author
e-mail: marin@fish.hokudai.ac.jp
fax: +81 0138(040) 5537

aclaudio.llerena.10@ucl.ac.uk
bfujimoto@fish.hokudai.ac.jp
caraikt@fish.hokudai.ac.jp
Scallop species identification by decaplex PCR

Abstract

Scallops (family Pectinidae) comprise species of high commercial value, supporting both commercial fisheries and mariculture activities. Accurate and reliable molecular methods for the species level identification are of outstanding utility for taxonomic and food authentication surveys. The mitochondrial 16S rRNA gene has been used to design species-specific primers for identification of different bivalve species. However, the low interspecific variability at the 3’ end of this gene has limited its utility and only few scallop species have been assessed. In this study, we used the high variable 5’ end of the 16S gene to develop a novel decaplex PCR assay that enabled a fast and accurate identification of 8 commercially important scallop species in a single PCR reaction. A total of 285 individuals including fresh and manufactured samples from 8 different processed presentations representing 11 different scallop species were collected from diverse locations around the world and successfully. Our assay accurately identified all the analyzed samples at the species level. Furthermore, to enhance the utility of our assay, the PCR product amplified by the family-specific primer set that was utilized as positive control was also used for the identification of unknown (non-target) scallop species by DNA sequencing analysis. In its present form, our multiplex PCR method can be of great utility for different types of studies involving scallop species and for research institutes and governmental agencies that regulate seafood authentication around the world.

Keywords • Pectinidae • Decaplex PCR • Aquaculture • 16S rRNA gene
Scallops, members of the family Pectinidae, are among one of the most important marine groups of high commercial value, supporting both commercial fisheries and mariculture activities. There are about 350 extant scallop species globally distributed, from which 40 are commercially exploited but only 18 species account for the live weight global production (Seafish 2013). Among them, the most important wild capture scallop species are the Japanese scallop *Mizuhopecten yessoensis* and the Atlantic sea scallop *Placopecten magellanicus*. Both species are included in the list of FAO top 70 marine resources capture production by principal species (FAO 2014). The Japanese scallop occurs naturally in Japan, Korea and Russia, and has been introduced into China, France and Canada (FAO 2006; Guo 2009). On the other hand, the Atlantic sea scallop occurs in the northwestern Atlantic Ocean ranging from north shore of the Gulf of St. Lawrence in Canada to Cape Hatteras in US (Naidu & Robert 2006). During the year 2012 sea scallop commercial landings valued at $559 millions making this species among the highest value fishery in the US (National Marine Fisheries Service, US commercial landings data). Primary commercial markets are restaurants and retailers in the US and in the European Union, where they are available fresh, frozen and in many processed foods (Marine Stewardship Council MSC 2013). In Europe, the most commercially important scallop species is the king scallop *Pecten maximus*. This species is distributed along the Northeast Atlantic from Norway down to North Africa (Beaumont & Gjedrem 2007) and constitutes a major commercial resource in Great Britain, Ireland, France and Spain (Le Pennec, Paugam & Le Pennec 2003). *P. maximus* is sold
Scallop species identification by decaplex PCR

shucked and fresh to the European and domestic market. Scallop fisheries of *M. yessoensis* (Hokkaido, Japan), *P. magellanicus* (US and Canada) and *P. maximus* (UK) are three of the only five scallop fisheries that currently hold the sustainable certification labeling from the MSC (Marine Stewardship Council). In China, two native (*Chlamys farreri* and *Mimachlamys nobilis*), and two exotic species (*M. yessoensis* and *Argopecten irradians*) are the most important cultured scallops (Spencer 2008). Another species of high commercial value is the Peruvian scallop *A. purpuratus*. This species is widely exploited in Peru and Chile, where occur naturally. During the year 2013, Peruvian scallop exportations exceeded 14,000 tons valued at $161 millions, shipped to 42 countries around the world (PROMPERU 2014).

Processed scallop products frequently consist just of the adductor muscle, which prevents the identification to the species level using morphological characteristics. Even when scallops are commercialized as whole animals with shell, a proper identification to the species level may not be possible for the untrained eye, due to morphological similarity among species. Fraud is a serious concern among seafood industry. Food product misbranding usually implies whole or partial substitution of more expensive species by low value species or species with a potential food safety hazard (Handy, Deeds, Ivanova, Hebert, Hanner, Ormos, Weigt, Moore & Yanci 2011). Typically, reports on mislabeled food products have shown that high valued seafood are being substituted by cheaper species that not always belong to related groups. For instance, it has been detected that skate (a cartilaginous fish) wings were fraudulently mislabeled as scallops (Jacquet and Pauly 2008). In another case, mislabeled
Scallop species identification by decaplex PCR

Scallop imports have been used fraudulently to obtain higher prices or to replace the product due to lack of supply in the US (FAO-Globefish 2011). Thus, high throughput assays that can enable the identification of different commercially important scallop species are needed for species conservation and consumer protection.

Over the last two decades, molecular methods have allowed the development of effective assays for species identification. A variety of DNA-based techniques including multiplex PCR have been developed and successfully applied for meat and seafood species identification (Marín, Fujimoto & Arai 2013; Ali, Razzak & Hamid 2014). Mitochondrial markers have proven to be an effective tool for species identification, especially when the quality and quantity of DNA is not the most favorable (e.g. museum specimens, processed food). The relatively abundant mitochondrial cell content makes it an effective target when working with tissues that have been through high temperatures and pressure (i.e. canned food), which cause severe DNA degradation. Among the several mitochondrial markers, the 16S rRNA gene has been successfully applied for the accurate identification of different bivalve species (e.g. Bendezu, Slater & Carney 2005; Jen, Yen, Liao & Hwang 2008; Feng, Li & Zheng 2011; Marín et al. 2013, 2015). Species-specific primers (hereafter referred to as “SSPs”) combined with multiplex PCR is a fast, low-cost and widely used technique for species identification and food authentication (Wang & Guo 2008). However, despite its demonstrated utility, so far few studies have focused on this technique for the identification of scallop species, and only few species have been assessed (Colombo, Trezzi, Bernardi, Cantoni & Renon 2004; Bendezu et al. 2005;
Scallop species identification by decaplex PCR

Marshall, Johnstone & Carr 2007; Marín et al. 2013). Therefore, there is still a need for the development of a rapid multiplex PCR assay for the simultaneous identification of a broader range of scallop species, especially those of high commercial value, which are more prone to be subjected to species substitution resulting in commercial fraud.

The aim of this study was to develop an assay for the identification of some of the most economically important scallop species (fresh and processed samples) by a single-step multiplex PCR. For this purpose, we designed 8 SSPs and one Pecten genus specific primer (hereafter referred to as “GSP”) based on the high diverged 5’ end of the mitochondrial 16S rRNA gene, which in combination with a scallop family-specific primer set, allowed us to develop a novel decaplex PCR assay for fast and simultaneous identification of 8 scallops at species level (M. yessoensis, A. irradians, A. purpuratus, C. farreri, P. magellanicus, M. nobilis, Bractechlamys vexillum, and Annachlamys macassarensis) and one at genus level (Pecten). To our knowledge, this study represents the first report on the simultaneous identification of these 8 economically important scallop species by single step multiplex PCR.

Materials and methods

Ethics statement

This study was performed in accordance with the Guide for the Care and Use of Laboratory Animals in Hokkaido University, Japan. Field sampling required for this work included only invertebrate species, which are not endangered.
Scallop species identification by decaplex PCR

Sample collection and DNA isolation

A total of 285 individuals (243 fresh and 42 samples from 8 different processed presentations) from 11 different scallop species were collected from diverse locations around the world (Table 1). For the 9 target scallop species, from 14 to 65 samples were analyzed, except for *A. macassarensis*, for which only five samples were collected. When possible, different geographical locations were sampled, attempting to cover a broader genetic variation of each species. Scallop samples were taxonomically identified based on morphological characteristics and by DNA barcoding approach (Marín et al. 2015). In processed samples containing several fibers of adductor muscles (canned and simmered) or many full adductor muscles (dried, cooked, seasoned, boiled and smoked), three fibers or whole adductor muscles were randomly analyzed (Table 1). In frozen presentations, where one package contained limited number of full adductor muscles (i.e. from 5 in *A. purpuratus* to 10 in *P. magellanicus*), all adductor muscles were analyzed. Adductor muscles were excised and preserved in ethanol 95%. For all fresh samples, DNA isolation was performed using the standard phenol-chloroform protocol (Sambrook et al., 1989). DNA from manufactured samples was isolated following the protocol described in Sokolov (2000) with minor modifications by Marín et al. (2013). DNA amount and quality was determined using a NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, US).

Species-specific primer design based on the 5’ end of the 16S rRNA gene and PCR amplification
Previously, we reported a high interspecific variability at the 5’ end of the mitochondrial 16S rRNA gene, after the multialignment of the complete 16S rRNA genes of 15 scallop species (Marín et al. 2015). The complete 16S mitochondrial gene from all the scallop species analyzed herein were multialigned using MEGA 5.2 (Tamura, Peterson, Peterson, Stetcher, Nei & Kumar 2011). Accordingly, 8 reverse SSPs and one GSP were designed based on non-conserved regions at the 5’ end of the 16S rRNA gene. A Pectinidae family-specific forward primer PECT16BCF (Marín et al. 2015) was used as the common forward primer for all PCR reactions performed in this study. This forward primer was also used in combination with a family-specific reverse primer as positive control. The family specificity of this primer set was previously validated by amplifying it in 14 different scallop species and by obtaining unspecific or no amplification at all in two close bivalve families namely Mytilidae and Ostreidae (Marín et al. 2015). To ensure a robust PCR amplification, all SSPs ranged from 18 to 24 nt in length, at least five nucleotides from the 3’ end of the primer matched perfectly to its complementary template DNA region, and primers for processed scallop samples were designed to produce PCR products no larger than 500 bp. Lowest PCR product sizes (<200 bp) were given to species with heavily processed samples (e.g. canned). First, to test for individual primer specificity, each reverse SSPs was PCR amplified individually with the common forward primer using four “fresh” individuals of its target species DNA as template. Each SSP and the GSP were also tested against all non-target DNA templates (all “fresh” samples listed in Table 1 were tested) to check for cross-species reactions. The optimal annealing temperature was determined using a gradient Gene Atlas G02 gradient thermal cycler (ASTEC,
Scallop species identification by decaplex PCR

Fukuoka, Japan). The PCR master mix consisted of 50 ng of template DNA, 0.2 mM each dNTPs, 1X Ex Taq buffer (TaKaRa, Osaka, Japan), 0.5 µM each primer, and 0.5 U of Ex Taq polymerase (TaKaRa, Japan) in a total volume of 20 µL.

Thermal cycling conditions were as following: initial denaturation for 5 min at 94 °C, followed by 27 cycles of denaturation for 15 s at 94 °C, annealing for 25 s at 57 °C, and extension for 15 s at 72 °C, followed by a final extension of 3 min at 72 °C. Finally, PCR products were electrophoresed and visualized on 1.5% agarose gel stained with ethidium bromide under UV light.

Decaplex PCR

In order to perform a rapid and cost-effective scallop species identification, a total of 11 primers (Table 2) were combined in a multiplex PCR reaction: 8 species-specific reverse primers and one genus-specific reverse primer, with one family-specific primer set Pect16BC forward and reverse (Marín et al. 2015). We expected to obtain two PCR products in each of the 9 target species: one species-specific band of different size length (amplified by each SSP and GSP and the forward family-specific common primer), and a positive control product (amplified by the family-specific primer set). The final optimized PCR master mix consisted of 50 ng of template DNA, 0.2 mM each dNTPs, 1X Ex Taq buffer (TaKaRa, Japan), 0.5 U of Ex Taq polymerase, 0.4 µM of common forward primer Pect16BCF and SSP BrVe846R, 0.05 µM of common reverse primer Pect16BCR, 0.35 µM of SSPs MiYe113R and MiNo565R (each), 0.3 µM of PeMa323R and AnMa918R (each), 0.25 µM of ArIr197R, and 0.20 µM of ArPu228R, ChFa376R, and PlMa496R (each), in a total volume of 20 µL. Thermal cycling conditions
Scallop species identification by decaplex PCR

were the same as described above. Furthermore, to confirm the reproducibility and specificity of our decaplex PCR assay, three additional TaKaRa PCR enzymes (Emerald Amp Master Premix, Sapphire Amp Fast PCR Master Mix, and HS Perfect Mix) were tested using 4 fresh and processed (when available) individuals per species, using the same decaplex primer concentrations described above and following manufacture’s instructions. PCR products were visualized in a 1.5% agarose electrophoresis gel. Besides, in our experimental design, one additional scallop species, *Amusium pleuronectes*, was included. This DNA template was intended to amplify only the positive control band. The single PCR product obtained was further sequenced using an ABI PRISM 3130XL Genetic Analyzer (Applied Biosystems, Hitachi, Tokyo, Japan). The species identification of the obtained DNA sequence was performed using the NCBI web Blast service.

RFLP assay for differentiation between *P. maximus* and *P. albicans*

Due to the low genetic distance between *P. maximus* and *P. albicans*, the GSP PeMa323R amplified a PCR product of similar size as in *P. albicans* (data not shown). Consequently, in order to further differentiate both species, we performed an assay based on RFLP (restriction fragment length polymorphism). We analyzed the complete 16S gene from both species (GenBank accession numbers KF982791 and JN896624) to find putative restriction enzyme sites located within the sequence flanked by the primers Pect16BCF and Pect16BCR. Our RFLP assay was validated using 14 and 19 individuals of *P. maximus* and *P. albicans* respectively (samples were collected from two localities for each
Scallop species identification by decaplex PCR

PCR reactions consisted of 50 ng of template DNA, 0.2 mM each dNTPs, 1X Ex Taq buffer (TaKaRa, Japan), 0.25 µM of the Pect16BCF and Pect16BCR primers (each), and 0.5 U of Ex Taq polymerase (TaKaRa, Japan) in a total volume of 20 µL. Thermal cycling conditions were as following: initial denaturation for 5 min at 94 °C, followed by 30 cycles of denaturation for 15 s at 94 °C, annealing for 25 s at 60 °C, and extension for 30 s at 72 °C, followed by a final extension of 5 min at 72 °C. Subsequently, 5 µL of PCR products were digested using HaeIII (Roche Diagnostics, Mannheim, Germany). Enzymatic digestions were performed following manufacture’s instructions in a final volume of 20 µL and incubated at 37 °C overnight. Digested fragments were visualized in a 1.5 % agarose gel under UV light.

Results

Primers specificity and decaplex PCR

All SSPs were designed to yield PCR products of different length for each species in combination with the common forward primer. All SSP showed high specificity, reflected in clear and unambiguous species identification by visualization of amplicons of different sizes in agarose gel (see Table 1 for species sample size information). Decaplex PCR amplification resulted in one species-specific band for each species, ranging from 113 in M. yessoensis to 918 bp in A. macassarensis, plus the positive control product that ranged from 600 to 700 bp, depending on species (Fig. 1). The different length sizes of the positive control products were due to the presence of indels and gaps found after the
Scallop species identification by decaplex PCR

Multiplex PCR amplifications showed consistent results for the other three different Taq DNA polymerase enzymes analyzed (data not shown). However, different total PCR amplification times were achieved by each Taq DNA polymerase: 40 min for HS Perfect Mix, 48 min for Sapphire Amp Fast PCR Master, and 65 min for Ex Taq and Emerald Amp Master Premix (the variation in amplification time is due to the different annealing and elongation times required in each different Taq polymerases). No cross species amplification was found, except for the primer ArPu228R that amplified a weak unspecific band of about 1.5 kb in fresh samples of A. irradians. This unspecific PCR product was not yielded in processed DNA samples of A. irradians.

Processed scallop samples authentication

Overall, 8 processed scallop presentations representing four different species were authenticated in this study. Even though some processed samples (i.e. smoked and canned) showed relatively low (Nanodrop 260/280 ratio: 1.4 to 1.5) to medium (Nanodrop 260/280 ratio: 1.6 to 1.7) DNA purity probably due to physical treatment and contamination by food additives, it was sufficient for PCR analysis. Thus a 100% success PCR amplification rate for all processed samples was obtained. After multiplex PCR amplification, we found that all products contained the species declared in their labels. However, only one presentation displayed the scientific name on its label, whereas in all the other samples only their common name was indicated (Table 1).
Scallop species identification by decaplex PCR

Alternative utility of the positive control amplicon

In order to enhance the effectiveness of our multiplex assay, we intentionally included a Pectinidae family-specific primer set as the positive control. The aim of this was to assure the amplification of any scallop species. In such a way, if an unknown scallop species (different than the 9 species targeted herein) is analyzed with our assay, at least a positive control PCR product will be obtained. The unknown sample can be identified by further analysis (e.g. BLAST, DNA barcoding). To demonstrate this, we included the DNA of one “unknown and non target” species that in fact was extracted from one fresh individual of the Asian moon scallop (*A. pleuronectes*, BLAST nucleotide sequence match 100% identity). After multiplex PCR, the single positive amplicon was purified and sequenced. The sequence was deposited in GenBank database under the accession number KM502555. The submission of this novel sequence is a contribution to the DNA barcoding of the family Pectinidae species list based on the 5’ end of the 16S rRNA gene (Marín *et al.* 2015).

HaeIII RFLP assay for identification of *P. maximus* and *P. albicans*

In *P. maximus* and *P. albicans* the primers Pect16BCF and Pect16BCR amplified a fragment of 654 and 655 bp respectively. After DNA sequence analysis, a unique restriction site was identified only for *P. albicans* in the position 369 bp. Thus, a digestion reaction by HaeIII yielded two diagnostic bands of 286 and 369 bp in *P. albicans*. The 654-bp amplicon of *P. maximus* remained uncut (Fig. 2), which
Scallop species identification by decaplex PCR

allowed a clear discrimination between these *Pecten* species by agarose gel visualization. A total of 14 and 19 individuals of *P. maximus* and *P. albicans* were successfully identified with this RFLP assay, respectively.

Discussion

There are different DNA based assays that have been successfully applied for seafood species identification. Nonetheless, most of these procedures require further secondary analyses (sequencing, endonuclease digestion, fingerprinting, phylogenetic analysis) resulting in extra time and cost (Marín *et al.* 2013). In this study, we selected the SSPs design and multiplex PCR amplification method because it allows a simple, accurate, cost-effective and timesaving species identification. The main drawback of this technique is that prior sequence knowledge from the targeted species is required for primer design. This need was fulfilled by a previous study on DNA barcoding based on the variability of the 5’ end of the 16S RNA gene in Pectinidae (Marín *et al.* 2015).

Mitochondrial DNA has been widely used as a source of molecular markers for species identification. An accelerated evolutionary rate, reflected in a significant amount of sequence divergence in closely related species, and lack of introns make the mitochondrial DNA suitable for species identification (Yang, Tan, Wang, Xue, Guan, Huang & Li 2014). The most commonly used mitochondrial genes for species-level determination in seafood studies are the COI, Cytb and 16S rRNA genes. Even though the COI gene is 2.5 times more variable than the 16S rRNA gene (Nicolas, Schaeffer, Missoup, Kennis, Colyn,
Scallop species identification by decaplex PCR

Denys, Tatard, Cruaud & Laredo 2012), the mutations frequently found in variable regions of the 16S gene, which correspond to loops in the ribosomal RNA structure (Vences, Thomas, van der Meijden, Chiari & Vieites 2005), enhance the utility of this gene for the development of SSPs for species authentication assays by multiplex end-point PCR. Previous studies have demonstrated the low efficiency of universal COI primers for different organisms, such as marine molluscs (Layton, Martel & Hebert 2014) including scallops (Feng et al. 2011). On the contrary, universal primers based on the 16S gene have been successfully applied in organisms where universal COI primers have failed (e.g. Vences et al. 2005). Another important reason to choose the 16S gene for the design of SSPs was the presence of gaps in interspecific sequence alignments. Gaps in DNA alignments are more commonly found in ribosomal genes than in protein coding genes (Barr, Cook, Elder, Molongoski, Prasher & Robinson 2009). To facilitate the amplification of only target species, the 3’ end of some SSPs was anchored in gap mismatches from no target species (SSPs position sites for each species are available in the supplementary material). Noteworthily, almost all reports on scallop species identification based on 16S gene relied on the variability of the 3’ end (e.g. Feng et al. 2011; Marín et al. 2013). This is probably because of the existence of universal primer sets designed to amplify a partial region of the 3’ end, which have been widely used for researchers in phylogenetic, forensic, DNA barcoding, population structure studies, etc (Marín et al. 2015). However, the occurrence of large stretches with high degree of sequence conservation within this region restricts the design of SSPs to a limited number of species, especially when working with highly related or congeneric species (e.g. Marín et al. 2013). On the other hand, the 5’ end of the 16S gene in
Scallop species identification by decaplex PCR

the family Pectinidae is characterized for a higher interspecific molecular
divergence, which allowed the clear identification of 14 scallop species by DNA
barcoding approach (Marín et al. 2015). Furthermore, the low intraspecific
variation found at the 5’ end of the 16S gene (0 to 0.1%, Marín et al. 2015) makes
this region an ideal target to design markers for scallop species identification.

To evaluate the performance of our multiplex PCR assay using different
Taq DNA polymerase enzymes, three additional PCR kits were assayed. The same
primer concentrations were used for all the PCR reactions, which resulted in
consistent results allowing an unambiguous species identification. Each Taq
polymerase enzymes achieved different PCR amplification times. HS Perfect Mix
(TaKaRa) reached the shortest time (40 min). Nevertheless, we chose to show
the amplification results only for Ex Taq polymerase (TaKaRa, Japan) because we
consider this enzyme of standard use in more laboratories (among all the
enzymes used in this study).

Except for the weak unspecific PCR product amplified by the primer
ArPu228R by cross-reaction with non-target A. irradians template, all our SSPs
showed only specific amplification when tested against non-target scallop
species. Besides, ArPu228R did not amplify any processed samples of A. irradians.
The unspecific amplicon size (about 1.5 kb) observed only in fresh samples of A.
irradians was larger than all species-specific bands (maximum size was 918 bp in
A. macassarensis). Thus, this result would not interfere with the ability to detect
all target species. In this study, only five individuals of A. macassarensis were
analyzed. Thus, it should be noted that more individuals of this species are
required to further validate the AnMa918R primer. In this work, the scallops M.
Scallop species identification by decaplex PCR

yeossoensis and A. irradians included heavily processed presentations (e.g. canned). The small PCR amplicon sizes intentionally designed for these species increased the chance of successful PCR amplification using its degraded target DNA. However, in some canned samples, a weak positive control band was obtained, due to the higher molecular size amplicon and degraded target DNA. Thus, caution must be taken if canned presentations or heavily degraded target DNA from other scallop species are analyzed with our assay, especially when using the SSPs designed to amplify PCR products higher than 400 bp.

The restriction enzyme HaeIII was successfully applied for the accurate differentiation between P. maximus and P. albicans. Even though an additional RFLP analysis was necessary for the discrimination between these two species, this assay can be useful for routine taxonomic surveys. Nowadays, P. albicans is commercialized only spontaneously in some Japanese local markets, and there is neither exportation nor processing industry of this species. Whereas P. maximus is commonly commercialized throughout Europe as fresh and processed food. Thus, it is unlikely that those two scallop species occur in the same market. We encourage the design of further assays for the discrimination among more Pecten species such as P. jacobeus (Mediterranean Sea), P. sulcicostatus (South Africa), P. fumatus (Australia) and P. novaezelandiae (New Zealand). All aforementioned Pecten species have similar morphological appearance and represent commercially important fisheries.

The present study provided some important advantages over previous related studies. Previous reports on scallop species identification by SSPs multiplex covered from 2 to 3 scallop species (Colombo et al. 2004; Bendezu et al.)
Scallop species identification by decaplex PCR

2005; Marshall et al. 2007; Marín et al. 2013) that occur or are sold in the same geographic region, thus restricting the utility of those assays only to a limited group of researchers or institutes. In this study, by designing GSP and SSPs for a total of nine scallop species, which occur naturally or artificially in five continents and most of them are shipped internationally, the utility of our multiplex assay was outstandingly increased. Besides, our assay showed to be more advantageous not only because it addressed the deficit of SSPs of commercially important scallop species by developing a relatively higher number of SSPs, but also because of the secondary potential utility of the positive control reaction. Typically, multiplex PCR assays include a positive control as an indicator for any enzymatic failure during PCR reaction. Indeed, in our multiplex assay, the family-specific primer set used as positive control has an essential secondary function: it can be used as a “wildcard” reaction because it will amplify the DNA from every Pectinidae species. Therefore, our assay is not only useful for the identification of the 9 target species analyzed herein, but also for many more members of the Pectinidae family. If only the positive control PCR product from an unknown scallop species is obtained, it can be further sequenced and identified using BLAST or DNA barcoding. To demonstrate the utility of the positive control reaction contained in the multiplex PCR cocktail, we included the DNA of one more scallop species, A. pleuronectes, which was expected to produce one single band amplified only by the Pectinidae family-specific primer set. This PCR product was further sequenced and the “unknown” species was correctly identified by DNA barcoding approach (data not shown).
All scallop species identified in this study are of high commercial importance, and most of them are commercialized internationally. Consequently, in its present form, our multiplex PCR method is of great utility and could be easily used as a commercial kit by laboratories from different research institutes and governmental agencies that regulate seafood labeling around the world.

ACKNOWLEDGEMENTS

We want to thank Ms. Shelah Buen-Ursua (SEAFDEC/AQD, Philippines), Dr. Kenta Suda (Okabe Co. Ltd., Japan), and Ms. Mika Yoshimura (Hokkaido University, Japan) for providing scallop samples.

REFERENCES
Scallop species identification by decaplex PCR

doi 10.1007/s12161-014-9844-4

Scallop species identification by decaplex PCR

Scallop species identification by decaplex PCR

Scallop species identification by decaplex PCR

Promocion Comercial. 89 pp.

Scallop species identification by decaplex PCR

Figure captions

Figure 1 Agarose gel electrophoresis of decaplex PCR using 8 species-specific primers and one genus-specific primer in 9 scallop species. Each species yielded a PCR product of different size (indicated in bp: base pairs) plus a positive control band that ranged from 600 to 700 bp, depending on species. M: 50 bp ladder, lane 1: *Mizuhopecten yessoensis* 113 bp, lane 2: *Argopecten irradians* 197 bp, lane 3: *Argopecten purpuratus* 228 bp, lane 4: *Pecten maximus* 323 bp, lane 5: *Chlamys farreri* 376 bp, lane 6: *Placopecten magellanicus* 496 bp, lane 7: *Mimachlamys nobilis* 565 bp, lane 8: *Bractechlamys vexillum* 846 bp, and lane 9: *Annachlamys macassarensis* 918 bp. Only a positive control band is observed in Lane 10: *Amusium pleuronectes* (non-target species). –C: negative control

Figure 2 Agarose gel electrophoresis of a RFLP (restriction fragment length polymorphism) assay for the identification of *Pecten maximus* and *Pecten albicans* using *HaeIII* enzyme. A 654 base pair (bp) size amplicon in *P.
Scallop species identification by decaplex PCR

maximus (lanes 1 to 5) amplified by the Pectinidae family-specific primer set Pect16BC was uncut, whereas the 655 bp size amplicon amplified by the same family-specific primers in *P. albicans* (lanes 6 to 10) resulted in two diagnostic fragments of 286 and 369 bp. M: 100 bp ladder.

Supplementary material 1

Alignment of a partial fragment of the 5’ end of the 16S gene in 9 scallop species showing their species-specific reverse primer site locations. Target species names are highlighted in bold and primer sites for each target species are highlighted in grey.
The image shows a gel electrophoresis with markers and samples labeled with the species names *Pecten maximus* and *Pecten albicans*. The markers are labeled at 100, 500, and 1000 base pairs (bp). The gel electrophoresis image clearly distinguishes the bands for each species.
Table 1 Information of all scallop species collected from wild and local markets as fresh and processed food analyzed in this study

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>Origin/Treatment</th>
<th>Sample size</th>
<th>Name on label</th>
<th>Origin on label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mizuhopecten yessoensis</td>
<td>Fresh</td>
<td>Mori, Japan</td>
<td>15</td>
<td>Japanese scallop (Hotategai)</td>
<td>Wakkanai (Japan)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muroran, Japan</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processed</td>
<td>Local market, Japan</td>
<td>3</td>
<td>Japanese scallop (Hotategai)</td>
<td>Japan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dried</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Smoked and canned</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Seasoned</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cooked and seasoned</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Simmered</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Canned</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Simmered</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Simmered</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Simmered</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argopecten irradians</td>
<td>Fresh</td>
<td>Qingdao, China</td>
<td>16</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local market, Japan</td>
<td>3</td>
<td>Bay scallop (Itayagai)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Boiled and frozen</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Canned</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Canned</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argopecten purpuratus</td>
<td>Fresh</td>
<td>Sechura Bay, Peru</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independencia Bay, Peru</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processed</td>
<td>Local market, UK</td>
<td>5</td>
<td>Peruvian scallop</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Frozen</td>
<td>10</td>
<td>King scallop</td>
<td>South Coast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Frozen</td>
<td>10</td>
<td>King scallop</td>
<td>North East Atlantic</td>
</tr>
<tr>
<td>Pecten maximus</td>
<td>Fresh</td>
<td>Rye Bay, UK</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local market, UK</td>
<td>2</td>
<td>King scallop</td>
<td>South Coast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local market, UK</td>
<td>10</td>
<td>King scallop</td>
<td>North East Atlantic</td>
</tr>
<tr>
<td>Chlamys farreri</td>
<td>Fresh</td>
<td>Hakodate, Japan</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placopesten magellanicus</td>
<td>Fresh</td>
<td>Local market, Canada</td>
<td>5</td>
<td>East Coast scallops</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processed</td>
<td>Local market, UK</td>
<td>10</td>
<td>Wild Atlantic raw scallop</td>
<td>North West Atlantic</td>
</tr>
<tr>
<td>Mimachlamys nobilis</td>
<td>Fresh</td>
<td>Oki Islands, Japan</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bractechlamys vexillum</td>
<td>Fresh</td>
<td>Sicogon Island, Philippines</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molocoboc Island, Philippines</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annachlamys macassarensis</td>
<td>Fresh</td>
<td>Molocoboc Island, Philippines</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pecten albicans</td>
<td>Fresh</td>
<td>Shimoda, Japan</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oki Islands, Japan</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amusium pleuronectes</td>
<td>Fresh</td>
<td>Bangkok, Thailand</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Primer</td>
<td>Sequence 5'-3'</td>
<td>Amplicon length (bp)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>All Pectinidae</td>
<td>Pect16BCF</td>
<td>CGTACCTTTTGCATCATGG</td>
<td>600-700</td>
<td>Marín et al. 2015</td>
<td></td>
</tr>
<tr>
<td>All Pectinidae</td>
<td>Pect16BCR</td>
<td>GCACGATTTACCAGCGTGTTTA</td>
<td>600-700</td>
<td>Marín et al. 2015</td>
<td></td>
</tr>
<tr>
<td>Mizuhopecten yessoensis</td>
<td>MiYe113R</td>
<td>TCTCGTCTCTGGATGATAC</td>
<td>113</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Argopecten irradians</td>
<td>ArIr197R</td>
<td>CCAGCTACTTGATGAAA</td>
<td>197</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Argopecten purpuratus</td>
<td>ArPu228R</td>
<td>GGCTCCCACAAAAAACTAAA</td>
<td>228</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Pecten maximus</td>
<td>PeMa323R</td>
<td>CCACCTCTAGCCTTTCC</td>
<td>323</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Pecten albicans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamys farreri</td>
<td>ChFa376R</td>
<td>GCAATGAAGGTTAGTGGAGTTGA</td>
<td>376</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Placopecten magellanicus</td>
<td>PlMa496R</td>
<td>CCCCTACTAGCTTTCTTCTTA</td>
<td>496</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Mimachlamys nobilis</td>
<td>MiNo565R</td>
<td>GATAAACCGGGCGTTCC</td>
<td>565</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Bractechlamys vexillum</td>
<td>BrVe846R</td>
<td>CAAAAGTCGACCCCTAAGG</td>
<td>846</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Annachlamys macassarensis</td>
<td>AnMa918R</td>
<td>ACAGCCCAGGAATCAGAT</td>
<td>918</td>
<td>This study</td>
<td></td>
</tr>
</tbody>
</table>

bp, base pairs
Novel decaplex PCR assay for simultaneous detection of scallop species: designing species-specific primers on highly variable 5' end of the 16S rRNA gene

Aquaculture Research

Alan Marín1* • Claudio Villegas-Llerena2a Takafumi Fujimoto1b • Katsutoshi Arai1c

1Hokkaido University, Graduate School of Fisheries Sciences, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan.

2Department of Molecular Neuroscience, Institute of Neurology, UCL, 1 Wakefield Street, London, WC1N 1PJ, UK.

*Correspondent author

e-mail: marin@fish.hokudai.ac.jp
<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. yessoensis</td>
<td>T C T T T T T T T T G A A G G G T C C C C G G C T - - T T A T G G C T T T T G A G</td>
</tr>
<tr>
<td>A. iradians</td>
<td>T - - - - - - - - - - - - - G C C T T A -</td>
</tr>
<tr>
<td>A. purpuratus</td>
<td>T - - - - - - - - - - - - - - - - A G C T T A -</td>
</tr>
<tr>
<td>P. maximus</td>
<td>T G A G G A G C A C T A G A G C T T T A G T G T - - - - - - - - - - - - - - T T C A G</td>
</tr>
<tr>
<td>P. magellanicus</td>
<td>G G G A T T T T G T T G G T T T C T A - A G</td>
</tr>
<tr>
<td>M. nobilis</td>
<td>G A T G T A A G T T G A G A T C T T G A - G A G</td>
</tr>
<tr>
<td>B. vexillum</td>
<td>A C T T T T G A A T T A G T T T C A G - A G</td>
</tr>
<tr>
<td>A. macassarensis</td>
<td>T T T G T T T A T C T G A T T C C T G G G G C T - - - - - - - - - - - - - - - - G T T A T T A G</td>
</tr>
</tbody>
</table>