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SUMMARY

This paper presents a mechanical model for predicting the behavior of elastomeric seismic isolation bearings
subject to combined end rotations and shear deformation. The mechanical model consists of a series of
axial springs at the top, mid-height and bottom of the bearing to vertically reproduce asymmetric bending
moment distribution in the bearings. The model can take into account end rotations of the bearing, and the
overall rotational stiffness includes the effect of the variation of vertical load on the bearing and the imposed
shear deformation. Static bending tests under various combinations of vertical load and shear deformation
were performed to identify the mechanical characteristics of bearings. The test results indicate that bearing
rotational stiffness increases with increasing vertical load but decreases with increasing shear deformation.
Simulation analyses were conducted to validate the new mechanical model. The results of analyses using the
new model show very good agreement with experimental observations. A series of seismic response analyses
were performed to demonstrate the dynamic behavior of top-of-column isolated structures, a configuration
where the end rotations of isolation bearings are typically expected to be larger. The results suggest that the
end rotations of elastomeric bearings used in practical top-of-column isolated structures do not reduce the
stability limit of isolation system. Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: seismic isolation; elastomeric isolation bearings; rotational stiffness; seismic response
analysis

1. INTRODUCTION

Seismic isolation has been used extensively throughout the world over the last three decades to
protect structures from the damaging effects of earthquakes. Elastomeric isolation bearings are one
of the most popular devices, and typically installed between large girders which ensure that the ends
of isolators remain substantially horizontal with minimal rotation. Configurations without a bottom
girder, including top-of-pile isolation and top-of-column isolation result in lower construction costs
and a more economical design for isolated structures. However, in these configurations, end rotations
of isolators under earthquake excitations are expected and therefore a better understanding of some
of the more complex aspects of the isolation device behavior is important for evaluating the stability
limit of the isolation system.
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2 K. ISHII ET AL.

The mechanical properties of elastomeric isolation bearings depend on the interaction between
shear and axial forces. The horizontal stiffness of elastomeric bearings decreases under large
shear deformation and high compressive load, and the decrease will ultimately causes isolator
buckling. The critical buckling load is one of the most important issues to investigate when
considering the safe conditions for isolators. Haringx has introduced an evaluation criterion for
the horizontal stiffness of rubber rods under the combination of vertical and horizontal loads [1].
Gent confirmed that the evaluation formula can be applied to elastomeric bearings [2]. In Haringx’s
theory, additional shear force and bending moment result from rotational deformation and horizontal
deformation, respectively. When considering the horizontal behavior of elastomeric bearings,
accurate calculation for bending stiffness is as important as shear stiffness. Previous experimental
and analytical research related to the stability of rubber bearings under shear deformation have
been conducted. Buckle et al. investigated the critical load of elastomeric bearings [3] and Warn et
al. expressed the relationship between the vertical stiffness and the overlapping area of elastomeric
bearings [4]. Warn et al. performed parametric finite element analyses, and suggested that the critical
load capacity is influenced by not only the overlapping area, but also the shape factor of the bearing
[5] and Weisman et al. conducted experimental tests and finite element analyses, and showed that
the overlapping area method is a conservative estimation [6]. In addition, Ohsaki et al. performed
finite element analyses for a building frame supported by rubber bearings which showed that the
vertical pressure concentrates at the overlapping area [7].

Past studies have presented mechanical models which consist of springs and rigid bars in order to
illustrate nonlinear characteristics of elastomeric bearings. Koh and Kelly have proposed a simple
model which is a series combination of a rotational spring and a shear spring and a rigid link [8].
The model can include the well-known geometric nonlinearity called P-∆ effect for isolators. Using
the mechanical model, horizontal and vertical deformations of natural rubber bearings are predicted.
Iizuka has proposed a macroscopic model as an expansion of Koh and Kelly’s model [9]. The model
introduced finite deformation and nonlinear hysteresis to predict the large-deformation behavior of
isolators. Takaoka et al. have proposed a modified macroscopic model which contains additional
axial spring [10]. Using the modified model, results of shaking table tests including the ultimate
behavior of lead lubber bearings are well simulated. Kumar et al. have presented a numerical model
containing coupling of horizontal and vertical behavior provided by Koh and Kelly’s model [11].
The model takes axial hysteresis model, shear stress degradation due to heating in lead plug into
consideration. Nonlinear behavior of isolators in tension and shear is well captured by the model.
Kelly also has presented another expansion of Koh and Kelly’s model [12]. The model has two
rotational springs at the top and bottom ends, and the rotational springs are connected to a shear
spring at mid-height by two rigid links. A number of extensions of this model have been developed,
for example, Ryan et al. extended the model for lead rubber bearings by introducing nonlinear shear
springs [13]. Kikuchi et al. have proposed a multi-spring mechanical model which has two series
of axial springs instead of two rotational springs mentioned above [14]. The series of axial springs
can account for nonlinear behavior in the rotational direction influenced by compressive load, which
causes buckling behavior under large shear deformation. Analytical results using this model showed
good agreement with test results of lead rubber bearings.

To extend the application of seismic isolators, investigation of the behavior subject to more
complex load and deformation is necessary. Imbimbo and Kelly have conducted numerical analyses
to simulate buckling behavior of elastomeric bearings supported with flexible ends [15]. The
analytical results showed that the critical compressive load decreases with rotational flexibility of
the supported end. Karbakhsh et al. have extended Haringx’s theory to include initial rotation of
the top and bottom ends of elastomeric bearings [16]. The evaluation of the mechanical properties
indicated that horizontal stiffness of an isolator can be significantly affected and depending on the
direction of end rotation, the horizontal stiffness with end rotation may become larger than the
original stiffness. Similarly, Kelly pointed out that the shear deformation of an isolator prevents
the tension buckling [17]. Rastgoo Moghadam and Konstantinidis have performed finite element
analyses to simulate nonlinear behavior of elastomeric bearings under various boundary conditions
[18]. The results well captured the effect of end rotations predicted by Karbakhsh’s theory.

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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SHEAR DEFORMATION AND END ROTATION OF ELASTOMERIC ISOLATION BEARINGS 3

Recently, new design strategies for seismically isolated buildings, such as inter-story isolation and
multi-story isolation have progressed [19][20], and several buildings have been built or retrofitted
[21][22] using these techniques. A main motivation for this design feature is that it makes the
seismic gap around the buildings unnecessary, a potentially significant cost-savings for the project.
In the case of top-of-column isolation, the isolators are subjected to not only shear and axial
deformation but also end rotations. In this case, the additional bending moment caused by P-∆
effects is distributed asymmetrically in the vertical direction due to the end rotations. The varying
load and deformation conditions have to be considered in time history analysis to accurately
predict response. This paper presents a mechanical model for elastomeric isolation bearings with
the capability to predict nonlinear behavior influenced by load and deformation conditions. This
improved model is shown to have greater accuracy and validated with an experimental test program
conducted to investigate the cyclic bending of elastomeric bearings. The efficacy of the model is
further shown through the simulation of earthquake response of a building model incorporating the
numerical bearing model.

2. A MECHANICAL MODEL FOR ELASTOMERIC BEARINGS

2.1. Model formulation

Figure 1 shows the new mechanical model for elastomeric bearings subject to combined end
rotations and shear deformation. The model is an extension of an existing model developed by
[14]. The model proposed herein has additional mechanical members which improve the accuracy
of the model with a minimal increase in complexity. The model is developed for a two-dimensional
system, and consists of a series of axial springs at the top, mid-height and bottom of the bearing to
vertically reproduce asymmetric bending moment distribution in the bearings. Nonlinear hysteretic
relationships are defined for each axial spring to simulate compression and bending behavior of
the bearings. The external nodes, a and b, have displacements in horizontal, vertical and rotational
directions. The internal nodes, m and n, have displacements in vertical and rotational directions,
and their horizontal displacements are equal to those of the external nodes. Two rigid links, whose
lengths are equal to the half-height of the bearing, h/2, connect top, mid-height and bottom layers of
axial springs. An additional axial spring and a shear spring are located at the center of the mid-height
layer. The internal nodes, m′ and n′, have displacements in the horizontal, vertical and rotational
directions.

Multiple axial springs

Axial/Shear spring

Rigid link

Horizontal force

Vertical force

Bending monent

a (external node)

b (external node)

m

n

n' 

m'

Figure 1. Three-layer multi-spring mechanical model.

Figure 2 shows the forces and deformations on the multiple axial springs between the nodes a
and m. In this paper, the left side subscript refers to an individual spring, i, in the multi-spring layer,
where i, ranges from 1 to the number of multiple axial springs, N . The left side superscript is used
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Figure 2. Forces and deformations on the multiple axial springs at the bottom end.

to indicate the end nodes of the particular layer, a-m/m′-n′/n-b. The incremental deformation of the
ith spring, ∆am

iδ, is expressed as

∆am
iδ =

[
−1 −am

il 1 am
il
]
∆amu (1)

where am
il is the distance between the ith spring to the center of the series of axial springs, and

∆amu is the incremental displacement vector expressed as

∆amu =
{
∆va ∆θa ∆vm ∆θm

}T (2)

The incremental force of the ith spring is expressed as

∆am
if = am

ik ·∆am
iδ (3)

where am
ik is the stiffness of the ith spring. The incremental forces and bending moments on the

nodes a and m are expressed as follows:

∆pa = −∆pm = −
N∑
i=1

(∆am
if) (4)

∆ma = −∆mm = −
N∑
i=1

(∆am
if · amil) (5)

The relationship between incremental forces and incremental displacements of the multiple axial
springs at the bottom end is expressed as

∆amf = amK∆amu (6)

where

∆amf =
{
∆pa ∆ma ∆pm ∆mm

}T
(7)

amK =


amK1

amK2 −amK1 −amK2
amK3 −amK2 −amK3

amK1
amK2

symm. amK3

 (8)

amK1 =

N∑
i=1

(amik),
amK2 =

N∑
i=1

(amik · amil), amK3 =

N∑
i=1

(amik · amil2)

By substituting the nodes n and b for a and m, the same procedure can be applied to obtain the
relationship of the multiple axial spring at the top. The relationship is expressed as

∆nbf = nbK∆nbu (9)

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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Figure 3. Forces and deformations on the multiple axial springs at mid-height and rigid links.

Figure 3 shows the forces and deformations on the multiple axial springs between the nodes m′

and n′. The incremental force-displacement relationship on the nodes m′ and n′, which exclude the
rigid links, is expressed as follows:

∆m′n′
f = m′n′

K∆m′n′
u (10)

∆m′n′
f =

{
∆qm′ ∆pm′ ∆mm′ ∆qn′ ∆pn′ ∆mn′

}T
(11)

∆m′n′
u =

{
∆um′ ∆vm′ ∆θm′ ∆un′ ∆vn′ ∆θn′

}T (12)

m′n′
K =



m′n′
Ks 0 0 −m′n′

Ks 0 0
m′n′

Kn 0 0 −m′n′
Kn 0

m′n′
Kr 0 0 −m′n′

Kr
m′n′

Ks 0 0
m′n′

Kn 0

symm. m′n′
Kr

 (13)

m′n′
Ks = ks,

m′n′
Kn =

N∑
i=1

(m
′n′

ik) + kn,
m′n′

Kr =

N∑
i=1

(m
′n′

ik · m
′n′

il
2
)

where ks and kn are the stiffness of shear and axial springs at the center of the mid-height layer,
respectively. Because of its location, the axial spring has no contribution to the rotational stiffness
of multiple axial springs m′n′

Kr. By introducing the transformation matrix, T, the displacement
vector and the force vector on the nodes m and n can be expressed by those on the nodes m′ and n′

as follows:

∆m′n′
u = T∆mnu, ∆mnf = TT∆m′n′

f (14)

where

∆mnf =
{
∆qa ∆pm ∆mm ∆qb ∆pn ∆mn

}T
(15)

∆mnu =
{
∆ua ∆vm ∆θm ∆ub ∆vn ∆θn

}T
(16)

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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6 K. ISHII ET AL.

T =


1 0 −h/2 0 0 0

−θm 1 δs/2 0 0 0
0 0 1 0 0 0
0 0 0 1 0 h/2
0 0 0 −θn 1 −δs/2
0 0 0 0 0 1

 (17)

In the construction of T, P-∆ effect is considered while small rotational angle is assumed. The
deformation of the shear spring, δs, is calculated by

δs = un′ − um′ = (ub − ua) +
h

2
(θn + θm) (18)

The incremental force-displacement relationship on the nodes m and n is expressed as follows:

∆mnf = mnK∆mnu (19)

where

mnK = TT m′n′
KT (20)

The relationship between incremental forces and incremental displacements of the overall bearing
element is obtained from Equations (6), (9) and (19):{

∆fex
∆fin

}
=

[
K11 K12

K21 K22

]{
∆uex

∆uin

}
(21)

where ∆fex and ∆fin are the incremental forces on the external nodes a and b and on the internal
nodes m and n, respectively, and ∆uex and ∆uin are the incremental displacements on the external
nodes a and b and on the internal nodes m and n, respectively. The incremental force vectors and
displacement vectors are expressed as

∆fex =
{
∆qa ∆pa ∆ma ∆qb ∆pb ∆mb

}T
(22)

∆fin =
{
∆pm ∆mm ∆pn ∆mn

}T
(23)

∆uex =
{
∆ua ∆va ∆θa ∆ub ∆vb ∆θb

}T
(24)

∆uin =
{
∆vm ∆θm ∆vn ∆θn

}T
(25)

The sub matrices, K11, K12, K21 and K22, are obtained by arranging the entry of amK, mnK and
nbK to the corresponding nodes a, b, m and n. In the step-by-step calculation for dynamic analysis,
the total acting force can be expressed as{

Fex

Fin

}
=

{
fex
fin

}
+

[
K11 K12

K21 K22

]{
∆uex

∆uin

}
(26)

where Fex and Fin are the acting forces at the new time step on the external nodes a and b and the
internal nodes m and n, respectively, and fex and fin are the acting forces at the old time step on
the external nodes a and b and the internal nodes m and n, respectively. In the case that the internal
nodes have no mass, by substituting Fin = 0, solving Equation (26) for Fex and uin gives

Fex = fex −K12K
−1
22 fin + (K11 −K12K

−1
22 K21)∆uex (27)

∆uin = −K−1
22 fin −K−1

22 K21∆uex (28)

Equation (27) describes how to calculate the acting forces from the incremental displacement on
the external nodes a and b. This condensation procedure can be used to facilitate stable numerical
analyses when this proposed mechanical model is used with other structural elements, such as
columns or beams.

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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SHEAR DEFORMATION AND END ROTATION OF ELASTOMERIC ISOLATION BEARINGS 7

2.2. Spring constants

The process to determine the stiffness of the shear and axial springs in the mechanical model is
described below. The total stiffness of an elastomeric bearing is expressed as follows:

KH =
GA

hr
(29)

KV =
EcA

hr
(30)

KR =
EbI

hr
(31)

where KH , KV and KR are the horizontal, vertical and rotational stiffness, respectively, and G, Ec

and Eb are the shear, compressive and bending moduli, respectively. The remaining parameters, A,
I and hr are the cross-sectional area, the second moment of area and the total thickness of the rubber
pad, respectively. The effective moduli of an elastomeric bearing are calculated as follows:

Ec =
E(1 + 2κS2) ·K
E(1 + 2κS2) +K

(32)

Eb =
E(1 + 2

3κS
2) ·K

E(1 + 2
3κS

2) +K
(33)

where E, K and κ are the Young’s modulus, the bulk modulus and a constant related to the hardness
of the rubber, respectively, and S is the shape factor of the rubber pad. The shape factor, S, is
expressed as

S =
D −Di

4tr
(34)

where D, Di and tr are the outer diameter, inner diameter and the thickness of a rubber pad.
First, the horizontal stiffness of the bearing is represented by the shear spring which is located at

the center of the mid-height layer. The condition can be expressed as

ks = KH (35)

Next, regarding the three layers of multiple axial springs as three rotational springs connected in
series, the rotational stiffness is given by:

1

KR
=

1
amKR

+
1

m′n′KR
+

1
nbKR

(36)

where amKR, m′n′
KR and nbKR are the rotational stiffness values of each multiple axial spring

component calculated as follows:

amKR =
amEI
aml

, m′n′
KR =

m′n′
EI

m′n′ l
, nbKR =

nbEI
nbl

(37)

where amE, m′n′
E and nbE are the elastic moduli, and aml, m′n′

l and nbl are the fictitious
computational lengths of the multiple springs. Consider the horizontal deformation derived from
bending deformation in the case of antisymmetric bending with keeping the horizontalness of the
top and bottom end. If the horizontal deformation of the mechanical model is equal to that of a beam
element, the stiffness of the rotational springs at the top and bottom end, amKR and nbKR, satisfy:

amKR = nbKR = 6KR (38)

In the derivation of Equation (38), the mechanical model is assumed to be symmetric. By
substituting Equation (38) into (36), m′n′

KR is obtained as

m′n′
KR = 1.5KR (39)

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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When the fictitious computational lengths of multiple springs, aml, m′n′
l and nbl, are equal to one

third of the total thickness of the rubber, hr/3, the elastic moduli are

amE = nbE = 2Eb (40)
m′n′

E = 0.5Eb (41)

The spring constants of the multiple axial springs, amik, m
′n′

ik and nb
ik, are calculated by using these

moduli with nonlinear properties in the next section. Finally, regarding the three layers of multiple
axial springs as the three vertical springs connected in series, the vertical stiffness is given by:

1

KV
=

1
amKV

+
1

m′n′KV
+

1
nbKV

(42)

where amKV , m′n′
KV and nbKV are the vertical stiffness values of each multiple axial spring

component calculated as follows:

amKV =
amEA
aml

, m′n′
KV =

m′n′
EA

m′n′ l
+ kn,

nbKV =
nbEA
nbl

(43)

By substituting Equation (43) to (37), the vertical stiffness can be expressed as follows:

amKV =
amKRA

I
, m′n′

KV =
m′n′

KRA

I
+ kn,

nbKV =
nbKRA

I
(44)

The stiffness of the axial spring which is located the center of the mid-height layer, kn, is determined
from Equations (30), (31), (38), (39), (42) and (44) as

kn =
9

2

Eb(Ec − Eb)

3Eb − Ec

A

hr
(45)

2.3. Nonlinear properties for axial springs

Multiple axial springs
between node a and m

a - m

m' - n'

n - b

1 i N

Shear deformation
Effective sectional area

A

B

B'

A'

if 
AA'
BB'

=

Figure 4. Effective sectional area for multiple axial springs.
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SHEAR DEFORMATION AND END ROTATION OF ELASTOMERIC ISOLATION BEARINGS 9

Each spring in the multiple axial spring component represents an individual strip of the bearing’s
cross-sectional area, and is located at the center of gravity of individual strip. The spring constant
of each spring, ik, is calculated as

ik =
ie · ia · iφ

l
(46)

where ie, ia and l are the elastic modulus, the area of the strip and the fictitious computational length
of the spring. The overlapping factor, iφ, is used to calculate the effective sectional area of multiple
axial springs.

Figure 4 illustrates the overlapping area between the top and bottom endplates, and the calculation
of the overlapping factor for the ith spring between the nodes a and m. The chords AA’ and BB’,
passing through the location of ith axial spring, are the chords of the circular area at the a-m layer
(bottom end of the bearing) and the overlapping area at the n-b layer, respectively. The overlapping
factor, iφ, is calculated as the ratio of the length of the chord BB’ to AA’.

Figure 5 describes the stress-strain relationship for each axial spring. The elastic modulus, ie, is
defined by using the hysteresis model, where σty is 1 MPa, Ety/Einit is 1/500, σcy is 100 MPa,
Ecy/Einit is 1/2. Einit, the initial elastic modulus, is calculated by Equation (40) (for the springs at
the top and bottom end) or (41) (for the springs at the mid-height).

0

0

Axial strain

A
x

ia
l 

st
re

ss

Compression

Tension

Ety

Einit

Ecy

sty

scy

Figure 5. Hysteresis model for multiple axial springs.

3. BEARING TESTS AND SIMULATION ANALYSES

3.1. Bearing tests

Accurate estimation of the rotational stiffness is important when investigating coupling in the shear
and axial directions. This is particularly true when considering the buckling stability of elastomeric
bearings. Static bending tests under various combinations of vertical load and shear deformation
were performed on two bearings to identify their mechanical characteristics. Figure 6 shows the
design of the natural rubber bearings tested while Table I summarizes their properties. The aspect
ratio, S2 = D/hr, is defined as a ratio of the rubber diameter to total rubber thickness, and is an
indicator of buckling stability. As shown in Table I, the bearings tested as part of this study had
aspect ratios of 4 and 5.

Figure 7 outlines the procedure used to perform the bending tests. After the bearings were
loaded to a partical axial compressive stress, the top of the bearing was offset a certain distance
corresponding to a perscribed shear stress. In this offset position, the top of the bearing was rotated
relative to the bottom. The rotational angle, which is observed at the top of the upper most rubber
layer, was varied from −0.02 to 0.02 rad. The test parameters are summarized in Table II.

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2010)
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4
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3
2

Bearing A (aspect ratio, S2 = 4) Bearing B (aspect ratio, S2 = 5)

Unit: mm

Figure 6. Rubber bearing design.

Table I. Dimensions and material constants of the natural rubber bearings.

Bearing A Bearing B

Outer diameter, D (mm) 500
Inner diameter, Di (mm) 70

Thickness of rubber pad, tr (mm) 3.7
Thickness of steel plate (mm) 2.5

Shape factor, S 29.1
Number of rubber layers 34 27

Total rubber thickness, hr (mm) 125.8 99.9
Total height, h (mm) 208.3 164.9

Aspect ratio, S2 4 5

Shear modulus, G (MPa) 0.392
Bulk modulus, K (MPa) 2000

Constant related to the hardness, κ 0.85

1) Compress

2) Shear offset

Observation point of
rotational angle

and bending moment

3) Rotate

Rotational angle, q

Offset shear strain, g

Compressive stress, s

Figure 7. Bearing test process.
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SHEAR DEFORMATION AND END ROTATION OF ELASTOMERIC ISOLATION BEARINGS 11

Table II. Parameters varied in bearing tests.

Aspect ratio of the bearing 4, 5
Compressive stress, σ (MPa) 1, 10

Offset shear strain, γ (%) 0, 50, 100, 150, 200
Rotational angle, θ (rad) ±0.02

3.2. Simulation analyses
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Figure 8. Bending moment-rotational angle relationship.

Simulation analyses of the bearing tests were conducted to validate the proposed mechanical
model. Equation (47) is used to calculate the Young’s modulus of the rubber.

E =
9KG

3K +G
(47)

Experimental testing is not required to determine the properties of the model as the stiffness of the
shear and axial springs in the proposed model can be determined directly from the geometry and
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(a) Aspect ratio = 4, s = 1 MPa (b) Aspect ratio = 5, s = 1 MPa

(c) Aspect ratio = 4, s = 10 MPa (d) Aspect ratio = 5, s = 10 MPa
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Figure 9. Initial rotational stiffness vs. offset shear strain.

material constants listed in Table I. If a new, or previously untested rubber material is used in the
bearings, material tests to obtain material constants and stress-strain relationship would be required.

Figure 8 shows the comparison of the bending moment-rotational angle relationship obtained
from experimental and analytical results. Figures 8(a) and (b) show the results under 1 MPa
compressive stress for the two aspect ratios considered. For the analyses at zero shear strain, the
characteristic values, including the yielding moment, the yielding angle and the post-yield stiffness
are well predicted. For the analyses at 100% or 200% shear strain, it is seen that the post-yield
stiffness is underestimated somewhat at larger angles of rotation. The bending moment at zero
rotation is a result of the offset shear deformation in the bearing. Although the analytical results
underestimate the post-yield stiffness, the results indicate that the simulation analyses using the
overlapping factor does reasonably account for the change in rotational stiffness. Figures 8(c) and
(d) show the results under 10 MPa compressive stress. The equivalent stiffness under 10 MPa
compressive stress is larger than that of 1 MPa results because compressive stress prevents partial
tension yielding of the rubber. In the case of 200% shear strain, the experimental results for the
bearing with an aspect ratio of 4 shows a negative stiffness due to bearing instability. While the
analytical results underestimate the hysteresis loop area, the model does reasonably predict the
change in equivalent stiffness when the bearing is stable.
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Figure 9 shows the comparison of the initial rotational stiffness calculated from the results within
small rotational angles. The stiffness decreases with increasing offset shear strain, and increases
with increasing compressive stress. The analytical results show good agreement with experimental
results in all parameters, and further validates the methodology of the proposed model.

4. SEISMIC RESPONSE ANALYSES

4.1. Structure model

A series of seismic response analyses were performed to demonstrate the dynamic behavior of top-
of-column isolated structures. In the case of top-of-column isolation, the isolators are subjected to
not only shear and axial deformation but also end rotations. Time history analysis is used with the
proposed mechanical model to investigate varying conditions of load and deformation.

Figure 10 shows the simplified structure model used in the seismic response analyses. Structure
A, referred to as the double beam structure, represents a conservative design which uses two beams
(one above and one below the isolator) to limit end rotations in the isolators. Structure B, the single
beam structure, omits the bottom beam between the node L1 and R1. Isolation bearing elements are
applied to the column tops at the first floor, between the node L1 and L2, and the node R1 and R2,
and linear beam elements are used to connect the other nodes. The same isolator with aspect ratio 4
used in bearing tests and simulation analyses is used in this structure model.

Masses are applied to the node L2, L3, R2 and R3 to produce 10 MPa compressive stress on the
isolators. The stiffness of the beam elements are chosen to give a fundamental period of 0.8 s for the
non-isolated, single beam case, with a beam-column stiffness ratio of 3/1. By introducing the bottom
beam for Structure B, little decrease in the fundamental period is found. Stiffness proportional
damping is applied to the beam elements with the damping factor of 2% at the fundamental period
of the non-isolated structure. A linear dashpot element (not shown in Figure 10) is also installed at
the isolation level with and equivalent damping factor of 15% at the seismic isolation period of 3.9
s.

Structure A (double beam) Structure B (single beam)

10 m

1
5
 m

5
 m

0
.5

 m

200 ×103 kg

50 ×103 kg

200 ×103 kg

50 ×103 kg

Node L3

L1

L2

L0

R3

R2

R1

R0

Figure 10. Structure models for seismic response analyses.

4.2. Earthquake ground motions

Figure 11 shows the ground motions for the response analyses. The ground motions are generated
to match target response spectrum for basic design earthquakes [23]. Phase angles of JMA Kobe
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(a) Time history (b) Response acceleration spectrum
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Figure 11. Input ground motions.

NS (1995), Hachinohe NS (1968) and the random number record are denoted inputs A, B and C,
respectively. For the analysis, the structure model was subjected to a series of input motions scaled
from 5% of the original motion, increasing in 5% increments, until the deformation in the isolators
reached 0.4 m, which corresponds to a shear strain of 320%.

4.3. Analysis results

Figures 12 and 13 show the relationship between the maximum acceleration and displacement
response at node L3 and the peak ground acceleration (PGA). For comparison, the analysis results
for a conventional non-isolated building model and an isolated building model with linear isolator
elements with stiffness values defined by Equations (29), (30) and (31) are also indicated. As
expected, the acceleration response decreases while displacement response increases for the isolated
structures. The results obtained using the proposed mechanical model show that the slope of the
response acceleration curve gradually decreases while that of the response displacement curve
increases. The influence of introducing the bottom beam on the acceleration and displacement
response is minimal.

Figure 14 shows the maximum bending moment at the first floor column base (node L0). By
introducing the bottom beam, the maximum bending moment reduction in the conventional and
isolated structures is about 20% and 60%, respectively.

Figure 15 shows the maximum relative rotational angle between the ends of the isolators. For
comparison with conventional structures, the relative rotational angle is calculated between the
nodes L1 and L2. By introducing the bottom beam, the reduction in the maximum rotational angle in
the case of conventional and isolated structures are about 50% and 75%, respectively, when the PGA
is less than 2 m/s2. In these cases, the rotational angle of the isolated double beam configurations,
are nearly the same as that of conventional structure, while they rapidly increase for PGAs above 2
m/s2. The maximum rotational angle in all numerical analyses is less than 1/1000, and therefore the
isolator end rotations are not significant enough to degrade the seismic performance of the isolators.

Figure 16 shows the horizontal force-deformation relationship of the isolators between nodes L1
and L2 for the maximum ground motions considered. The results are obtained using the proposed
mechanical model. The nonlinear relationships remain stable even when the horizontal stiffness is
negative after buckling occurrs at the deformations of around 0.35 m. The results suggest that the
end rotations of the isolators in the top-of-column isolated structure (without the bottom beam) do
not decrease the stability of the isolation system. Response values obtained from the linear isolated
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Figure 12. Acceleration of the superstructure.
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Figure 16. Horizontal force-deformation relationship of the isolator.

model are conservative in these analyses, but the proposed model is necessary to confirm the stability
of seismically isolated buildings when the isolators are expected to buckle.

5. CONCLUSIONS

This paper proposed a mechanical model for predicting the behavior of elastomeric seismic isolation
bearings subject to combined end rotations and shear deformation. The mechanical model consists
of a series of axial springs at the top, mid-height and bottom of the bearing. The model accounts
for the interaction between shear and axial forces, such as P-∆ effects, and the three series of axial
springs can reproduce asymmetrically distributed bending moment caused by end rotations. The
overlapping factor and the nonlinear hysteresis model are applied to the axial springs to account for
the influence of the variation of vertical load on the bearing and the imposed shear deformation.

Static bending tests under various combinations of vertical load and shear deformation were
performed to identify the mechanical characteristics of bearings, and simulation analyses for the
bearing tests were conducted to validate the proposed model. The results indicate that bearing
rotational stiffness decreases with increasing offset shear strain, and increases with increasing
compressive stress. The analytical model succeeded in capturing the stiffness changes observed
in the bearing tests.
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A series of seismic response analyses were performed to demonstrate the dynamic behavior of
top-of-column isolated structures. Two simplified structure models, a double beam and a single
beam structure, were generated to represent a conservative and economical design for seismic
isolation. The influence of omitting the beam below the isolators is not significant in the response
acceleration and displacement, while it increases the response rotational angle and bending moment.
Although the end rotation of the isolators are relatively large in the case of the single beam, the
horizontal stiffness degradation observed in the isolators is negligible in the range of the numerical
analyses. By reinforcing the base of the isolated column, the seismic performance of top-of-column
isolated structures can be as high as structures isolated at their base. The analysis results suggest
that the single beam, top-of-column isolation can be used without a reduction in the stability limit
of the isolation system.
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