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SINGULAR SOLUTIONS OF
FIRST ORDER DIFFERENTIAL EQUATIONS

S. IZUMIYA

Dedicated to the memory of Professor Giko Ikegami

0. INTRODUCTION

In classical treatises of equations (Carathéodory [2] , Courant-Hilbert [3], Forsyth [4] [5],
Ince [8], Petrovski [14]) the discussions of equations with singular solutions are informal. In
there, definitions of singular solutions are very confused. Even in modern articles ([9],[12]),
it is studied under special assumptions. In this note we shall give a regorous definition of
singular solutions of first order differential equations for real-valued functions (Theorem
A).

On the other hand, the complete integrability is an important notion for the classical
theory of first order differential equations. The notion of singular solutions has been
usually appeared accompany with the notion of complete solutions in the above articles.
Recently, we have studied some generic properties about completely integrable systems of
first order differential equations as an application of the theory of Legendrian unfoldings
([7],(10],[11]). However, we have never seen a characterization of the complete integrability.
Our another purpose is to give a characterization of complete integrability of first order
differential equations (Theorem B).

In §1, we shall state our main results. The proof of Theorem A will be given in §2. We
shall prove Theorem B in §3. Some typical examples will be given in §4.

All maps considered here are class C* unless stated otherwise.

ACKNOWLEDGEMENT. This work has been completed during the author’s stay at the Uni-
versity of Liverpool mainly supported by Anglo-Japanese Scientific Exchange programme
(The Royal Society and JSPS). The author would like to thank the Department of Pure
Mathematics and especially Professor C.T.C. Wall for his kind encouragement and hospi-
- tality.

1. MAIN RESULTS

In this section we shall state main results. An equation is a submersion germ F :
(JY(R™,R), (z0,¥0,P0)) — (R,0) on the 1-jet space of functions of n-variables. Let 8 be
the canonical contact form on J!'(R",R) which is given by 6 = dy — Y"1, p;dz;, where
(z,y,p) is the canonical coordinate of J!(R™, R). We define a geometric solution of F = 0
to be an immersion ¢ : (L,q9) — (J*(R™,R),(0,%0,P0)) of an n-dimensional manifold
such that ¢*6 = 0 and i(L) C F~1(0) (i.e. a Legendrian submanifold which is contained
in F~1(0)). We say that (zo,v0,p0) is a contact singular point if 8(T(z,y0,p0) F1(0)) = 0.
It is easy to show that (z0,yo,p0) is a contact singular point if and only if F = F,, =
Fy; + piFy = 0fori =1,...,n at (20,y0,p0), where F,, = 5%,1% etc. We also say that
(z0,Y0,P0) is a w-singular pointif F = F,, = 0fori=1,...,n at (2o, Yo, po). We denote
the set of contact singular points by E.(F'), the set of m-singular points by T,(F) and
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m(2x(F)) = Dp, where n(z,y,p) = (z,y). We call the set Dr & discriminant set of the
equation F' = 0. An equation F = 0 is said to be completely integrable if there exists a
foliation by geometric solutions on F~1(0). In this case such a foliation is called a complete
solution of F = 0. Then we can define the notion of singular solutions. A geometric solution
: (L,q0) = (JY(R™,R),(z0,%0,00)) of F = 0 is called a singular solutzon of FF = 0if it
sat1sﬁes the following condition :
(¥) For any representative ¢ : U — F~1(0) of ¢ and any open subset V C U, (V) is not
contained in a leaf of any complete solutions of F' = 0.
Then we have the following theorem.

THEOREM A. For an equation F : (J1(R",R), (20, v0,p0)) — (R, 0) and a geometric solu-
tioni: (L,q0) — (JY(R™,R), (20, yo,p0)) of F = 0, the following conditions are equivalent.
(1) ¢ is a singular solution of F = 0.

(2) There exists a complete solution of F = 0 such that each leaves are transverse to i.
(3) Image: C Z,(F).

We can also state another theorem as follows.

THEOREM B. For an equation F' : (J'(R™,R),(z¢,%0,20)) — (R,0), the following are
equivalent.

(1) F =0 is completely integrable.

(2) 2(F) = 0 or L(F) is an n-dimensional submanifold.

Theorem B gives a characterization of complete integrability of equations. By the defi-
nition, if ¥.(F') is an n-dimensional submanifold, it is automatically a geometric solution
of F' = 0. Then we have the following corollary of Theorems A and B.

COROLLARY. An equation F : (JY(R™,R),(z0,¥0,p0)) — (R,0) has a singular solution
if and only if ¥.(F) is an n-dimensional submanifold. Moreover, ¥.(F') is the singular
solution of F = 0.

2. PROOF OoF THEOREM A

In this section we shall give a proof of Theorem A. At first we give the proof that (1)
implies (3).
PROOF OF THEOREM A, (1) = (3): Let:: (L, ) — (J*(R™,R), (0, Y0, po)) be a singular
solution of F' = 0. Suppose that there exists a point ¢; € L such that i(¢;) = (z1,y1,p1) ¢
Y(F). This means that F = 0 is contact regular at (z;,y1,p1). By the classification
theorem of the geometric theory of first order differential equations (see [13], Corollary 2
of Theorem 2.2.7), we may assume that F(z,y,p) = p,. Then we now define a submanifold
Ey by z, = p, = 0. It is easy to show that Ey has a contact structure 8|Ey. Since the
contact Hamiltonian vector field of p, = 0 is given by X,, = —5—2-; (see [13], Theorem
1.4.3) and ¢ is a solution of p, = 0, then —5%- € Ti(L). It follows that £y = i(L)N{z, = 0}
is an (n — 1)-dimensional submanifold in Ej. Since ¢ is a Legendrian immersion, then £, is
also a Legendrian submanifold of Ey. By the Darboux’s theorem, we can easily show that
there exists a foliation on Fy with leaves are Legendrian submanifold of Eg such that £,
is a leaf of this foliation. Since —————— ¢ TEy, then each leaves are isotropic submanifold
of JY(R™,R) with the non- characterlstlc property. Thus we can solve the ”parametrized”
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Cauchy problem by ordinary characteristic method (see [13] Proposition 1.5.3), then we
have a local complete solution of p, = 0 such that i(L) is a leaf of this solution. This
contradicts to the definition of the singular solution.

We can also prove that (2) implies (1).

PROOF OF THEOREM A, (2) = (1): Let ¢ : U — F~1(0) be a representative of i. If there
exist an open subset V C U and a complete solution such that #(V') is contained in a leaf
of such a foliation. Then there exists transversal foliations on F~1(0) around (V') whose
leaves are Legendrian submanifolds. Then F~1(0) is an isotropic submanifold around #(V).
This contradicts to the fact that dimensions of isotropic submanifolds are at most n.

We need some preparations to prove that (3) implies (2).

Let F': (J'(R™,R),(z0,%0,P0)) — (R,0) be an equation such that (zo, o, po) is a contact
singualr point. If Fy, = 0 at (zo,¥o,p0), then F;; = F,, = 0 at (z9,yo,p0) for any i =
1,...,n. This contradlcts to the fact that F' is a submers1on germ. Then we have F, # 0.
By the implicit function theorem, there exists a function germ A : (T*R™,(zo, po)) — R
such that F~1(0) = {(=z,y,p)ly = h(z,p)}, where T*R" is the cotangent bundle of R™.
We may consider that J!(R™,R) = T*R" x R. In the terminology of Kossowski [12] the
equation of the above form is called a graphlike equation. We now define a map germ

graph(h) : (T*Rn,(fco,Po)) - (Jl(Rn, R), (z0,%0,10))

by
graph(h)(z,p) = (z, h(z,p), p).

We set a 1-form on T*R" by 8, = graph(h)*6 = dh — 3. pidz;. Then we have the
following one to one correspondence.

{L | L is a solution of y — h(z,p) = 0}

graph(h) 1| IL.
{L|i:L CT*R™is a maximal integral submanifold of 6 = 0},

where II(z,y,p) = (:c,p) and II,(L) = II(L). By this reason, a solution of graphlike equa-
tion y — h(z,p) = 0 may be regarded as a maximal isotropic submanifold of (T*R™",8}).
Since —dfy = Zz_ dpi A dz; is the canonical symplectic two form, then a solution of
y — h(z,p) = 0 is a Lagrangian submanifold of (T*R™,w), where w = —df),. For the defi-
nition and properties of Lagrangian submanifolds, see [1]. We now refer the following very
important result.

THEOREM 2.1. (Kostant-Sternberg [6]) Let (P,w) be a symplectic manifold, L a La-
grangian submanifold and o a smooth 1-form on P with o | L = 0 and da = w. Then
there exists a tubular neighbourhood V of L in P, and a unique vector bundle isomor-
phism K : V — (T*L,0L) such that K is the identity on L and K*8;, = a. Here, 0, is the
canonical 1-form on T* L. '

Now we can prove that (3) implies (2).



PROOF OF THEOREM A, (3) = (2): Since Imagei C X (F'), we may assume that F =
y — h(z,p). In our case, graph(h)~! 0i(L) = Lj is a Lagrangian submanifold of T*R".
We may apply the Kostant-Sternberg theorem to conclude that there exists a tubular
neighbourhood V of L, in T*R™ and a unique vector bundle isomorphism K : V —
(I™*Ly,6L,) such that K is the identity on Ly and K*6, = —6,. Since the fibre of the
cotangent bundle T*L; — Lj; are maximal integral submanifolds of 8y, = 0, these fibres
make a foliation whose leaves are solution of F' = 0 and tansverse to i(L). This completes
the proof.

3. PROOF OF THEOREM B

In order to prove Theorem B, we need some preparations. We say that an n-parameter
family of function germs f : (R® x R™, (t0,20)) — (R,y0) is @ classical complete solution
of F = 0if F(z, f(t,2), fz(t,2)) = 0 and rank (fy;, ft;z;) = n. Then we define a map germ
JLF 3 (R R, (1, 20)) = (J'(R", ), (20,0, o)) by 74 £(2,) = (2, S5, 2), ult, ). Simce
f(t,z) is a classical complete solution, then jlf is a local parameterization of F~1(0).
It follows that the family {Imagej!f;}ic(rn 1) &ives a local foliation on F~1(0). For a
Legendrian immersion germ ¢ : (L,q0) — JY(R™,R), go € L is said to be a Legendrian
singular point if w o2 is not an immersion at go. We remark that ¢o is a Legendrian non-
singular point if and only if 7 04 is a local diffeomorphism at gg, where #(z,y,p) = z. Then
we have the following lemma.

LEMMA 3.1. 1) If F = 0 has a classical complete solution, then T (F) =0or® (F) is an
n-dimensional submanifold.
2) If each leaves of a complete solution of F' = 0 are Legendnan non-singular, then it is a
classical complete solution.

PRroOOF: 1) By the above argument j+f is a local parameterization of F~1(0). Since -
Jif*8 = YL, fu(t,2)dt;, then jlf(t,z) € T (F) if and only if f;;(t,z) = 0 for i =
1,...,n. Since rank (0, fy,z;) = rank (fy;, fr;z;) = n at j; f(t,2) € L (F), then we have
rank (ft;z;, fziz;) = n. It follows that Z.(F) is an n-dimensional submanifold.

2) Suppose that there exists a complete solution with leaves are Legendrian non-singular.
Then we have an n-parameter family of smooth sections

s:(R" x R", (to,z0)) — (JY(R™,R), (0, ¥0,P0))

of % (i.e. ¥os(t,z) = z) such that s is an immersion, s(R® x R®) = F~1(0) and s}6 = 0 for
any t € (R™, 1), where s,(z) = s(¢, z). It follows that there exists a family of function germs
f+ (R™ x R, (%0, 20)) — (R™,yo) such that jlf(¢,z) = s(t,z). Since s is an immersion,
then fis a (class1cal) complete solution of F' = 0.

Now we can prove Theorem B.
PROOF OF THEOREM B: If ¥,(F) = 0, then F = 0 is contact regular at (zg,yo,po)- It
follows that the classical existence theorem (see [13]) that there exists a complete solution
of F'= 0. If £.(F) is an n-dimensional submanifold, then it is also a solution of F = 0. In
this case it has been already proved in the proof of Theorem A ((3) = (2)).

Suppose that there exists a complete solution of F' = 0. Let (L, (zo,%0,P0)) be a germ
of a leaf of the complete solution at the point (g, o, po). By Arnol’d-Zakalyukin’s theory
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([1], Corollary 20.2), there exist a partition (I, J) of the set {1,...,n} and a function germ
S(zr,ps) such that ‘

oS A oS
L= {(SUI,“B;)— ,S(zr,pr)— < Bp) —,p7 >, axI,PJ)},

where < z7,py > is the canonical inner product. We now define a contact diffeomorphism
germ by

C(I J)(may,p) = (mIapva_ <Tj,pJ >,PI, "'1']).

Then we have C; 5(L) = {(z1,ps, S(z1,pJ), 2= 5o apJ) It follows that C(r (L) is Leg-
endrian non-singular at C(z, 5((¢0,¥0,p0)). By Lemma 3.1, we have a classical complete
solution on F o C(_I,lj) = 0. Then I (F) = C_IJ)(EC(F 0 C(I 7)) is also an n-dimensional
submanifold. This complete the proof.

4, kEXAMPLES

In this section we shall give typical examples of equations with singular solution.

EXAMPLES 4.1, THE CLAIRAUT EQUATION. The following is the classical example of an
equation with singular solution : y = > 2:ip; + f(p1,...,Pn), where f is a smooth
function. The complete solution is given by y = >, z;¢; + f(¢1,...,t,) and the singular
solution is the envelope of graphs of complete solution.

EXAMPLE 4.2, THE DUAL OF THE CLAIRAUT EQUATION. Consider the equation : y =
f(z1,...,2,). This equation is given by the Legendre transform (see [9]) of the Clairaut
equation. The complete solution is given by {(¢, f(¢),u)|(t,u) € R™ x R"}, where t =
(t1,...,tn) is the parameter.

The singular solution is given by X.(F) = {(z, f(z), fz(z))|zr € R"}. We can observe
that F=1(0) = Z.(F) D Z.(F).

EXAMPLE 4.3. Consider the following equation : y—2p?® = 0. We can show that X, (F) =
Ye(F) = {(z,0,0)|z € R} which is a singular solution. We also have a complete solution
s: (R xR,0) = JY(R,R) given by s(u,t) = (3u? +t,2u®,u), where t is the parameter. In
this case the singular solution is a locus of cusps of the complete solution (not an envelope!).
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