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Abstract. We discuss two topics related with combinatorial
study of canonical modules of Stanley-Reisner rings, viz.,
(i) some linear inequalities on the number of faces of a matroid
complex and (ii) a formula to compute the Cohen-Macaulay type
of the Stanley-Reisner ring of a finite distributive lattice.



Introduction

We study the following two problems in the field of
commutative algebra and combinatorics :

(i) What can be said about the number of faces of a matroid
complex ?

(ii) How can we calculate the Cohen-Macaulay type of the
Stanley-Reisner ring of the order complex of a finite distributive
lattice 7 ,

Recently, some topics on Hilbert functions of noetherian
graded algebras have been studied by several authors, e.g.,
[Staz], [Staz], [6-M~-R], [R-R] and [Hs] from viewpoints of
commutative algebra, algebraic geometry and combinatorics. In
the first half of the present paper, we are concerned with Hilbert
functions of Stanley-Reisner rings of matroid complexes. UDia
well-known facts [H-K], [Staz] on canonical modules of Cohen-
Macaulay graded integral domains, Stanley [Sta] found certain
linear inequalities for the Hilbert function of a Cohen-Macaulay
graded integral domain. Based on an idea of J. Herzog (cf.
Corollary (1.5)), we see that the same linear inequalities as in
[Sta7] hold for the Hilbert function of the Stanley-Reisner ring of
a matroid complex (cf. Theorem (1.8)). '

On the other hand, it would be of interest to find a
combinatorial formula to compute the Cohen-Macaulay type (i.e.,
the minimal number of generators of the canonical module) of
the Stanley-Reisner ring of a Cohen-Macaulay complex, e.g., [Hyl.
In the latter half of this paper, we find a formula for the
computation of the Cohen-Macaulay type of the Stanley-Reisner
ring of the order complex of a finite distributive lattice. In fact,
our main result (cf. Theorem (2.10)) guarantees that the Cohen-
Macaulay type of the Stanley-Reisner ring of the order complex
of a finite distributive lattice is equal to the number of distinct
equivalence classes of a certain equivalence relation (cf. (2.8)) on
the set of linear extensions of a finite partially ordered set |
associated with the distributive lattice.



§1. Level rings and matroid complexes

(1.1) Let k be a field and A a semi-standard k-algebra, that
Is, A is a commutative graded ring @ 3¢ Ap satisfying
(i) Ag = k, (i) A is finitely generated as a k-algebra, and
(iii) A Isintegral over the subalgebra k[A1] of A generated by
A4 . The Hilbert function of A is defined to be

H(A,n) := dim)p Ay, forn=0,1,...,
while the Hilbert series of A Is given by

F(A)) := £ H(A,n) an,
n=0 ‘
Since A Is finitely generated as a k[A4)-algebra and is integral
over k[A4], it follows that A is finitely generated as a
k[A1]-module. Hence, well-known properties on Hilbert series,
e.g., [Mat, pp.94-95] guarantee that

F(A2\) = (hgthiA+ ... +hgAs)/(1 - A)d

. for some integers hg,hy,...,hg with hg = 0. Here d is the
Krull dimension of A. We say that the vector h(A) :=
(ho,hi_,...,hs) is the h-vector of A.

(1.2) Suppose that a semi-standard k-algebra A = @ ns0 An
Is Cohen-Macaulay. Let K5 be the canonical module [H-K] of A .
It is known [H-K, Corollary (6.7)] that there exists a graded ideal
I of A with I = Ka (as graded modules over A , up to shiftin
grading) if and only if A is generically Gorenstein, i.e., the
localization Aq is Gorenstein for every minimal prime ideal q of
A. Rlso, see [Hxz, Lemma (1.7)].



(1.3) PROPOSITION. Let a Cohen-Macaulay semi-standard
k-algebra A = ® >0 An be generically Gorenstein, and let
I =@ nsa (INAp), INAy = (0), be a graded ideal of of A with
I = Kp . Suppose that there exists a non-zero divisor ¢ ¢ INA,
on A. Then the h-vector h(A) = (hg,hq,..,hs) of A satisfies the
linear inequality

hg+hg+...+hjshg+hgq +...+ hg (*)
forevery O<ics.

Proof. Since ® e INA, Is a non-zero divisor on A, the
dimension of I/eA as an A-module is less than the Krull
dimension of A if @A = I. Thus the proof of [Stay, Theorem
(2.1)] is valid in our situation without modification. Q.E.D.

(1.4) We say that a Cohen-Macaulay semi-standard k-algebra
A = @ ny0 An Is level [Stap] if the canonical module Kp =
@ nsa (Kp)n with (Kp)a = (0), ae Z,of A is generated by
(KA)a 8s an A-module. In other words, A is level if and only if
the Cohen-Macaulay type of A coincides with the last
component of the h-vector of A. Consult, e.g., [Hp, pp.343-345].

(1.5) COROLLARY. Suppose that a Cohen-Macaulay
semi-standard k-algebra A = @ >0 Ay is both generically
Gorenstein and level. Then the h-vector h(A) = (hg,hq,..,hs) of
A satisfies the linear inequality (*) for every 0 <i < s.

Proof. A routine technique enables us to assume that k is an
infinite field. Let [ = @ n>, (INARL), INA, = (0), be a graded
ideal of "A withI = Kp . Thanks to Proposition (1.3), what we
must show is the exristence of a non-zero divisor & € INA, on
A. Let 15 be the set of prime ideals of A which belong to the
ideal ( 0). Since A is Cohen-Macaulay, we know that the Krull
dimension of A/q equals that of A for each qe Tlp. We write
U for the (set-theoretic) union of all prime ideals q e Ny .



Recall (e.g., [Mat, p.38]) that the set U coincides with the set of
zero-divisors on A. If InA, € U, then INA, C q for some
qe Jlp since k isinfinite (see, e.g., [Her, Problem 21, p.136]).
Now, A islevel, thus I is generated by INnA, as an A-module.
Hence, If INA, € q then I ¢ q, thus the Krull dimension of A/l
is equal to that of A, which contradicts [H-K, Corollary (6.13)].
Q.E.D.

The author Is‘gratefu'l to Professor Jiirgen Herzog for
suggesting the above proof. We remark that Corollary (1.5) is
false if we drop the assumption that A is generically Gorenstein.

(1.6) Let V be a finite set, called the vertex set ,and A a
simplicial complex on V. Thus A is a collection of subsets of V
suchthat(i){x}e A forevery xe V and(ilceA, 1 C o
imply T e A. Each element of A is called a face of A. Set d:=
max{ #(c) ; c e A}. Here #(o) is the cardinality of o as a set.
Then the dimension of A is definedtobe dim A :=d - 1. We
say that A is pure if every maximal face has the same
cardinality. We write f; = fj(A), 0 <i<d, for the number of
faces o of A with #(o) =i+ 1. Thus fg = #(V). We say that

f(a) := (fo,f1,...fq-1) is the f-vector of A. Define the h-vector
h(4) = (hg,hy,..,hq) of A by the formula

d . d | [

2 fi-g (A=1)d"1 = 5 h;ad-i

i=0 i=0

with f_4 = 1. Consuli, e.g., [Stag] and [Hoc] for further
information.

(1.7) A simplicial comple® A on the vertex set V is called a
matroid-complex (or G-complex [Staj]) if the following
conditions are satisfied :

(i) If o,7e A and #(o) < #(7); then there exists x e =
such that x ¢ o and cU({x}eA.

(i) dim (A-x) =dim A forevery xe V. Here A - x is the
subcomples {ce A;x¢ o} of A on V-{x).



We remark that the above condition (ii) is required only to
avold the inessential case ; if dim (A -x) <dim A then A isa
cone over A - x with aper x, thus we should study A - x
rather than A.

For example,let V be a finite set of non-zero vectors of a
vector space over a field and suppose that the dimension of the
subspace spanned by V is equal to the dimension of the
subspace spanned by V - { x} forevery x e V. Then the set A
of linearly independent subsets of V is a matljoid complex.

Now, what can be said about the h-vector of an arbitrary
matroid complex ?

(1.8) THEOREM. Suppose that h(a) = (hg,hq,.,hg) is the
h~vector of a matroid complex A of dimension d - 1. Then we
have the linear inequality

hg+hg +...+hjshg +hg-1+...+hg-i
forevery O0<is<d.

Proof. Let V = {X1,X9,..,Xt} be the vertex set of A and k[A]
= k[X1,X9,..Xt)/Ip the Stanley-Reisner ring (IStail, [Reil) of A
over a field k with the standard grading, i.e., each deg(Xi) =1.
Then the Krull dimension of k[A] is d, and the Hilbert series of
k[A] is just

F(k[Al,\) = (hg+hq+ ... +hgad)/(1 - N)d,

see, e.g., [Stag, pp.62-68]. It is known (and, in fact, not difficult
to proue)ihat a matoroid complex is "doubly” Cohen-Macaulay in
the sense of [Bac]. In other words, k[A] is a level ring with

hg = 0. See also [Staz]. Moreover, k[A) is generically
Gorenstein [Stag, p.80]. Hence Corollary (1.5) enables us to obtain
the required inequality. . Q.E.D.



(1.9) CONJECTURE. Work in the same notation as in Theorem
(1.8). Then we have the following linear inequalities :

(i) hj s hq-{ forevery 0 =i s [d/2], and

(i) hg=<hy =...x hiq/9].

Consult [H4] for further information on the inequalities in the
above Conjecture (1.9). We easily see the inequality hq = hao
when d 2 3. fAlso, note that, thanks to [H4l, the above
conjecture is weaker than that of [Stas, p.59].

On the other hand, a log-concavity conjecture on f-vectors of
matroid complexes is presented by Mason [Mas]. Some partial
results on this conjecture are obtained by Dowling [Dow] and by
Mahoney [Mah]. |

It would, of course, be of great interest to find a
combinatorial characterization of the h-vectors of matroid
complexes.

The f-vectors (or h-vectors) of various classes of simplicial
complexres have been studied by several combinatorialists. We
refer the reader to, e.g., [B-K] for a survey of the topic.



§2. Cohen-Macaulay types of distributive lattices

(2.1) Given a finite partially ordered set (poset for short) P
we write §(P) for the poset which consists of all poset ideals
(or order ideals [Stag, p.100]) of P, ordered by inclusion. Then
$(P) is a distributive lattice [Stag, p.105]. On the other hand, the
fundamental theorem for finite distributive lattices, e.g., [Stag,
Theorem (3.4.1)] guarantees that, for every finite distributive
lattice L, there exists a unique poset P for which L = $(P).

(2.2) Let p(P;2) be the number of chains [Stag, p.99]
M:g=Ilo&ElL &...Sp41 =P

of length ? + 1 (cf. [Stag, p.99]) in the distributive lattice $(P)
such that

() Ij+q - 1j is a clutter [Stag, p.100]in P foreach O<is?,
and

(ii) forevery 1 <i < ¢, there exist ye Ij+4 - I; and
xe lj-Ij-4 with x<y in P.

Then p(P;8) = 0 if ¢ < rank(P) and p(P;rank(P)) = 0. Here -
rank(P) is the rank [Stag, p.99] of P.

(2.3) We now study the Stanley-Reisner ring k[A(L)] =
k(X ;e L)/Ip(L) » with each deg(Xy) = 1, of the order complex
A(L) (cf. [Stag, p.120]) of a finite distributive lattice L overa
field k. Itis well known, e.g., [B-6-§] that k[A(L)] is Cohen-
Macaulay. We are interested in the Cohen-Macaulay type
type(k[A(L))) of k[A(L)], i.e., the minimal number of generators
of the canonical module Ky[s(L)] of k[A(L)] as a k[A(L)l-module.
We refer the reader to, e.g., [B-G-S] and [Stag, Chap.4, Sect.5] for
the information on the h-vector of the order complex of a finite
distributive lattice. Also, consult [H1], [H3] and [Hg] for some
topics on commutative algebra related with distributive lattices.



(2.4) PROPOSITION. The Cohen-Macaulay type type(k[A(L)]) of
the Stanley-Reisner ring k[A(L)] of the order complex A(L) of a
finite distributive lattice L = $(P) is

type(k[A(L)]) = p(P;rank(P)) + p(P;rank(P)+1) + ... . (%% |

Proof. Suppose that #(P) = n, say P = {P4,P»,..,Pn}, and we
write e(l) = (eq,e2,..,en) € RN for the incident vector of a poset
ideal I of P,l.e. ej=1 If Pje I and e; = 0 otherwise. Thus
in particular e(g) = (0,0,..,0) and e(P) = (1,1,..1). If M isa
chainin L oftheform () (dc)lp &S 141 &...Sh(cP)
with each I; e §(P), then we write [N] for the convex hull of
{e(Ig),e(14),..,e(Ip)} in RN . Thus [M] is an i-simplex in RN . Let
C = C(L) be the set of chainsin L = $(P) and ® = ®(L) the
conveR hullof {e(I);I1e $(P)} in RN, Hence P C RN is a
conuex polytope of dimension n. We identify {[M]; M e &}
with the order complex A(L) of L. Itis known, e.g., [Stas, p.17]
that {[MM}; M e €} is a triangulation of %, hence ® is a
geometric realization of A(L).

Now, let § be the ideal of the Stanley-Reisner ring k[A(L)]
= k[X;xeL)/Ip(1) generated by those square-free monomials
Moe MX with [M] e A(L) - dA(L) . Here JA(L) is the boundary
of A(L). Then, by virtue of [Stagq, Theorem (?7.3), p.81], J is
isomorphic to the canonical module Kyfa(L)] of k[A(L)]. On the
other hand, thanks to [Stas, p.10], if [T) e C is of the form (),
then [M] e A(L) - 9A(L) if and only if the following conditions
are satisfied: (i) Ig = 4, (i) Iy = P, and (iii) each Ij+4 - I; is a
clutter. Hence, it follows immediately that the minimal number

of generators of 4 as a k[A(L)]-module is just (**) as required.
Q.E.D.

IWe should remark that the ideal § in the above proof is
generated by { (M]; [M]e A(L) - dA(L) , #(M) = rank(P) + 2}
as a k[A(L))-module if and only if p(P;2) = O for every
¢ = rank(P). In other words,

-10 -



(2.5) COROLLARY. The Stanley-Reisner ring k[A(L)] of the order
complex A(L) of a finite distributive lattice L = $(P) is level if
and only if p(P;2) = 0 for every ¢ = rank(P).

(2.6) Let N be the set of non-negative integers and P a
finite poset. We say thatamap o :P — N is strictly
order-preserving if x <y in P implies o(x) < o(y) in N. We
write B(P;?) for the set of strictly order-preserving maps
o :P — N such that (i) o(P) = {0,1,..,8} and (ii) o~1({i-1,i}) is not
a clutterin P forevery 1 <i<?.

(2.7) LEMMA. p(P;8) = #(B(P;0)) .

Proof. Givenachain M:g =10 & 1l41 &... S h41 =P in
the distributive lattice $(P) which satisfies the conditions (i) and
(i) in (2.2), we can defineamap o :P — N in B(P;t) by
o(x) =i if x e Ij4+1 - I;. On the other hand, if o e B(P;}), then
g & o 1({0) & o~ 1({0,1)) &... & 0-1((0,1,..,2-1})) S P is a
chain in $(P) with the properties (i) and (ii) in (2.2). Q.E.D.

(2.8) We recall that a linear extension [Stag, p.110] of a finite
poset P is a strictly order-preserving map o : P —» N such that |
o(P) = {1,2,..,#(P)}. If o Is alinear extension of P, then there
exists a unique sequence D(o) = (d4,ds,..,dp) € Z¢,
0<8=28oc)eZ, with 1 =dq<dgy<...<dp<#(P) such that

() o~1({dj+1,dj+2,..,dj+1)) is a clutterin P foreach 0 <i=< ¢,
where we set dg = 0 and dy+q = #(P), and

(ii) forevery 1 <ix ¢, there exists x e o~1({dj-1+1,...,d;})
with x < o~1(dj+1) in P .

IDe say that two linear extensions o and © of P are
equivalent (written as o ~ ) if D(c) = D(t) ( = (d1,dp,..,dp) )
and o~1({1,2,...dj+1)) = v"1({1,2,..,dj+1)) forevery 0 <i=<?.

..l]...



(2.9) Given a linear extension o of a finite poset P with
D(o) = (d1,da,..,dy) , we write Il(c:r) for the poset ideal
o-1({1,2,..,d;)) of P foreach 1 <ix 8 +1,where dpsq = #(P).
Rlso, set Ig(o) = g. Then the chain

M) :8=1Ip(c) & I1(0) & ... S Ip41(0) = P

in the distributive lattice $(P) possesses the properties (i) and
(ii) in (2.2).

On the other hand, for each chain M in (2.2), there exists a
linear extension o of P with M = M(c). Moreover,
M(c) = M(7) Ifand only if ¢ and T are equivalent.

We now come to the main result of this se'ction in
consequence of Proposition (2.4) with Lemma (2.7) and (2.9).

(2.10) THEOREM. The followlng quantltles on a finite poset P
are equal :

(a) the Cohen-Macaulay type type(k[A(L)]) of the Stanley-
Reisner ring k[A(L)] of the order complexr A(L) of the finite
distributive lattice L = $(P),

(b) the number of strictly order preserving maps o :P —» N
such that o~1({i-1,i)) is not a clutterin P forevery i e o(P)
with i > 1,

(c) the number of distinct equivalence classes of the
equivalence relation " ~ " in (2.8) on the set of linear extensions
of the poset P,

(2.11) EXAMPLE. Let P = (p1 P9,P3,P4,P5,P¢} be the following
finite poset

Pg Pg
P3 P4
Py Py

...]2..



and we employ the notation, e.g., 214635 for denoting the linear
extension o of P with o(P3) = 1, o(P1) = 2, 0(Pyg) = 3,
o(Pg) = 4, o(P3) = 5 and o(Pg) = 6. Then the equivalence
classes of the equivalence relation * ~ " in (2.8) on the set of
linear extensions of the poset P are

{123456, 123465, 124356, 124365,

213456, 213465, 214356, 214365},

(123546, 213546},

(124635, 214635},

(132546, 132456},

{132465}, .

{241635, 241365},

{246135}, and

(241356} .
Hence the Cohen-Macaulay type type(k[(A(L)])) of the
Stanley-Reisner ring k[A(L)] of the order compler A(L) of the
distributive lattice L = 3(P) is equal to eight. Note that the
h-vector of k[A(L)] Is h(k[A(L)) = (1,8,9,1).

It might be of interest to find a "nice” formula to compute the
number of distinct equivalence classes of the equivalence
relation " ~ " in (2.8) on the set of linear extensions of P when
P is, e.g., a rooted tree [Stag, p.294]).

e here turn to the problem of finding a chain condition of P
for the Stanley-Reisner ring k[(A(L)] to be level.

(2.12) The altitude of a finite poset P , written as alt(P), is
defined to be the maxrimal number { > 0 for which there exists a
finite sequence Cg,Cq,...,Cy of chainsin P such that

(i) every y e C;j is neither less than nor equal to each x € C;
if 0<i<jsr,and

(ii) the sum of the cardinalities of Ci's is 0 +r+1.

Obuviously, we have rank(P) < alt(P).

(2.13) LEMMA. p(P;alt(P)) = 0.

_]3._



Proof. Work in the same notation as in (2.12) with ¢ = alt(P) .
We write Q for the subposet Cog UC4 U...U C, of P. Then
we have alt(P) = alt(Q) . On the other hand, there exists a
unique T e B(Q;alt(Q)) such that t(«) < <(p) If « € C; and
peCj with 0<i<jsr. Let Ij, 0=i=alt(P), be the poset
ideal of P which consists of those elements x € P such that
X< o forsome o« e Q with v(e) <i. Inparticular Ig = g.
Also, we set I )y(p)+1 = P. Then,thechain g =10 &S 11 &. ..
& Ia1t(P)+1 = P In the distributive lattice $(P) satisfies the
conditions () and (ii) in (2.2). Thus p(P;alt(P)) = 0 as desired.

Q.E.D.

Hence, we have p(P;2) = 0 if either & < rank(P) or 8 > alt(P)
and p(P;rank(P)) = 0, p(P;alt(P)) = 0. Thus, thanks to Corollary
(2.5), we immediately obtain

(2.14) COROLLARY. The Stanley-Reisner ring k[A(L)] of the
order complex A(L) of a finite distributive lattice L = $(P) is
level if and only if rank(P) = alt(P).

(2.15) EKAMPLE. If Cy is the following finite poset

- 14 -



then the Stanleg-Beisnei‘ ring k[A(L)] of the order complex A(L)
of the finite distributive lattice L = $(C,) is level with the
Cohen-Macaulay type type(k[A(L))) = n!.

(2.16) Recall that the height (resp. depth) heightp(a) (resp.
depthp(a)) of an element « of a finite poset P is the maximal
number 2 2 O for which there exists a chainin P of the form
ap <oy ¢...¢axg=o (resp. o« = xg< g <...< p). Thus
we have heightp(a) + depthp(a) < rank(P) for every element
o € P. On the other hand, if o« and g are incomparable
elements of P, then heightp(a) + depthp(p) < alt(P). We write
P(+) for the subposet of P which consists of all elements «x e P
with heightp(«) + depthp(«) = rank(P) . |

(2.17) COROLLARY. Suppose that the Stanley-Reisner ring
k[A(L)] of the order complex A(L) of a finite distributive lattice
L = $(P) islevel. If « and g are incomparable elements of the
poset P, then we have the inequality heightp(c) + depthp(p) =
rank(P) . Thus, in particular, the subposet P(*) of P is the
ordinal sum [Stag, p.100] of clutters.

(2.18) We say that a finite poset P satisfies the A-chain
condition IStag, p.2191if P = P(*), Itis known, e.g., [Stag,
Corollary (4.5.17)] that a poset P satisfies the A-chain condition
if and only if the last non-zero component of the h-vector of the
order complex A(L) of the distributive lattice L = $(P) is equal
to one.

(2.19) COROLLARY. The Stanley-Reisner ring k[A(L)] of the
order compler A(L) of a finite distributive lattice L = $(P) is
Gorenstein, i.e., type(k[A(L)]) = 41, if and only if the poset P is
the ordinaly sum of clutters.
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