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THE THEORY OF LEGENDRIAN UNFOLDINGS
AND FIRST ORDER DIFFERENTIAL EQUATIONS

SHYUICHI IZUMIYA*
University of Liverpool and Hokkaido University

Abstract. We consider some properties about completely integrable first order differential
equations for real-valued functions. In order to study this subject, we introduce the theory
of Legendrian unfoldings One of our theorems asserts that the set of equations with singular
solution is an open set in the space of completely integrable equations even though such a set
is thin in the space of all equations.

1. Introduction

In this paper we will study some properties about a special class of first order part1a.l
differential equations for real-valued functions. In the classical theory, a first order partial
differential equation (or, briefly, an equation) is written in the form

Fk(zh”"xn’y’ph'“,pn) =0

fork=1,...,.2n+4+1~rr 2> > n A (classical) solution of the equation is a smooth function
y = f(z1,.. mn) and p; = az 2L (z). We usually assume that F} are (2n+1)-variable smooth

function and rank(%?‘-, aan‘ , %pl?-"‘-) =2n+1-—r.
Define

D = {(z,y)|there exists p € R" such that Fi(z,y,p) =+ = Fonp1-r(2,y,0) =0

and rank(%)(m,y,p) < min(n,2n + 1 —r)}.
J

We call D o discriminant set of the equation. We also define

by F_:{(:c,y,p)[Fl(a:,y,p) = eeez F2n+1_r(m,y,p) =0 and
rank(%?f-(z, ¥,p) <min(n,2n+1—1r)}.
7

We say that ¥ is a singular solution of the equation if D is a "graph” of a solution. In
the history of differential equations, the notion of singular solutions appeared with the
notion of complete solutions (cf.[’)]) We say that an (r — n) -parameter family of (classical)
solutions y = f(¢4,.. ny&1,...,Zn) Of the equation is a (classical) compleie solution

if rank(g-tf, m‘%—) =r—n.In [5] we have studied the case when r = 2n (i.e., the single

* The author is a visiting fellow of Anglo-Japanese Scientific Exchange programme (The Royal Society
and JSPS).
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equation case) and shown that almost all single equations F' = 0 has no singular solution
and ¥ consists of singular points of solutions. Hence, the Clairaut’s equation (cf. Example
4.3) is not generic in the space of all single equations. But such an equation is well known
from old time. We have also shown that, under a certain generic condition, single equations
F = 0 with singular solution have a (classical) complete solution.

On the other hand, if we try to study the case when r < 2n, the involutory condition
is very important as in the classical existence theorem (cf. [7]). And involutory equations
are not generic in the space of all equations.

According to these facts, we will restrict our attension to the category of equations with
(abstract) complete solutions. For details, see §3. The basic result of our theory asserts
that the space of equations with (abstract) complete solution is homeomorphic to the
space of complete Legendrian unfoldings which will be defined in §2 (cf. Theorem 4.4).
By this fact, we can translate generic properties of equations with (abstract) complete
solution into corresponding generic properties of complete Legendrian unfoldings. Hence,
the notion of Legendrian unfoldings is very important in our theory. In §2 we will develope
a general theory of Legendrian unfoldings. Equations with (abstract) complete solution
are studied by these tools in §4. One of our main theorems asserts that the set of equations
with singular solution is an open set in the space of equations with (abstract) complete
solutions. This fact clarifies the reason why the Clairaut’s equation is well known from the
old time even though it is not generic in the space of all equations.

In [4] we have given another application of the theory of Legendrian unfoldings, in where
we have shown that the category of one parameter Legendrian unfoldings supplies a correct
class of geometric solutions of the Cauchy problem for Hamilton-Jacobi equation.

All maps, considered here, are class C* unless stated otherwise.

Acknowledgement This work has been completed during the author’s stay in the Uni-
versity of Liverpool mainly supported by Anglo-Japanese Scientific Exchange programme
(The Royal Society and JSPS). The author would like to thank the Department of Pure
Mathematics and especially Professor C.T.C. Wall for his kind encouragement and hospi-
tality.



2. Legendrian unfoldings

The aim of this section is to introduce the theory of Legendrian unfoldings. Let J*(R*,R)
be the 1-jet bundle of functions of n-variables. Since we only consider the local situation
the 1-jet bundle J*(R",R) may be considered as R?**+! with a natural coordinate system

(.'221, eeesTnyY,P1ye0 7pn)1
where (Z1,...,Z,) is a coordinate system of R™. We have the natural projection
m: J'R*R)-R*xR ;  =(z,y,p) = (z,y).
An immersion germ
i:(L,q)— J'(R"R)
is said to be a Legendrian immersion germ if

dmL=n and "6 =0,

where 8 = dy — >_;_, pidz;. The image of 7 01 is called & wave front set of i. We say that
g € Lis a Legendrian singular point if

rank d(7 0 1), < n.

We now describe the notion of Legendrian unfoldings. Let R be an r-dimensional smooth
manifold and

p:(R,y0) = (R™",1p)

be a submersion germ and

2: (R, ) — J'(R",R)

be a smooth map germ. We say that the pair (4,£) is ¢ Legendrian family if £, = £|u~(t)
is a Legendrian immersion germ for any ¢ € (R™"",;). A Legendrian family (y,¢) is said
to be complete if £ is an immersion germ. Then we have the following simple but a very
important lemma. :

LEMMA 2.1. Let (p,@) be a Legendrian family. Then there exist unique elements
hiy. . s hr—n € C2(R)

such that

r—n

0= h;-dpy,

=]
where y(u) = (11(1), ..., pbr—n(u)) and C2(R) is the ring of smooth function germs at u,.

PROOF: Since ¢, is a Legendrian immersion for any ¢ € (R™™",#,), we have
8(de(Tp™'(t))) = 0.

3



This means that
(dp1yeeesdpiran)og (R).D (€°6) o (R)-

The uniqueness follows from the fact that 4 is a submersion germ.

We now consider the 1-jet bundle J}(R™" x R",R) and the canonical 1-form © on the
space. Let (¢1,...,8r—n,Z1,...,%n) be canonical coordinate system on R™™" x R® and

(tls r—n’mla 1zn7y1QI""7qr—n1p1,‘"7pn)

be corresponding coordinate system on J!(R"™" x R”,R). Then the canonical 1-form is
given by

r—n r—n

O =dy-— Zp, cdz; — Eq, cdt; =0~ Zq, - dt;.

i=1 i=1 i=1

We define the natural projection
II: J}(R™™™ x R*,R) — (R™™" x R*)x R

by
H(t’ z,Y, q,p) = (t’ z, y)

We call the above 1-jet bundle a unfolded 1-jet bundle.
Define a map germ
L: (R,up) = JY(R™™" x R*,R)

L(u) = (p(u), 2 0 f(u),y 0 £(u), h(u), p 0 £(v)).

Then we can easily show that £ is a Legendrian immersion germ. If we fix 1-forms ©
and 0, the Legendrian immersion germ £ is uniquely determined by the Legendrian family
(&,2). We call L a Legendrian unfolding associated with the Legendrian family (u,£). We
also say that L is complete if (i, £) is a complete Legendrian family. We remark that even
in the one parameter case the notion of the Legendrian unfoldings is slightly different from
the notion of extended Legendrian manifolds in the sense of Zakalyukin[9]. For example,
we now consider a Legendrlan immersion germ £ : (R%,0) — JY(R x R,R) defined by
LI(u v) = (u? + 3v?,u, 20, v, —2uv), it is the extended Legendrian immersion germ. But
it is not a Legendnan unfoldmg because u? + 3v? is not a submersion.

Since L is a Legendrian immersion germ, there exists a generating family of £ by the
Arnol’d-Zakalyukin’s theory ([1],[8],[9]). In this case the generating family is naturally
constructed by the (r — n)-family of generating families associated with (u,£).

Let

| F:((R™" x R"™) x R¥,0) — (R, 0)

be a function germ such that

d2F|0 x R™ x RF

4



is non-singular, where
oF , . OF
t = (5 oy =—(tz,q)).
d2F( ,m,q) (aql (t,sz)9 aqk( T q))

It follows from the defintion that C(F) = d, F~1(0) is a smooth r-manifold germ and
nr : (C(F),0) - R™"
is a submersion germ, where
nr(t,z,q) =1t.
Define map .germs

&p : (C(F),0) — J*{R",R)

by
= OF
(‘DF(t, T, Q) = (wa F(t’ T, Q)i _a;'(t, z, q))
and
®r: (C(F),0)— J'(R™™™ x R*,R)
el OF OF
ép(t T, q) = (t Ty F(t z Q), Et-(t’z, 4)’ —a"'x_(taz’ Q))
Since g€ = 0 on C(F), we can eas1ly show that
= 3F
(®r)*0 = |C(F) dt;|C(F).

i=1
By the definition, @ is a Legendrian unfoldmg associated with the Legendrian family
(7p,®F). By the same metnod of the theory of Arnol’ d-Zakalyukin ([1],[8],[9]), we can
show that the following proposition.

PROPOSITION 2.2. Every Legendrian unfolding germs are constructed by the above
method.

Then F' is called a generalized phase family of ®r. We now consider ambiguity of the
choice of generalized phase function germs. Let

F,G:((R™™ x R™) x R¥,0) — (R, 0)
be generalized phase families. We say that F' and G are sirictly R-equivalent if there exists
a diffeomorphism germ
& : ((Rr—n R") X Rk,O) — ((Rr—n x Rn) X Rk,O)
of the form &(t,z,¢) = (¢,z, 4(t, z, ¢)) such that F o & = G. If we carefully read proofs of
Lemmas 1 and 2 in (page 307 in [1]), we can find the following assertion.

PROPOSITION 2.3. Let F,G : (R™™™ x R") x R¥,0) — (R,0) be generalized phase fiinction
germs such that Image @ = Image ¢ and

rank H(F|0 x R*) = rank H(G|0 x R*) =0,

where H(f) is the Hessian matrix of f at the origin. Then F and G are strictly R-
equivalent,.



3. Geometry of first order differential equations

. The aim of this section is to describe the geometric structure connected with first-order .

differential equations. A first order differential equation is most naturally interpreted as
being a closed subset of J!(R™,R). Unless the contrary is specifically stated, we use the
following definition.

A system of first order differential equations (or, briefly an equation)is an r-dimensional
submanifold E C J!(R",R), where n+1 < r < 2n. i r < 2n, then E is said to be
overdetermined. We also say that E is mazimally overdetermined (or holonomic) if r =
n+ 1.

By the philosophy of Lie, we may define the notion of solutions as follows. An (abstract )
solution of E is a Legendrian immersion

i: L — JY(R",R)

such that _
i(L)C E.

Let f : R® — R be a smooth function. Then j!f : R® — J!(R",R) is a Legendrian
embedding. Hence, in our terminology, the (classical) solution of E is a smooth function
f such that

' f(R™) C E.

On the other hand, we can show that an (abstract) solution ¢ : L — J*(R™,R) is given
by (at least locally) a jet extension j! f of a smooth function f if and only if 7 04 is a non-
singular map. Thus the (abstract) solution has multi-valued near the Legendrian singular
point. ‘We also define the notion of singularities of equations. Let E™ C J}(R™,R) be an
equation. Then z € F is said to be a contact singular point if

(T, E) =0.
We also say that z € E is a w-singular point if
rank (dn|E), <n + 1.

.We can easily show that if z is a contact singular point of E, then it is a w-singular
point of E. Let X(w|E) be the set of m-singular points and Z.(E) be the set of contact
singular points. We say that Dg = #(X(x|E)) is & discriminant set of the equation E.
If the m-singular set I(x|E) is a Legendrian submanifold, then we call it an (abstract)
singular solution of the equation E. In this case, the discriminant set Dg is the graph of
the (abstract) singular solution.

Our purpose in this section is to establish the notion of (abstract) complete solutions.
Let

Yy = (tl,...,tr_n,:zl,...,wn)

be the (classical) é_omplete solution of E, then we have a jet extension -
Jif:RT" xR — JY(R™,R)

6



which is defined by
Juf(t.2) = i fulz),

where fi;(z) = f(t,z). Then it is easy to show that j1f is an immersion. Since dim E =r,
then jlf gives (at least locally) a parametrization of E and jlf(t X R") is a (clasical)
solution of E for any ¢ € R™™". Thus there exists a foliation on EF whose leaves are
(classical) solutions. Thus we can generalize this notion to an abstract sense. We say
that an equation E C J*(R™,R) is completely integrable (or E has an (abstract) complete
solution) if there exists an n-dimensional completely integrable distribution D on E such
that
6.(D;)=0

for any z € F.
By the Frobenius’ theorem, we have the following proposition.

ProrosITION 3.1. Let E™ C J'(R™,R) be an equation. Then the following conditions are
equaivalent.

(1) E is completely integrable.

(2) For any q € E, there exist a neighbourhood U of q in E and smooth functions

K1y ooy fbr—n ON U

such that
duy A~ Adppen #0o0n U

and
(dpy .y dptran) oo vy D (0|U)coo vy

as C*°(U)-modules, where C*°(U) denotes the ring of smooth functions on U.
(3) For any ¢ € E, there exist a neighbourhood V x W of 0 in R™™" x R™ and an
embedding

Fi1V x W = JY(R",R)

such that
f0) =g, (VXW)CE

and
fi{t} x W — J'(R™,R)

is Legendrian embedding for any t € V.



4. Completely integrable first order differential equations

In this section we will-study some properties, of completely integrable equations as an ap-
plication of the theory of Legendnan unfoldmgs Since we will only study local properties,
an equation is defined to be an immersion

f:U - JR", R)

where U is an open subset of R™. By Proposition 3.1, we say that f is completely integrable
if there exists a submersion

= (g1, s pbr—n) : U = R™"

such that
(dﬂl gesny u,._n)ceo(u) D (f*G)coo(U).
We call p = (p1,...,r—n) & complete integral of f and the pair

(g, f): U= R™™ x JY(R*,R)

is called a first order differential equation with complete integral (or, briefly, an equation
with complete integral). :

We can also define the above notions in terms of map germs : An equation germ is
defined to be an immersion germ

f:(R",0) = JY(R",R).
We say that f is completely integrable if there exists a submersion germ

b= (I‘la- .o ’F‘r—n) : (Rrs 0) — RT"

such that
(dpay.. s dir—n)e, D (f*0)e.,

where u = (ui,...,ur) is the canonical coordinate of (R",0) and &, is the ring of function
germs of u-variables at the origin. Then u is called a complete integral of f and the pair

(1, f) : (R",0) = R™" x JY(R",R)

is called an equation germ with complete integral.

In the terminology in §2, the pair (y, f) is a complete Legendrian family. Let £: U —
JY(R™" x R™,R) be a complete Legendrian unfolding associated to the Legendrian family
(&, f) which is defined as in §2. Since £ is uniquely determined by (y, f), we denote £, 5
instead of L.

Conversely, let '
L:U— JY(R™" x R*,R)
be a Legendrian immersion such that f is an immersion and p is a submersion with
Iy o £ = (u, f), where II; : J}(R"™™™ x R*,R) — J*(R",R) is the canonical projection.
Then (g, f) is an equation with complete integral and £ = £, ). "

Some effects of the notion of Legendrian unfoldings on equations with complete integral
are given in the following propositions.



PROPOSITION 4.1. Let (y,f) U — R™ x JY(R™,R) be an equation with complete
_ integral. Then f(y‘l(t)) is a (classzcal) squtzon for any te R"" if and only if £, f) is

B Legendnan non-singular.

PROOF: By the definition, £, s) is Legendrian non-singular if and only if ITof, s isan
immersion. Here,

I o £, (x) = (u(u), = 0 f(u),y 0 F(u)).

We set
P:RMT*"xR"xR—-R™™

the canonical projection. By the definition of the Legendrian family, Py oIIo4(, sy = u is

a submersion.
Hence, if £, 5y is Legendrian non-singular, then

Py|ImageIl o L, p)
is a submersion. It follows that
P (t)NImageIl 04, 5y = {t} x R® x RN ImageIl 0 £, 5

is an n-dimensional submanifold of {t} x R™ x R.

"'We also set
P:RMT"xR*"xR—=R"xR

thé canonical projection. Then
Py({t} x R® x RNImageIl o4, 1))
is an n-dimensional submanifold of R™ x R. It is easy to show that
Py({t} xR" x RNImage Il 0 £, 5)) = 7o f(p~1(2)).

This shows that flu~1(t) is Legendrian non-singular (i.e. the classical solution).
Suppose that f|u~1(¢) is Legendrian non-singular for any ¢ € R™™". We now have a
decomposition of the tangent space as follows :

T, U=Ty,u(t)@V.

Then
d(Ilo Z(“’f))l Tuolt 1(t) — Ty, O,)({t} x R™ x R)

1s a monomorphism and
d(I1 OE(”J))I :V - T\ R™™"

is a isomorphism. Thus IT 0 {(, r) is an immersion at ug € U. This completes the proof.



We say that an equation germ with complete integral is regular if £(, 5y is Legendrian
non-singular. Let (u, f) be a regular equation germ with complete integral. By Proposition
4.1, f(u~1(t)) is a (classical) solution for any ¢ € (R™",0) and Image f is foliated by the
family {f(1~(t))}:e(®-»0)- Then we can choose a family of function germ

F:(R™™ xR",0) — (R,0)
such that Image j! Fy = f(u~'(t)) for any ¢t € (R™™") and
JiF:(R™" x R*,0) — J}(R",R)

is an immersion germ, where Fy(z) = F(t,z) and j} F(t,z) = j'Fi(z). The fact that j} F
is an immersion leads us to the following equality :

OF 8°F
rank (—— 3; Bt:0a;

)=r—n.

Thus F is a (classical) complete solution of f. If we consider the 1-jet extension
J1F: (R™™™ x R™,0) — JY(R™™" x R™,R),

then it is a Legendrian unfolding associated with (mp—p, 1 F).

PROPOSITION 4.2. Let (u,f) : U — R™" x J}(R",R) be an equation with complete
integral. For any u € U, we denote

8,1 (u) = (u(u), z 0 f(u),y 0 f(u), h(u),p o F(u))

by the local coordinate of J1(R™™" x R®,R). Then f is contact singular at ug € U n" and

only if

PROOF: Since £, 1) is a Legendrian immersion, we have
r—n .
0= (8(u)*@ = f*0- ) hidp
i=1

at any u € U.
By the definition, f is contact singular at ug if and only if

f*0 =0 at u,.
Because pu is a sﬁbmersion, it is equivalent to the condition
hy(ug) = +++ = hp_n(up) = 0.
W now present a well-known example which is called the Clairaut’s equation.

10



ExXAMPLE 4.3. The following is the classical example of a partial differential equation with
singular solution. . N -
Consider the following partial differential equation on J*(R",R),

y=2z1°p1+- -+ Tn-pa+9(21,...,Pa)-
The (classical) complete solution of this equation is given by
y=ga1-ti+-Fa,-t, +9(t1,--.,tn)

for any (t1,...,tn) € R™.
We now define a submersion
p:R*xR" - R"
by
ultu) =t
and an immersion ‘
F:R*"xR" > JI(R",R)

by

f@u) = (u, Zui -t + g(t),1).

=1 .

Then we have

"9 = (uy + 28 g
f 9—(u1+atl)jdt1+---+(un+atn)-dtn.

If we put 5 5
= 99 4+ 29
h(t, u) = (ul + atl (t)a ceryUp + ot., (t)),

then the Legendrian unfolding is given by

E(,,,f)(i,u) = (¢, u, Zti -ui + g(t), h(2,u),t).

1=1

By Proposition 4.2, the contact singular point of this equation is equal to the set which
is defined by
99
ot

This set is also equal to the m-singular set. Thus it is the singular solution.

U+ () = =+ (1) =0,

We now establish the notion of genericity of equation germs with complete integral. Let
U C R" be an open set. We denote by

Int(U,R™™" x JY(R",R))

11



the set of equations with complete integral
T (1, £) 1 U = R x AR, R).

We also define -
L(U, J*(R™" x R",R))

to be the set of complete Legendrian unfoldings
Lo, i U — JY(R™™ x R",R).
These sets are topological spaces equipped with the Whitney C*°-topology. A subset of
Int(U,R™" x J(R™,R)) (respectively L(U, J}(R™™" x R",R)))
is said to be generic if it is an open dense subset in
Int(U,R"™" x J'(R™,R)) (respectively L(U, J}(R™™" x R*,R))).

The genericity of a property of germs are defined as follows. Let P be a property of
equation germs with complete integral

(#,' f):(R",0) - R™™" x JY(R*,R)
(respectively, Legendrian unfoldings

L., (R7,0) = JH(R™™™ x R™,R)).
For an openset U C R", we define P(U) to be the set of.

() € Int(U,R™™ x J}(R",R))

(respectively,
L,.5) € L(U, JY(R™™™ x R", R)))

such that the germ at z whose representative is given by (u, f) (respectively £(, s)) has
property P for any z € U. ,
The property P is said to be generic if for some neighbourhood U of 0 in R, the set
P(U) is a generic subset in Int(U,R™" x J} (R, R)) (respectively L(U, J}(R"~" x R, R)).
By the construction, we have a well-defined continuous mapping

(M)« : L(U, JHR™" x R™,R)) — Int(U,R™™ x J*(R",R))

defined by
(), 1)) =M 0 Ly 5y = (1, £)-

The following theorem is fundamental in our theory.
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THEOREM 4.4. The continuous map

- (M), : LU, JYR™" x R™,R)) - Int(U,R"™"x JY(R",R)) -

is a homeomorphism.

PRroOF: We now define a mapping

¢: Int(U,R™™" x JY(R*,R)) — L(U, J}(R™" x R",R))

by
(1 ) = L, 1y

Then ¢ is a inverse mapping of (II;),. Thus it is enough to show that ¢ is continuous.

The mapping £(, 1) is given by

£iu,py)(w) = (p(u), z 0 f(u),y o f(u), h(u),po f(u)),

where
r—n

Fr0=> " hi-dpu.
i=1

By the direct calculation, we have

5= (L - S o).
j=1 i—1

and

dz;o f
Ou;

)du

S hidus = Z(Zhe( ) ——)du:

i=] Jj=1 ¢=1
Hence, h(u) is determined by the following formula :

[5] Opin_
Bar o ha(u) Sl
£y ) aﬁ,:_,, )
7‘3% du, hr—"(u) au,-
Since
" rank( ) =
Ou;

Zt—l(p1 ° f) _%‘J%t

2,=1(p1 o f)- 25l

there exists a unique solution A(u) of the above linear equation which depends on partial
derivatives of ui, z; o f, y o f and p; o f continuously. By the definition of the Whitney

C*-topology, ¢ is a continuous map.

This theorem asserts that the genericity of a property of equations with complete integral
can be interpreted by the genericity of the corresponding property of Legendrian unfoldings.

On the other hand, by the theory of Legendrian unfoldings, we can study generic proper-
ties of Legendrian unfoldings in terms of generating families. In [6] we will classify generic
completely integrable holonomic systems of equations by point transformations in the sense
of Sophus Lie. The notion of Legendrian unfoldings is the key in the classification. Here,
we only consider some generic properties as a consequence of the above theorem.
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PROPOSITION 4.5. For generic equation germ with complete integral
(s, f) : (R7,0) » R™=" x J}(R™,R),

the contact singular set X(f.) is empty or an n-dimensional submanifold.

PRrROOF: By Proposition 2.2 and Theorem 4.4, it is enough to consider a generalized phase

family '
F:((R™" x R™) x R*,0) — (R, 0).

We now define a subset T of J'(R™™" x R™ x R*,R) by

; of = O = 9f —...=9f _
{Jlf(t’maQ)l'aTl'(t’x’Q) s = Ot (t,wa q) —-aql (t,2,9) = = 3k (tvw,Q) = 0}'

Then ¥ is a linear subspace of J!(R™=" x R® x R*,R) of codim¥ = k + r — n and it is
invariant under the action of the group of strictly R-equivalences. The the transversality
of j1F to T does not depend on the choice of the generalized phase function germs. By
the defintion of ®f and Proposition 4.2, we have

2(‘ic) =j F7(Z).

By the jet transversality theorem, E(éc) is an n-dimensional submanifold.

We remark that even for generic equation germs with complete integral (u, f), we cannot
expect that the m-singular set (7 o f) is an n-dimensional submanifold. In [3] we classified
generic equation germs with complete integral in the case of n = 1 (i.e. ordinary differential
equations). One of the normal form is given by

fu,v) = (u,v® + uv2,v2 — 3v ~ 2u),

- p(u,v) = %vz + u.
The w-singular set of this example is given by
B(x o f) = {(u,v)|3v? + 2uv}

and it is not a smooth submanifold. We can calculate that f*6 = (3v 4 2u)dpy, then we
have

Z(fe) = {(u,v)|3v + 2u = 0}.

Hence Z(f.) is a smooth submanifold and it is a smooth component of (o f).
On the other hand, we appreciate another normal form given by

.f(u7 v) = (ua 1)2, v),

1
plu,v) =v— FU-

14



In this case we can easily show that f*6 = 2vdy, then the corresponding Legendrian
unfolding is given by_.

e(#l}‘)(u, v) = (v - %u’ u, v2, 2”, 'U).

It is clear that (u, f) is a regular equation germ with complete integral. The -singular set
and the contact singular set of this equation is given by {(u,v)|v = 0}, then it is a smooth
submanifold and the singualr solution of f.

In the last part of this paper, we are eventually comming back to the study of equations
with (classical) complete solution. By the argument after Proposition 4.1, this class of
equations is exactly equal to the class of regular equations with complete integral.

LEMMA 4.6. For regular equations with complete integral (u, f), we have
E(w o f) = Z(fe).
Proor: Without loss of generality, we may study
J1F : (R x R",0) —» J*(R™" x R"*,R)
instead of £(, r). In this case we have

h(t, ) = (%f—:—(t,m), o %(t,x)).

By the definition, (¢9,z0) € (7 o f) if and only if

ot "7 Ot,_, oz

0 E
rank(ap aF aF)<n+1

at (to, o). It is equivalent to the fact that (¢y,z,) satisfies

OF OF
gy form0) = 0= gy (n,z0) =0

Since X(f.) = h~1(0), then we have the required result.

Here, we consider the open subset of Int(U,R™™" x J!(R™,R)) consisting of regular
equations with complete integral. We denote this subset by R-Int(U,R™" x J}(R",R)).
If a property P is generic in the space R-Int(U,R™" x J!(R",R)), we say that generic
regular equations with complete integral have property P. Then the following theorem asserts
that generic regular equation germs with complete integral are w-regular or have singular
solutions.

THEOREM 4.7. For generic regular equation germs with complete integral
(1, f) : (R",0) —» R x J}(R™,R),
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the 7r-s1'ngu1ar set (o f) is empty or an n-dimensional submanifold and the discriminant

.. set Dy is an envelope of the family {mo f(u~ ()} iewr-=0) consisting of graph of a classical . -

compIete solution of f.

PROOF: By Proposition 4.5, for generic equation germ with complete integral (g, f), the
contact singular set ¥(f,) is empty or an n-dimensional subspace. It is equal to the =-
singular set X(w o f) by Lemma 4.6. By the argument after Propos1t10n 4.1, we may
consider

jIF: (R""" x R",0) — JI(R™™™ x R™,R)
instead of (g, f). In this case the family which is consisting of graph of the complete solution

is given by
{(t7 T, F(t1 m))}tE("",o)'
This family is defined by the equation y — F\(,z). Then the set

{(t,a:,F(t,a:))|% =0fori=1,...,r—n}

is the envelope of this family by the usual method of the elementary calculus. We can
easily show that this set is the criticsal value set of the map germ = o j1 F. This completes
the proof.

REMARK. We can explicitly write down the generic condition in the above theorem in
terms of £(, 5). If we assume that £(, s) is Legendrian non-singular and 4 is a submersion,
then the same assertion as the above theorem holds.
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