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LATTICES OF INTERMEDIATE SUBFACTORS

YASUO WATATANI

Deparment of Mathematics
Hokkaido University

Sapbofo 060, Japan

Abstract. Let N be a irreducible subfactor of a type][1 factor
M. 1If Jones index [M:N] is finite, then the set Zaf(NcM) of the
intermediate subfactors for the inclusion N c¢ M form a finite lattice,
The (co-) commuting square conditions‘for intermediate subfactors
are related with the modular identityvin the lattice £afZ(NcN). 1In
particular simplicity of a finite group G is characterized in terms
of (co-) commuting square conditions of intermediate subfactors for

NcM=NMXG.



1. Introduction.

The study of lattice structure of von Neumann subalgebras started
with the fundamental paper "On rings of operators" [MN] by Murray and
von Neumann in 1936. Let H be a Hilbeft space and B(H) the algebras
of bounded linear operators on H. ©For von Nuemann subalgebras M and
N of B(H), let MV N= (MUN)’ and MAN=MN N . Then the set of
von Neumann subalgebras of B(H) forms a lattice. 1In the introduction
of the paper [MN], they considered the lattice to motivate the
definition of factors. They also considered in [MN] the lattice of
the projections of a factor, which had become much more important
than the lattice of von Neumann subalgebras.

But there exist a few important contribution to the latticé
structure of von Nuemann subalgebras after them. For example, in
1963 H.Arakil[Ar] established a lattice isomorphism from a lattice
of subspaces of a Hilbert space into a lattice of von Neumann
subalgebras in the quantum field theory. See also [HK]l and [DHRI].

A Golois correspondence between intermediate subfactor lattices of
type][1 factors and subgroup lattices was initiated by Nakamura and
Takeda [NT11], [NT2) in 1960 already. More generally, the structure
of von Neumann subalgebras were investigated by Skau [Sk] and
Christensen [Chrl.

Since the work [Jol of Jones on index for subfactors, the
classification of subfactors has been studied by many people ( [BN1,
(EK]1,[GDJ], [HKo1,[HS3,[11]1,012],013},(IK],[Kal,[Kol,[KY],[Lol,[O1],
(PP11,[P1],[P21,[8V],[Well,[We2]),[Yol...)

In this note we bigin to investigate the lattice structure of



intermediate subfactors. We shall show that (co-) commuting square
condition is related with the modular identity in the intermediate
subfactor lattice. As a bonus we can characterize the simplicity
of groups in terms of (co-) commuting square condition.

A nice characterization of intermediate subfactors has been
obtained by Bisch [Bis] and Ocneanu [02], although I was prepairing
this note without their result and did not use it.

I would like to thank S.Sakai and F.Goodman who remind me the work
of continuous geometry [Nel by von Neumann when I was working on the
“relation ambng subfactors, Latin squares and finite geometry [MW].

I also thank Y.Kato for a comment on lattice theory. I am indebted
to H.Kosaki for hastening me to write this note by letting me Khow
the work of Bisch [Bisl.

We refer to a book [Birl] by Birkhoff for Lattice theory and a book

[Sul by Suzuki for subgroup lattices.



2. Finiteness of intermediate subfactor lattices

Let M be a factor and N a subfactor of M such that N n M = C.
Let K be an intermediate von Neumann subalgebra for the inclusion
Nc M. Since K nKc N nM=C, K is a factor automatically.
Therefore the set Zaf(NcM) of all intermediate subfactors for N c M
forms a lattice under the two operations A and V defined by

K. AK, = K, nNnK and K, v K

1 2 1 2 1 2 1 Y K

The lattice %af(NcM) clearly have a leastelement N and a greatest

(K

element M. Galois theory suggests us that many properties of the
inclusion N c M must be analized through the study of Zat(NcM).
For K € Zaf(NcM), the Jones projection eg is defined as the

projection of L2(M) onto L2(K) and we have eM M

x € N n <M, ep\>.
Furthermore for A, B € Zai(NcM), AcB 1if and only if e? < eg .
because if A is not containded in B, then there exist a € A with
a ¢ B. Since (I - E})(a) # 0, we have (I - emel = 0.
We also note that for A,B € Leaf{(NcM), we have €saB = €A A ep ,
But e, p # e, V ey in general, see [SWI].

Example 2.17’ Let P be a type H& factor, G a finite group and «
G » Aut P an outer action. Then the croséed.product M=P Xy G
D N = P and the fixed point algebra N = PG C M =P give two Kinds of
inclusions which are dual in a certain sense. By Nakamura-Takeda
[NT11 and [NT2], the intermediate subfactor lattice £ef(P cC PNaG) is

isomorphic to the subgroup lattice £(G) of G and the intermediate

subfactor lattice ﬁat(PG c P) is isomorphic to the dual lattice of



£(G). In particular, if G is abelian, £Zaf(P cC PNaG) and Zat(PG c P)

are isomorphic.

It is a fruitful idea to regard the intermediate subfactor lattice
£af{ (NcM) as a generalization of the subgoup lattice £(G).

If G is a finite group, then the subgroup lattice £(G) is clearly
a finite set. Then we may expect that the finiteness of the Jones
index [M:N] implies that £af{(NcM) is a finite set. But it is easy to
see that it fails. In fact for example, let M = N ® M4(C). Then
" [M:N1 is finite but £aZ(NcM) is an infinite set. But Example 2.1.
also suggest that we may suppose that NN N M = €. Then the above
analogy works well. DBut we should note that the perturbation theory
of von Neumann subalgebras due to E. Christensen [Chr],.Pimsner and

Popa [PP2] or B. Mashhood[Mal is essentially used to prove it.

Theorem 2.2. Let M be a typel[l factor and N a subfactor of M
with NN n M = C. If Jones index [M:N] is finite, then the

intermediate subfactor lattice £af(NcM) is a finite set.

Proof. Let M, = <M,em>. Since [M:Nl is finite, N* n M,is finite
dimensional; Hence, we have
FOM:KT | K € Zat(NeM) )
= FC iy, el | K € gatiNew) )
M K
1
s;#{ (trM (p))_1 | p is a non-zero projection in N n M1 }
1
< 2dim(N an) ¢ w

Therefore it suffices to show that for a fixed constan{ c > 1



{ K € Lat(NcM) | [M:K]1 = ¢ } 1is a finite set. On the contrary
suppose that the set was an infinite set. Since N n M\is finite

dimensional, { p € N n M,l p is a projection with trM (p) = ¢} is a
1

compact Housdorff space in uniform topology. Thereforé there exists

a sequence (Kn)n in 2af(NcM) and a projection p € N n Ml such that
I eg -pl >0 (n- =, trM(eg)=trM
n 1 1 1

By Pimsner and Popa [PP2;proposition] or Mashhood [Ma;6.2 Theoreml

{(p) = ¢ and KnA?ﬁ_Km (n#m).

for a constant ¢ > 1, there exists 8 > 0 such that if two subfactors
A, Bc M satisfy [M:A]l = [M:Bl = ¢ and | Eg(a) - a II2 < & for a € A
with llal £ 1 , then there exists a unitary u € M such that B = uAu’™.
Since we have that
M M M M _ M

f EB(a) a Il2 < | EB(a) - EA(a) II2 < 1 ep e, I
for a € A with llall £ 1 , choosing a subsequence, we may assume that
there exists a sequence (K ) in £atf (NcM) and unitaries uh € M such

_ * . _

that Kn = unKIun and Kn = Km (if n # m)

Fix natural numbers n and m with n # m . Define an onto

*—isomorphism Q Kn - Km by

o * * %
o(x) = u u x(umun ) for x € Kn
* *
Then for any z € N (c Kn) , we have that w(z)umun = umun A and
M $ ¥, _ oM %
EKm(cp(z)umun ) = EKm(umun Z)

Since z € N cC Km and @(z) € @(N) c w(Kn) c Km , We have

M %, _ oM %

qJ(z)EK (umun ) = EK (umun )z .
m m
that is,

* * kM k., _ M *
umun z(umqn ) EK (umun ) = EK (umun )2

: m m

sk

€C and there exists a

n

Hence we have that u u EM (u_u *) €EN N M
nm K mn



scalar X such that Eg (u_u *) = Au_u * . Suppose that x # 0
n mn mn
% _ -1 _ * %k .
Then umun € Km and Kn = Q (Km) = (umun ) Km(umun ) = Km
This is a contradiction. Therefore Xx = 0 and E% (umun*) = 0 .
» m
H have Ei(u u_¥) = EKm M wu ¥y =0
ence we N' mn I\ Km mn -

2

Let Hn be the | II2 closure of n(Nun) in L (M) for n=1,2,3,..

If n # m, then Hn and Hm are orthogonal each other. In fact

For x € N and y € N,

* ok _ % % _ M
tr(un y xum) = tr(umun y X) = tr(EN

L2y > dim

~ : k. %
(n(xum)ln(yun)) (umun )Y XD

1, ([M:N] = dim

Since d1mN Hn (ean) = o

N N

This contradicts to the assumption that [M:N] is finite. Therefore

2ot (NcM) is a finite set. ged.

Remark. By the above theorem, we can draw pictures of
intermediate subfactor lattices £ef(NcM) by their Hasse diagrams.
Remark. If we drop the condition that NN n M = €, then the
lattice Yaf(NcM) is not a fiﬁite set in general. But clearly the
lattice af(McN) is of finite hight, that is , the lengths of the

chains in Zaf(NcM) is bounded.

The following duality on basic construction is evident to prove

but useful to note.

Proposition 2.3 Let M be a factor and N a subfactor of M with

N nM = C. Then %af(MciM,e

y>) is the dual lattice of Zaf(NcM).

Proof. 1t immedietly follows from the fact that

0



M=JMJ, cJ NIJ

M Iy © IyN Iy = M,e

N> .
In the rest of the section we show the the class of the
intermediate subfactor lattices is reaﬂ7 larger than the class of the

subgroup lattices and their duals.

Definition 2.4 Let £(Groups) be the class of finite laftices
which are isomorphic to Zaf (NcNXG) for a certatin Kl'factor N and an
outer action o:G = Aut N of a finite group G. Similarly let
£(Group duals) be the class of finite lattices which are isomorphic
to Zat (M®%M for a certainjﬂl factor M and én outer action o of a
finite group G on M. Let Z(Subfactors) be the class of finite
lattices which are isomorphic to ZLef{(NcM) for a certain subfactor N c
M of type]Ll factor M such that [M:N] < « and N nM=C. We note
that £(Groups) is in fact the class of finite lattices which are
isomorphic to subgroup lattices and £(Group duals) is in fact the
class of finite lattices which are dually isomorphic to subgroup
lattices. And £(Subfactors) clearly contains both Z(Groups) and

£(Group duals).

Proposition 2.5 The following hold:

(1) There exists a lattice L such that L € £Z(Groups) and
L & (Group duals).

(2) There exists a lattice L such that L € £(Group duals) and
L é% £(Groups)

(3) There exists a lattice L such that L € £(Subfactors) ,

L ¢ (Groups) and L ¢ £(Group duals)



Proof.

(1) Consider a lattice L : and its dual lattice ﬁ :

Let G = << x,y | x4 =1, xzy—z =1, y-lxyx = 1 >> be the quaternion

group. Then the subgroup lattice £(G) is isomorphic to L by I[Wei;
Result 4.4.21 . Since L ~ £(G) ~ Zaf(RCR¥G), we have L € Z(Groups).
We shall show that L ¢ £(Group duals). On the contrary assume that L

€ Z(Group duals). Then there exists a finite group H such that

ﬁ ~ Z(HD. Consider subgroups Hl’ H2, H3 and H4 of H as follows:
H
b
H 2 H3
]
Take a € H\Hl' Let A = <<a>> be the subgroup of G generated by a.

Since A is not contained in any Hl’ Hz’HB’H4 , {1}, we have A = H.
This shows that H is a cyclic group. Since H is abelian, ﬁ ~ Z(H)
must be self dual. This is a contradiction. Thus L ¢ #£(Group duals)
(2)By the above argument and duality, we have that ﬁ € £(Group duals)

and ﬁ ¢ (Groups).

(3) Considedr a lattice K : . We can use the same

argument as above to show that K ¢ ¢(Groups) and K ¢ £(Group duals).
We note that the lattice <:i:>y is isomorphic to %(Z/2Z © Z/3Z).

Since we can add any chains on the top or bottom in the class



£(Subfactors), which will be shown later in Theorem 4.6, we have

that K € £Z(Subfactors)

3. Commuting squares and modular identity

Recall that continuous geometry was invented by von Neumann [Ne]
as a continuous analogue of projective geometry and the first example
was given by a projecton lattice of a type ﬁa factor. Continuous
geometry is a continuous complemented modular lattice. Since we can
regard intermediate subfactor lattice as a quantization of continuous
geomety , it seems to be important to study modular identity in
in intermediate subfactor lattices first. We shall show that modular
identity is connected with commuting (and co-commuting) square
conditions. As a bonus we can character;ze simplicity of groups in
terms of (co-)commuting square conditions of intermediate subfactors
for inclusions of crossed products.

Recall that a lattice L is said to be modular if L satisfies the
following modular identity for any x,y,z € L

If.x £ 2z, then X V (y A 2) = (X V Vy) A 2
Dedekind showed that the set of normal subgroups of a group forms
a modular lattice. The modular identity in the subgroup lattice £(G)
of a group G is closely connected with the notion of permutable
subgroups. Two subgroup H and K of a group G are said to be
permutable if HK = KH, so that H v K = HK = KH. It is also known
that H and K are permutable 1if and only if [H : HNK] = [HVK : K]J.

If H and K are permutable, then modular identity

...10._



(Hv K)‘A C=HV (KAOC for C > H
is satisfied. A subgroup H of a group G is called quasi-normal if
H is permutable with all subgroups of G. Inparticular normal
sﬁbgroups are quasi-normal. See a book [Sul for details.

Sano and Watatani [SW] noticed that the permutablity of subgroups
is connected with commuting square condition for the commutants. 1In
the below we shall introduce the notion of co-commuting squares to
clarify the relation, Co-commuting square condition is also related

with a formula of relative entropy as in Wierzbicki and Watatani[WW].

Definition 3.1 Let N be a von Neumann algebra on a Hilbert space

H with a fixed (finte faithful normal) trace v on N'. A diagram

AcCcM
v v of von Neumann algebras on H is called a co-commuting square
N cB

A" c N
if the diagram v U of their commutants is a commuting square.
M c B '
In particular we have M = A V B because M = A" n B’

In the below we consider only the case that N° is a finite factor,
therefore we do not worry about the choice of traces. Furthermore if
M is a typejll factor and N a subfactor of M with [M:N]1 < «,  then co-
commuting square condition does not depend on the choice of Hilbert
space H on which M acts if N° is finite as shown in [SW;Proposition
4.1 or [WWI]. In the terminology of angles between two subfactors
in [SW]l, the above co-commuting square condition is written as
Op—angM(A,B) = (3, by definition. The following proposition is

2
essentially rewriting of [SW;Theorem 7.8].



Proposition 3.2. Let M be a type311 factor and N a subfactor with

[M:N] ¢ « , Let A and B be intermediate subfactors for N c M.

A c AVB
Suppose that a diagram v U is a commuting square. Then
AAB C B

the following conditions are equivalent:

A C AVB
(1) the diagram U V) is a co-commuting square.

AAB cC B
(2) AV B = AB ‘
(3) AB = BA
(4) TA : AAB] = [AVB : Bl , i.e. (AVB,A,B,AAB) is a parallelogram.
—0strong

AB
{2

replace the role of A and B in the above conditions.

(5) AV B

where AB

finite ;P | a, € A and b, € B } and we may

Definition 3.3 Let M be a][l factor and N a subfactor of N with
[M:N] < » . Let A be an intermediate subfactor for N ¢ M. Then we

call that A is double commuting if for any intermediate subfactor B

: A c© AVB
for Nc M, a diagram - UV v is a commuting and co-commuting
. AAB ¢ B

square.
For ekample it is trivial that M and N are double commuting
intermediate subfactors for N € M. More non-trirvial examples are

given by the crossed products by .normal subgroups as follows:

Proposition 3.4 Let N be a][l factora and ¢ : G » Aut N be an
outer action of a finite group G. Consider a crossed product
M =N Na G. Let H be a subgroup of G and A = N X H an intermediate

subfactor for N c M. Then A = N X H is double commuting if and only

- 12 -



if H is quasi-normal. In particular if H is a normal subgroup of G,

then A = N X H is double commuting.

Proof. Any intermediate subfactor B has a form B = N Na K for

some subgroup K of G by Nakamura-Takeda [NT] . Therefore the diagram

A <C AVB A <€ AVB
§] U is always commuting square. Hence U v is
AAB ¢ B AAB Cc B

co-commuting square if and only if [A:AAB) = [AVB:B] by Proposition
3.2. Since this means that [H:HNK] = [HVK:K]l, it is equivalent to
that H and K are permutable. Therefore A is double commuting if and

only if H is a gquasinormal subgroup. qg.e.d.

Remark. It is also known that H is a normal subgroup of G if and
only if M is a crossed product.of A by a certain group . See for

example Teruya [Tel.

As a bonus we can characterize the simplicity of groups interms of

subfactors using commuting and co-commuting square conditions: .

Proposition 3.5. Let N be a]il factor and oo : G » Aut N be an
outer action of a finite group G. Then G is simple if and only if

any double commuting intermediate subfactor for Nc M is N or M.

Proof. Suppose that G is not simple, then there exists a

non-trivial normal subgoup H of G. Then A = N Na H is a non-trivial

double commuting intermediate subfactor by Proposition 3.4.

Conversely suppose that G is simple . By [Su; Proposition 1.31 , if

;



H is a maximal quasi-normal subgroup of G, then H is a normal
subgroup of G. Therefore there exist no non-trivial quasi-normal
subgroups. Thus there exist no non-trivial double commuting

subfactor by Proposition 3.4. Q.E.D.

Definition 3.6 Let M be a factor and N a subfactor of M with

»N # M. Then N is a mazimal subfactor of M if for any intermediate

subfactor A for N c M we have A = N or A M.

Remark. If [M:Nl < 4, then N is a maximal subfactor of M. But
even if G is a simple group, N is mof a maximal subfactor of N Na G
in general, because G has many subgroups in general, where o is an
outer action of a finite group G on a]fl factor N. Note that N is a
maximal subfactor of M = N Na G if and only if G is a cyclic group
of prime order. Therefore maximality of subfactor is much more
stronger than simplicity of the corresponding group. If M = N & Mn(C)
then N is a maximal subfactor of M if and only if n is a prime number.
Therefore you may think that maximal subfactor behaves like prime
pumbers. But I do not know any in general. For example consider
the tectrahedral group G = << X,y | x3 = 1, y° =1, (xy)2 =1 >>.
Let K = <<Kx>> bé the subgroup of G generated by x. Then K is a
maximal subgroup of G and [G:K]1 = 4 , [Wei; Result 4.6.10]1. Therefore
N ; R X K is a maximal subfactor of M = R X G but [M:N] = 4. Since

maximal subgroups have a rich geometrical structure as in [KL], we

may expect a similar structure for maximal subfactor.

Remark. We also have fixed point algebra version of Proposition

._14_



3.4 and 3.5, because the commutant of a double commuting intermediate

subfactor is also double commuting.

Proposition 3.7. Let Ni be a subfactor of a type]il—factor Mi

and N = N1 ® N2 .

are double commuting

with [M,:N,]1 <o for i =1,2. Put M = M, @ M
iti 1 2

If Ni N Mi = €, then M1 ® N2 and N1 ® M2

intermediate subfactors for N < M.

Proof. Let e, be the Jones projections for Ni c Mi (i =1,2) .

Then e, is a central projection in_N{’ n <Mi,ei> by [PP1;1.9.Propo-

sitionl. For any intermediate subfactor B for N c M, let eg be the

Jones projection for B ¢ M. Then

M . _ .
ep € N M= (N n <M

Since the Jones projection for M

’el>) ® (N,” N <M, ,e,>»

2 2’72

1 ® N2 cMis I®e2 and I®e2

central in NN N M, it commutes with eM

_ B °
M1®N2 C M
v v is a commuting square. Applying the same
(M1®N2)nB c B

argument for the commutant (M1 ® N2)’ = Ml’ ® Nz’ in the inclusion

M = M1 ® M2 c N = N1 ® N2 , We conclude that M1 ® N2

double commuting intermediate subfactor. Q.E.D.

is

Thus the diagram

is a

Now we come back to a relation between modular identity and

commuting square condition. The following is a key lemma.

Lemma 3.8. Let M be a typeiﬁl factor and N a subfactor of M such
that [M:N] < ® and N n M = C. Let P,Q and X be intermediate

subfactors for N c M such that P ¢ X. Suppose that the diagram

...15_



P c PvQ

U U is a commuting and co-commuting square. If the
PAQ c Q '
X c M
diagram v U is a commuting square, then we have
XAQ ¢ Q

(PY QA AX=PV (QAX) .

Proof. The inclusion (PV Q) A X D PV (Q AX) is trivial. Take
w in (PVv Q)Y A X . By Proposition 3.2, there exist pl,..., pn € P
and ql,...,qn € Q@ such that w = Zi piqi . Since w is also in X,
_ oM - M _ M
W = Ex(w) = Zi Ex(piqi) = Zi piEX(qi)
- M_M _ M
= Zi piEXEQ(qi) = Zi piEXAQ(qi) € PV (QAX) Q.E.D.
Recall the second homomorphism theorem in group theory. Let G be
a group, H is a normal subgoup of G and K is a subgoup of G, then
HK = KH is a subgroup of G and we have a canonical ismorphism

K/(Hn K) ~ HK/H. The following theorem is an analog of that 1in the

level of intermediattsubfactor lattice.

Theorem 3.9 Let M‘ﬁe a type]il factor and N a subfactor of M
such that [M:N] < « and N n M = C. Let P and Q be double
commutaing intermediate subfactors for N ¢ M. Then PQ = QP = P vV Q
and (P,Q) is a modular pair and also dual modular pair in the
lattice Zaf(NcM), that is, the follwing modular identities hold:
For any X and Y € Zaf(NcM),

if YcQ, then (QAP) VY

QA (PVY)

and if Pc X, then (PV Q) AKX

Pv-(Q A X)

Furthermore we have a canonical lattice isomorphism
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@ : 2at(PAQ € Q) — ¥af(P c PVQ) such that @(Y) = PV Y and

1¢X) = QA X for Y € Laf(PAQ c Q) and X € Z£at(P c PvVQ).

and @
The ismorphism ¢ preserves Jones index, that is, for any A,B €

2at(PAQ € Q) with A D B, we have that [@(A):@(B)] = [A:BI.

Proof. Applying Lemma 3.8. appropriately, we have that (P,Q)
is a modular and dual modular pair. Put ¢(X) = Q A X. then by the
modular identities, we have ¢¢(Y) = QA (PV Y) = (QAP)VY=Y
and similarly we have @#(X) = X. Hence ¢ = ¢ 1. We show that ¢
preserves Jones index. It is enough to show that [¢(Q):9(B)] = [Q:B]

for all B € £a2f(PAQ € Q). Since ¢(Q) =PV Q, ¢(B) =PV B and

PYB ¢ PvQ .
Q is double commuting, the diagram v V) is a commuting and
B c Q

co-commuting square. Thus by Proposition 3.2, [¢(Q):¢(B)] = [Q:B].
Q.E.D.

Remark. The assumption of Theorem 3.9. that P and Q are double

commuting intermediate subfactors can be weakened as follows: Suppose

P ¢ PVB ' B ¢ BvVQ
that U ' V) is co-commuting  and v v is

PAB ¢ B BAQ <« Q

commuting for any B € Zaf(NcM). Then we have the same conclusion

except that the lattice ismorphism ¢ preserves Jones index. First
P’ c P VB B ¢ B vQ
note that U V) is commuting and v U is
P, AB/ c BI B/ /\Q’ c QI

co-commuting for any B € Zaef(M cN ) by taking commutants on
LZ(M,tr). Therefore by Lemma 3.8, we have that for any X € Zat(NcM)

if Pc X, then (PV Q) AX =PV (QAX)



And for any Y € £e2f{(NcM), we have Y € Zal(M cN) ahd
ifQ@ cY , then ( VP)IAY =@ vV (P AY) .
Thus if @> Y, then (QAP)VY=QA(PVY) . Therefore
we have a lattice isomorphism ¢ : £af(PAQ € Q) = £ai(P c PvQ) as well
as Theorem 3.9. - Moreover suppose that P or Q is double commuting,

then the lattice isomorphism ¢ preserves Jones index as above.

Example 3.10 Let N be a type]l1 factor, ¢ : G — Aut N is an
outer action of a finite group G. Let H be a normal subgroup of G
and K a subgroup of G. Then intermediate subfactors P = N Na H and
Q =N Na K satisfy the weakened assumption of Theorem 3.9. in the
Remark. The lattice isomorphism ¢ : %22Z(PAQ € Q) — Z2af(P c PVQ)
corresponds to group isomorphism f : K/(H n K) ~-» HK/H exactly
because P A Q=NX (HNK and PV Q=N X, (HK)

Example 3.11 Let Mi be a type‘l1 factor and Ni is a subfactor of
Mi wi th [Mi:Ni] < ® and Ni' NnM=¢C. fori=1,2. Put M = M1 ® M2
and N = N1 ® N2 .
Q = N1 @ M

Then intermediate subfactors P = M1 ® N2 and

5 satisfy the assumption df Theorem 3.9. Then the lattice

isomorphism ﬂat(PAQ C Q) ~ %ei(P ¢ PvQ) is nothing‘but the lattice

isomorphism ﬂat(N1®N2 C N,®M,) =~ ﬂat(M1®N ) .

18M, c M ®M2) ~ Zat(N2 c M

2 1 2

Corollary 3.12. Let M be a type'l\__1 factor and N a subfactor of M

such that [M:N] < « and NN n M C. Let M1 = <(M,e,> and M, = <M, ,e

N 2 1
are abelian, Then Zaf (NcM) is a

M2

Assume that N~ N M and M N M

1 2

modular lattice.



4. Adding chains

We shall show that we can add chains on the top or the bottom in

the class £(Subfactors). For example, let X = <i:> and X~ =.(;>>

N

the lattice added a chain I on the top of X. Since X is in

£(Subfactors), X will be shown in £(Subfactors). We starts from

elementary lemmas.

Lemma 4.1 Let M be a finite factor and N a subfactor of M with
[(M:N] ¢ @ . Let K be a finite factor. Then for any subfactor D with
K® NcDcK®M, there exists a subfactor B such that
NcBcMand D=K® B. Moreover B+——>» K ® B 1is an order
isomorphism between the sets of the intermediate subfactors for

N c M and that for K ®9 Nc K & M .

Proof. First consider the case that M is a type]Il factor. Then

There exists a type]ii factor P such that M {N,e,>. For any

P
subfactor‘D with K® NcDcK®M, put A = (JK®JN)D'(JK®JN) on
L2k ® N) = L2(X) ® L2(N). Then D = <K ® N, e“SN>  and we have that

N e nDcKEPY nKeNM=(KNK ® (PnM) =Co (Pn M.
Therefore there exists a projection r € P'NM such that eKiN = I®r,.

Let B be the von Neumann algebra of M generared by N and r. Then
D =K ®B and B is also a factor because D is a factor. For two

intermediate subfactors B and C with B # C , we have

KoM M M KoM

eK®B = ] ® e = eK@C

I @ eg C



Thus the map BH——> K ® B 1is an order 'isomorphism.
Next consider the case that M is a type In factor. We may not
have a tunnel P for N ¢ M. So we consider the inclusions

2y & L2(M).

KK M = (K® M’ ¢cD cK ©N onlL
Applying the proceeding argument, there exists a subfactor B° such
that ¥ c¢ B N and D° = K ® B°. Therefore D = K ® B and

N cBc M. , Q.E.D.

Corollary 4.2 Let N be a type'l[1 factor and p be a prime number.

Then N is a maximal subfactor of M = N ® MP(C).
See M. Choda [Chol for the related fact.

Lemma 4.3 Let M be a type"ij1 factor and N a subfactor of M with
NN nM=C. Take b € M ® M . Suppose that

(n®m)b b(m®n) for all m € M and n € N

Then we have b = 0.

Proof. Assume that (n®m)b = b(m®n) for all m € M and n € N . We
shall show that b = 0. On the contrary suppose that b # 0. Then
b*b(mén) = b¥(nd®m)b = (men)b¥b
Thus b € (M® N’ N (M ® M) = (M A M) ® (N nM =C & C
Since b # 0, there exists a non-zero X € € and a unitary v € M ® M

such that b = Av. Then (x®y)v = v(y®x) for all x,y € N, so that

(x8y)v® = v(y®x)v = v2(x®y) . Hence vZ € (N® N)) n (M ® M) = C & C.
Thus there exist z € € such that |wl = 1 and vl = 22. . Put
W =7ZVe= zl—lb . Then w is a untary in M ® M such that w2 = 1 and



(n®m)w = w(m®n) for all n € N and m € M . Since we have

w*(n*Qm*) = (m*®n*)w* and w = w* sy, w{n®m) = (m®n)w . Therefore

for all x,y € M, w(x®y)w® = w(x®L)w w(1®y)w™ = (18x)(y®1) = y®x .
Since Sakai’s flip flop is outer by [Sal, this is a contradiction.

Therefore b = 0 . Q.E.D.

Lemma 4.4 Let M be a type'I[1 factor and N a subfactor df M with
NN nM=C . Let ot € Aut(M @ M) be the Sakai’s flip flop. Let

L= (M® M)'Na Z/2Z and XK = M® N . Then K nL = CI.

Proof. Let z = a + bu € L for a,b € M® M and the unitary u

with u2 =1 wvhich impliments the automorphism &®. Suppose that

2 € K NnL . Then for all m € M and n € N, (m®n)(a+bu) = (a+bu)(m®n).

Since a«(m®n) = u(men)u™ = n®m, we have that (m®n)a a(m®n) and
(m®n)b = b(n®m) . Then b = 0 by Lemma 4.3. Since a € (MON) N M®M

= C®C, we have z = a + bu € €. Thus KK nL = C . Q.E.D.

Lemma 4.5A Let M be a type'I[1 factor and N a subfactor of M with
N nM=C. Let H=L2(M®M,tr) . For & € H, let K, be the closed

subspace'generafed by (M ® N)((JMNJ ) © (J

M MMJM))E . If E # 0, then

we have KE = H.

Proof. Let Pg be the projection of H onto Kg' Since Ki is

M) ® (JMMJM),
® 4 d
£ € (M N n ((JMNJM) ® (JMMJM))

XN (N nM) =CeC

invariant under M ® N and (JMNJ
P

(M n <M,e

N
Since PE # 0 , we have P& = I, that is, K& = H. Q.E.D.
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Theorem 4.6 Let X be a finite lattice in £(Subfactors). Let X~
(resp. X.) be the finite lattice adding a chain X on the top

(resp. bottom) of X. Then X~ and X. are also in Z(Subfactors).

Proof. By considering a duality of Proposition 2.3, it suffices
to show that X~ is in 2($ubfactors). Let M be a typelT.1 factor,and
N a subfactor of M such that N n M = C ,[M:N] < @ and X =~ £ef(NcM).
Let o € Aut(M ® M) be the Sakai’s flip flop. Put L = (M & M) My Z/2Z
and Q = M® N . It is sufficient to show that @ n L = € and

| £at(QcL) = { M® B | B € Laf(Nc M)} U (L} .

The fact that @ N L = € is proved in Lemma 4.4. Let D € Zaf(QcL).
If Dc M®M, then there exists B € £af{(NcM) such that D = M ® B by
Lemma 4.1. Now suppose that D is not contained in M ® M. We have to
show that D = L. There exists z € D such that z ¢ M ® M. Let
H = L2(M®M,tr) and we shall identify L2(L,tr) with H® H by the
formula n(x + yw = ((x),n(y)) for x + yu € L = (M ® M)x_ Z/2Z and
X,y € M ® M. Let K bé.the f Hz—closure of n(D) in L2(L,tr) and K,
the i szclosure of QJ;QJ;n(z) . Since z ¢ M ® M, there exist
a,b € M ® M such that z = a + bu and b # 0 . Therefore KZ is not

contained in H® 0. Since 2z € D and Q ¢ D, we have KZ c K. Let PZ

(resp. P) be the projection of LZ(L,tr) onto KZ (resp. K). Then

P, is not domminated by ( é g ) € B(H® H) . Note that P_ < P
MOM
CMeN 0 ‘ 2
and < P . Letm : L — B(L2(L,tr)) = B(HOH) be the
0 0 .



GNS representation. Then for 2a € M ® M , we have

J.ad 0
n(a) = ( a 0 ) and Jon(a)J, = 0770 ,

0 a L L
0 Joa(a)Jo

where J0 = JM®M on H = L2(M®M,tr), since n(a)p(x + yu) = plax + ayu)

and L JEORM Ye +yw) = nx +ywa®) = nxa® + yea®w

for x + yn € L = (M & M) Na 2/27

Put P = ( ? g ) for some p,q,r,s € B(H) with q = r*. Since

Q= M®NCcCcK, we have P € m(MOM) N (J n(M®M)JL)’ . Thus we have

L

B0 9ol O G we [ (000, 0 Lfeo o e
r s/\0 a 0 a/\r s q s 0 Jooc(a)Jo 0 Joa(a)Jo rYs

for all a € M ® N . Therefore we have that
p,a,r and s is in (M ® N)’ = M ® N on H = LZMeM) = LZmeLZM)
pJOaJO = JOaJOp , qua(a)JO = JoaJoq , rJOaJ0 = Joa(a)Jor and

sJOa(a)J = J,x(a)J.s for all a € M ® N

0 0 0
Then = s € (M ® N )N ((JMNJM) ® (JMMJM) )
= (M n <M,eN>) ® (N nM) =CoC .

Similarly we have p € (M Nn M) @ (N N <M,e, >) .

N
Since P is a projection, s is a scalar such that 0 £ s £ 1
We consider the three cases such that s = 0, 0 < s <1, or s = 1.

First assume that s = 0. Since P is a projection ,

2 ._ p r* 2 _ p2 + r*r prf B _ P r*
P™ = = % = P =
r O . rp rr r O
Hence r = 0 and p is a projection. Then we have

_ p O 1 0 J
P, = FP= ( 0 0 ) < ( 0 0
This is a contradiciton. Thus s # 0

Next we assume that s is a scalar with 0 < s < 1 .  Since
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p2 - ( p2 + r*r  pr* + 1r*s J-= P = ( P r*)
rp + sr rr* + s r s
% 2 *® 2 . . .
rr + s =8 . Thus rr = s - s“ is a non-zero scalar. Since r is
in a finite factor M ® N° on H, there exist a unitary w € M © N’

and a non-zero scalar ¢ such that r = cw. Since r(p + s) = r and r

is invertible, we have p + s = I . Thus p =1 - s is a scalar with
eggg 0 b o
0 < p<1l. Recall that £ P = ( ) Thus
r s
0 0
M®M

we have eM®N £ p and p <1 . This is a contradiction. Therefore

only the case that s = 1 occurs. We suppose that s = 1. Then

p r*
(r 1)=P

Since rr* + 1 =1, we have r = 0 . Then we have

o
[y
!
—
Le]
no
+ +
-y
-
Le]
I-1
*
+ +
— =
*
SN’
it

MeM

e 0 p 0

0 0 0 1

. _ tr(p) + 1 1
Since trM,®N,(p) # 0, we have trn(D)'(P) = 5 > 5 -
Therefore [L:D] = 1 < 2. This implies that
tr . (P)
(D)

[L D] =1 and thus we have shown that L = D . Q.E.D

5. Tensor products

As we know that the subgroup lattice £(Z/2Z ® 7Z/2Z) is not
isomorphic to £(Z/2Z) x £(Z/2Z) , we do not have the lattice
isomorphism that 2at(N1®N2 c M1®M2) o Zat(Nchl
general. But the formula holds in some interesting case.

) X ﬂatFNszz) in
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Proposition 5.1 Let M, be a type][1 factor such that Ni’ nM = C

and 2 < [Mi:Ni] ( = for i = 1,2 . Denote the Jones projection by

M.
e, = eN1 for i = 1,2 . Assume that Ni' N <Mi’ei> is generated by
i _
{l,ei}, i,e, isomorphic to C 2 . Put M = Ml ® M2 and N = N1 ® N2 .
Then Zat(NicMi) = {N,M} = I i=1,2 and
£at(NcM) = ( N, M 8N,, N ®M,, M} = <ii:>
In particular Zaeaf(NcM) =~ ﬁat(Nchl) X ﬁar(Nszz)
Proof. Note that el = e.®e. and <M,el> =~ <M.,e.> ® <M.,e.>
’ N 1772 N - 1°71 2° 72
Yd M P rd rd
Therefore we have N N <M,eN > = (N1 N <M1,el>) ® (N2 N <M2,e2>)
= (CI + Ce)®(CI + Ce,) = €% has a linear basis (18], e,®1,18e,,e,9¢e,)
Let X € Zaf(NcM), then eg > ex . Putr =1 - (e®V I®e,) .
First consider the case that the equality eg P em + r holds.
Then  tr(el) 2 triey) + tr(r)
- M - _ -
= trie) + 1 (tr(e;) + tr(e,) tr(e,®e,)
- . -1 . -1 _ . -1 _ . -1
= 1 + 2[M1.NlJ [M2°N2] [Ml.Nll [M2‘N2]
P VI 1N R S SR |
= 262 [Ml.Nll )(2 [M2.N2] ) + 5 > 5
Thus [M:K] = tr(e}) ' < 2. This implies that [M:K] = 1 and K = M.
Next we consider the case that the equality eg = em + r does not
M _ M
hold. Then we have eN = e1®e2 < eK < e1®I \' I®e2 . Therefore
M _ M _ . M _
eK = e1®I v I®e2 , eK = e1®I, eK = I®e2 or eK = e1®e2 Suppose
M _
that eK = e1®I \% I®e2 . Then we have K D N1 ® M2 and K > M1 ® N2.
- M _ M . .
Hence K = M1 ® M2 . Then eK = I = eN + r . This 1s‘a

M

contradiction. Thus eK = e1®I Y I®e,7 . The ofher cases actually
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occur and K = N1 ® M2 s K = M2 ® N2 or K = N1 ® N, = N. Q.E.D.

G
Corollary 5.2 There exist no finite group G such that %£(G) =~ AQCi:>’B
| 1

with [G:A]l = [G:B] = [A:1] = [B:1]. There exists an inclusion N c M
M

B
of typelll factors such that [M:N] < @« , NN N M = € and %ef (NcM) ::ﬁ(:i;>

N
with [M:Al = [M:B]l = [A:N] = [B:N1l.

q

Proof. Let G be a finite group such that £(G) = /\“<i:>>Y3

1
Take X € GNA and y € GNB. Put ¢ = xy and consider the subgroup
C = <K<¢>> of G generated by ¢. Since C is not contained in A nor B,
we have C = G, so that G is a cyclic group. Therefore G = A ® B
= Z/pZ ® Z/qZ for some prime numbers p and q with p # q. Therefore
[A:1] # [B:1] . Thus there exist no such a group that [G:A] = [G:B]
= [A:11 = [B:1] | |

Nextly let (el,ez,es,...) be a sequence of Jones projections such

that e.e.
1]

t™! = 4cos?

e ¢ 1i-jl = 2 ) and e.€.,

. €. e. = Te, for some
jiTi i

171

(n = 5,6,7,...). Consider type‘T‘Ll factors

Mi = (el,ez,ea,...) o} Ni = {ez,ea,...) for i = 1,2

S o

N1 ® N2 :\Ml ® M2 y A = M1 ® N2 and B = N1 ® M2 . >

Then £af(NcM) =~ /\qii:>,3 with [M:A] = [M:Bl = [A:N]

Proposition 5.1. N Q.E.D.

Put N

,» M

H]
—
o
=4
—
o
<
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6. Some examples.

As we have shown in Theorem 2.2, the in{ermediate subfactor lattice

Lat(NcM) is a finite lattice if [M:N]l < ® and NN n M = C. It is an
interesting problem to determine which finite lattices are realized
as intermediate subfactor lattices. Here we shall examine the

lattices with at most six elements. Let us describe the Hasse

diagrams of them in figure 1, c.f., [St;Chaptér 31

o b é ; @ C

L\ L L3 Lq, Ls L‘ L.q L? Lq L-lO
E\\/ g i f\«/ e

Lu L\'L L\'-'» L\’+ LlS

099 ¢ 9

XCguxe l
- 27 -
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We shall give a certain realization of some of the above lattices

by intermediate subfactor lattices as far as we know.

Example 6.1 The lattice L, ~ %gf(N c N), L, =~ Zaf(N c N %X Z/27),

1 2
L3 x Lat(N c¢ N % Z/47), L4 ~ £al(N c Nx Z/8Z ),
L5 > Zat(N € N X(Z/2Z ® 2/3Z>)), and L6 ~ £al(N € N x Z/16Z)

The lattices L7 and L8 are obtained b? adding a chain to LS' Hence L7

and L, € Z£(Subfactors) by Theorem 5.1. L9 ~ Lat(N ©¢ N XN(Z/2Z & 7/2Z)

8

The lattice L10 ¢ £(Groups) and L

€ ¢2(Subfactors) or not. And L11

13 and L14 are obtained by adding chains to L

10 ¢ £(Group duals). We do not know

wheather L ~ el (N ¢ N X Z/32Z).

10

The lattices L L

12°

127 L13 and L14 € £Z(Subfactors) by Theorem 5.1. We do not

know wheather L

5
Hence L
15° L16 € Z(Subfagtors) or not.

Let G = <<x,y | x¥ =1, x%y"2 = 1, vy xyx = 1>> be the quaternion

group, see [Wei;Example 4.4]; Then The lattice L17 o~ zat(MG c M)

and L., = Z2Z(N € N X G).

18

The Lattices ng s L20

We do not know wheather L

¢ £(Groups) and L L & £(Group duals).

19’ ~20

L € £(Subfactors) or not.

19’ ~20
Let S3 (resp. Sz) be the symmetric group of order 3 (resp. 2).

Let ¢ € Aut (S, X S,;) be the flip flop. Put G = (S, X S.) Na Z/21

3 3 3 3
and H = S2 X Sz. Then H is a subgroup of G and the lattices
Ly, > £a¢(N % Hc N X G) and Ly, ~ 2ot (M8 < Mt

The lattice L ~ Lat(N ¢ N N 7/122). We consider S, is a

23
and the lattice L

2

subgroup of S ~ Z£at(N X 5, ¢ N X S4).

4
The lattice L

24

05 = Lat(N € N X(Z/3Z ® 7Z/3Z)). Or we consider
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the dihedral group D6 = << X,y | x3 =1, y2 =1, (xy)2 = 1>>,

~ A
Then L25 2af(N c N D6)
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