“§') HOKKAIDO UNIVERSITY
Y X7
Title Random collision model for interacting populations of two species and its strong law of large numbers
Author(s) Okabe, Yasunori; Mano, Hajime; Itoh, Yoshiaki
Citation Hokkaido University Preprint Series in Mathematics, 167, 1-14
Issue Date 1992-10
DOl 10.14943/83311
Doc URL http://hdl.handle.net/2115/68913
Type bulletin (article)
File Information prel67.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP


https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

RANDOM COLLISION MODEL FOR

INTERACTING POPULATIONS OF

TWO SPECIES AND ITS STRONG
LAW OF LARGE NUMBERS

Y. Okabe, H. Mano and Y. Itoh

Series §167. October 1992



f 139:
f 140:
§ 141:
f 142:
f143:

i 144:

f 145:

i 146:
f 147:
i 148:
f 149:
§ 150:
f151:
f152:

f 153:
§ 154:

f 155:

f 156:
f157:

f 158:

§ 159:

f 160:

f 161:

i 162

i 163:

§ 164:

f 165:
1 166:

HOKKAIDO UNIVERSITY
PREPRINT SERIES IN MATHEMATICS

Y. Giga, Z. Yoshida, A bound for the pressure integral in a plasma equilibrium, 20 pages. 1992.

S. Izumiya, What is the Clairaut equation ?, 13 pages. 1992.

H. Takamura, Weighted deformation theorem for normal currents, 27 pages. 1992.

T. Morimoto, Geometric structures on filtered manifolds, 104 pages. 1992.

G. Ishikawa, T. Ohmoto, Local invariants of singular surfaces in an almost complex four-manifold, 9 pages.
1992.

K, Kubota, K. Mochizuki, On small data scattering for 2-dimensional semilinear wave equations, 22 pages.
1992.

T. Nakazi, K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, 30 pages.
1992.

N. Hayashi, T. Ozawa, Remarks on nonlinear Schrédinger equations in one space dimension, 10 pages. 1992.

M. Sato, Interface evolution with Neumann boundary condition, 16 pages. 1992.

Y. Okabe, Langevin equations and causal analysis, 49 pages. 1992.

Y. Giga, S. Takahashi, On global weak solutions of the nonstationary two-phase Stokes flow, 25 pages. 1992.

G. Ishikawa, Determinacy of envelope of the osculating hyperplanes to a curve, 9 pages. 1992.

G. Ishikawa, Developable of a curve and determinacy relative to osculation-type, 15 pages. 1992.

H. Kubo, Global existence of solutions of semilinear wave equations with data of non compact support in
odd space dimensions, 25 pages. 1992.

Y. Watatani, Lattices of intermediate subfactors, 33 pages. 1992.

T. Ozawa, On critical cases of Sobolev inequalities, 11 pages. 1992.

M. Ohnuma, M. Sato, Singular degenerate parabolic equations with applications to geometric evolutions, 20
pages. 1992,

S. Izumiya, Perestroikas of optical wave fronts and graphlike Legendrian unfoldings, 13 pages. 1992.

A. Arai, Momentum operators with gauge potentials, local quantization of magnetic flux, and representation
of canonical commutation relations, 11 pages. 1992.

S. Izumiya, W.L. Marar, The Euler number of a topologically stable singular surface in a 3-manifold, 11
pages. 1992.

T. Hibi, Cohen-Macaulay types of Cohen-Macaulay complexes, 26 pages. 1992.

A. Aral, Properties of the Dirac-Weyl operator with a strongly singular gauge potential, 26 pages. 1992.

A. Arai, Dirac operators in Boson-Fermion Fock spaces and supersymmetric quantum field theory, 30 pages.
1992.

S. Albeverio, K. Iwata, T. Kolsrud, Random parallel transport on surfaces of finite type, and relations to
homotopy, 8 pages. 1992.

S. Albeverio, K. Iwata, T. Kolsrud, Moments of random fields over a family of elliptic curves, and modular
forms, 9 pages. 1992.

Y. Giga, M. Sato, Neumann problem for singular degenerate parabolic equations, 12 pages. 1992.

J. Wierzbicki, Y. Watatani, Commuting squares and relative entropy for two subfactors, 18 pages. 1992.

Y. Okabe, A new algorithm driven from the view-point of the fluctuation-dissipation theorem in the theory

of KM3O-Langevin equations, 13 pages. 1992.



RANDOM COLLISION MODEL
FOR INTERACTING POPULATIONS OF TWO SPECIES
AND ITS STRONG LAW OF LARGE NUMBERS

BY YASUNORI OKABE, HAJIME MANO, AND YOSHIAKI ITOH

1. Introduction

Problems of interspecific competitions have been studied by many authors since
Lotka [6] and Volterra [8]. Ehrenfest’s urn model was discussed by Kac [3] and
Moran [7] studied an urn model for the random genetic drift. Itoh [1, 2] intréduced a
random collision model which is an urn model for competing species in finite numbers
of individuals of several types interacting with each other and studied the problem
of coexistence of species.

Kogan, Liptser, Shiryayev and Smorodinski [4, 5] investigated a queuing model
which is formulated in the framework of semi-martingales and proved both the weak
law of large numbers and the central limit theorem for the model by using stochastic
calculus.

In this paper we shall discuss the random collision model of two species in [1, 2]
which is described by the random time change of a Poisson process. At first we aim
to show that our model has a similar stochastic structure to the one of the queuing
model in [4, 5]. Therefore the weak law of large numbers for our model can be proved
by the same method as in [4, 5]. The second purpose of this paper is to prove the
strong law of large numbers for our random collision model.

2. Model and Solution

Let us consider a population of two types of individuals in which individuals ran-
domly interact with each other. Changes occur by interactions only between particles
of different types. If two individuals of different types interact, then two individuals
of the dominant type result from the interaction. Hence the total number of the
particles is invariant under interactions.

We set any positive integer M which denotes the total number of the particles.

For each 7, 7 = 1,2, let X}M)(*) be a stochastic process which denotes the number
of individual of type j. We assume that XI(M) (%) is dominant and that each of the

individuals is described by the time change of a standard Poisson process N () in a
differential form as



o dXM (1) =dN (& / XM () xM)(5)ds),
| dXM (1) = — dN(= /X(M) 1XM)(5)ds),

where ) is a positive constant. This is also written in the integral form as

XP0(0) =X00(0) + N(= [ X0 ()X (5)ds),
(2.2) X$0() =X$0(0) = N(= [ XP0() X0 (5)ds),
X0 (0)+X£(0) = M

where X}M)(O) are initial values of X}M)(*) (1=1,2).
Now we shall prove the existence and uniqueness of the solution of equation (2.2).

We denote by {T,},>0 the set of the jump time of the standard Poisson process N(*)
(70 =0).

Theorem 2.1. There exists a unique solution of equation (2.2) and it is represented
in the form

M-x{M(g)
(2.3) xM@) = xMeo)y-14+ 3 X(o (M) oy (£);

t=0
M-x{M )
(24) X0 = X800 41— 3 X0,

=0
where a,(cM) (OVS k < M) are defined by
o§" =0,

(M) =00 for 1<k< M, XI(M)(O) =0 or M,

for 1<k<M—-xM0), x™M0)+0,M,
=co for k>M—XM©0)+1, x™(0)#0, M.

o
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Proof. Let X}M)(*) ( = 1,2) be the solution of equation (2.2). For each fixed
t € [0,00), we define

(2.6) TM)(4) = % /OtXl(M)(s)XéM)(s)ds.

Every time when the function T(™)(x) comes to the jump time 7 of the standard

Poisson process N (), the stochastic process Xl(M)(*) increases in the width of one.
We define a,(cM) by

o0 g,

2.7
0 o) =inf{t > ,TM(1) =7} (1< k< M).

When XI(M)(O) =0 or M, we see that T™)(¢) = 0, and so, Xl(M)(t) = Xl(M)(O). It
is clear that (2.3), (2.4) and (2.5) hold.

When XfM)(O) # 0,M, if a(M) <t<oMiforl <k< M- XI(M)(O), and so,
Troy < TM(4) < 71, then

XM (@) = XM(0) + M@ @) = XM (0) + k- 1.

Hence
k-1
XMy = X(M)(O) —1+¥1
i=0
(M) <
1 (0) -1+ ZX[U(.M),OO)(t)'
=0 )
Ift> a( ) X0 gy’ then TM)(¢) = LM)X(M)(O) and so,
XM = X{(0) + N(T0(1))
M-x{"(0)
=xMo)-1+ > 1
i=0
= (M)(O -1+ ZX[ (M), )(t)
. 1=0
Therefore we see that (2.3) and (2.4) hold. It can be seen from (2.7) that the

random times a,(cM) satisfy a recursive relation (2.5).

Conversely let X( (*) be a stochastic process defined by (2.3) and put X( ( )=

M — xM) (%). It is easy to see that X( )( *) are right continuous and have the limit
from the left-hand side (j = 1,2).



When the time ¢ is involved in the interval [or,c 1) , (M)) (1<k< M- XfM (0)),
we have the estimate:

A k-1
Ty < TM(3) = Z 0 X(M)(S)X(M)(s)ds+ i /(M) (M)(S)XgM)(s)ds

kzl /\ (X(M)(O)-I-(Z—l))(M X(W)( ) (Z.'—l))(O'Z(M) (M))

+ 2 XM(0) + (b — )M — XM(0) — (k — 1))t — o)

i
=Tey + --(X‘M’w) + (k= 1)(M = XP(0) — (k= 1))t - o)) < 7.

Hence N(T™M)(t)) = k — 1.

On the other hand, it follows from (2.3) that when the time ¢ is involved in the
interval [0, o), XM(@) = X™M(0) = 1 + k, and so, XM (1) = x™(0) +
N(TOD(3)).

When ¢t > Tarr—xM)(g)r WE find that
1

A M-x () el

T == 3 XO00(5) X9 (5)ds + - XM ()X (s)ds
M i=1 Eﬁ? M /SJ)X(M)(O)
M=X00 M M M
= Y @)+ - - XM(0) - G- 1)) - D)
=1

=TM_X£M)(0).

Hence X1 () = X{*(0) + (M — x{™(0)) = X{"(0) + N(T®(2)).
Consequently X](M)(*) (7 =1,2) satisfy (2.2). O

3. A stochastic structure of the model and its weak law of large numbers

From now on we assume that X (M) (0) is independent of N(*) and define a reference
family (.7-'( )t>0 by

(3.1) FY = o(XM(0) Vo(N(s)0 < s <)
Similarly as in (2.6), we define for each ¢ € [0, 00) a random time TM)(¢) by
(3.2) T(M) (1) = / XM () xM (5)ds.
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At first we shall prove the following lemma for investigating certain stochastic
structure of our random collision model.

Lemma 3.1. For each t € [0,00), T™M)(t) is a stopping time with respect to the
: (M)
reference family (F;™ )io.

Proof. To be proved is that for any u € [0, c0),

(3.3) (T () < ) = {w; T™ () (w) < u} € FM,
Since T™)(x) is a strictly increasing and continuous function in [0, T p—x (M) (0)), we
see that for any u, 7, < u < 1pyy < Tar-x$ ()
tu(T0sT1, T2+ + +y Th) = T(M)_l(u)
u Ty — Ti—1
OGP D0 (K F i 1)

U — Tk
FXE0) + F— 11— (XP(0) 1k~ 1)/M)
Now we decompose (T™)(t) < u) into
(TOD(8) < ) =[UMH{(X M (0) = 1) |
N{URL ™ (7 S < 1ign, TOD(E) S w)} U (migr <, TN (1) < )]
UH{X(0) = 0) n (T (2) < w)} U {(X(*(0) = M) N (TM(2) < w))]
={UMT (AU B)} |
U [(X1*7(0) = 0) u (x{(0) = M)],

where

Al E(XfM)(O) l) N (UQ/{—_?)I—I(Tk S u< Tk+11t S tu('rOaTlaT?’ t '1Tk))7
By =(X{*(0) = 1) 0 (rag—t < w, T (2) < w).
Here we fix any [, 1 << M — 1. Then

A= (XM0) = 1) nUMF(r <u)N

T — Ti—1
t<tu , y ’-- -’ = N N
(t < ty(70, 71,72 Tk) ;/\(1—1-2—1)(1“(“'2“‘1)/1‘/[)

+

U— T

N+ —(ti=n/mn) N ® < ek
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Since for any k£, 0 < k< M —,
(t <tulro,m1,72, 7)) EFr, ={C € Fos CN (e Lv) €F, for any v >0},

we see that (7, < w)N(t <ty (70, 71,72y, Tk)) € Fo. Moreover, since (u < 7441) € Fu,
it follows that A; € F,.

In addition to this, for any fixed I, 1 <[ < M — 1, (XfM)(O) = )N (rpm=1 <
u, TMN(1) < u) = (XM (0) = ) N (rar=1 < u), because T™)(x) has the maximal
value Tr-x{ (o) when XI(M)(O) # 0, M. Since (tp~1 < u) € Fy, we see that By € F,,.

Consequently, (3.3) is proved.$

Set
(3.4) MM () = N(TM(2)) - TM(2),
and

(3.5) F = Fihey

We have

(3.6) XMy = xM0) + MM () + T (1),

Theorem 3.1. The stochastic process XIM)(*) is an (ﬁM))tZO-semi-martingale such
that '
(i) MM)(¢) is a square-integrable (ft(M))tZO-martingale,
(ii) TM)(¢) is a continuous increasing and (ft(M))tzo-adapted process,
(iif) < MM >,= TM)(3),

Proof. The martingale part and the quadratic variational part of the standard Poisson
process N(x) is expressed as N(t) — ¢ and ¢, respectively.

By virtue of Lemma 3.1, we can apply the optional sampling theorem due to Doob
to XI(M)(*) to get the above facts. [

Let u; = u4(t) and uy = uy(t) (¢ € [0,00)) be the solution of the deterministic
system

(3.7) ) dt(t) = Mua(t)ua(t),
;t = — Ay (H)ua(t)



i x Mgy x4
Now, we shall discuss the convergence of =3 and =257 to uy(t) and uy(t),

as M tends to infinity. By the same method as in the queuing model by Liptser-
Shiryayev [5], we can show the following lemma.

Lemma 3.2. Let w = w(t) (¢ € [0,00)) be a solution of the differential equation
dw(t)
3.8 — = t
(5. 2 = Fw(®)
satisfying the propertyinf,<; w(s) > 0 for anyt > 0. Here f = f(z) is a non-negative
function on [0,00) with local Lipschitz condition.

For each M > 0, let the stochastic process Y ™M) (x) be an ('H,EM))tzo-semi-martingale
such that

(1) YOD(t) = Y@D(0) + MO (1) + AN (1),
(ii) MM)(1) is a square-integrable (’H,EM) )t>o-martingale,
(iii) AM)(2) is a continuous increasing ('HgM))tZO-adapted process,
(iv) A (1) = [ M (s,
(v) < M) > = AM)(),

Moreover we assume

(M)
N}im 7 =w(0) in probability.
Then for anyt € (0,00)
. YM)y) . .
A}erio 7 = w(t) in probability.

By applying Lemma 3.2 to Theorem 3.1, we have
Theorem 3.2 (The weak law). We assume

M
lim ————Xl( )(0)
Moo

0<u(0) <1 and u(0)+ uy(0) = 1.

=u,(0) in probability,

Then for any t € (0, 00),

. xM

lim sup |—2% (s) —ui(s)|=0 in probability,
M—rooo<_9§t

: XM

lim sup |—2 (s) —uz(s)| =0 in probability.
M_*°°0<a§t



4. The strong law of large numbers

As a strong assertion of Theorem 3.2, we shall show

Theorem 4.1 (The strong law). We assume
X"

J\}l—inoo =uy(0) a.s.,

0<u(0) <1 and wui(0)+ uy(0)=1.

Then for any t € (0, 00),

(M)

]l}iinoo XIM(t) = ul(t) a.s.,
(M)

A XzM(t) = ug(f) as

Proof. We rewrite the solution in the integral form

M=x{M) o)

XMy x™M g —i—
Mo _x00 ol

where the function ¢,y is defined by

(4.1)

E—1 k
(4.2) om(s) = X[U’EM)'OO)(t) for A <s< I 1<k< M.

We fix any element w € Q and s € [0, 00) such that
XM (0)w)

1 M
(1.4 J 27 ()~ () =

1 1;[
(4.5) A}Enoo i -_I(Ti(w) — T,-_l(w))Z =2,
(4.6) 0<s<1—u(0), 0<uy(0)<l.

We note that the set of the element w € § satisfying (4.3) - (4.5) has the probability

one. In the sequal we shall abbreviate the variable w.
[Step 1] We claim that

XM _ xM0)
M M

1-u1(0)
-l-/(; om(s)ds +o(1) (M — oo).

8



y (4.1), we have

" (M)
(M) 0 1-u1(0) M-xy @
GO 7 st [ ours)ds
1—u1(0)
M—xM(0)
g | g e s T
M (M) _ -
X 0 1—u,(0) 1—-u1(0)
—l‘i—w—u-l-/o wm(s)ds — /M—X(]M)(O) o (s)ds
M
(M) g
for M- X H0) ;{4 ) <1 —uy(0).

Since 0 < ppr(s) <1

Xl(i\'[)(o)

xMa  x™M o) )
M

M M

+ /0 i cpM(s?ds + O(|u1(0) —

Hence, the claim holds.

The convergence of the solution to the deterministic system is now reduced to the
integrand ¢ps(s). For that purpose we shall show the convergence of a,(cM).

We take for each M > 0 an integer kps such that L‘L"—l < s < % Tt is to be noted

that —M~ converges to s as M tends to infinity. We decompose UI(:Z) into
(M) 1 Ti—Ti—
Ok = Li<ilag (X(igkary — X{i<ima)}) NEGOT= s
M M
L. TiTi1 'r,—‘r, 1
Farxgspaan Z&Porion ooz, N -6 (0) =gl
M M

Ti—Tiw1

1
+MX{'<[M’]}{A(u1(0)+' 1w (0-58)  AMu(0)+ 52 (1= ul(O)—%}

1., . 1
X G S G R O

381+82+S3+84.

[Step 2] We claim that limp;_,., S; = 0.



By (4.5), there exists a positive constant C; such that

1 max{kar,Ms]}
— Z (T,‘ - T,'_l)2 < Cy.

M i=min{kar,[Ms]}+1

Moreover, it follows from (4.3) that there is a positive integer My such that for any

M > M,

U1 I(M) — U — 8
(4.7) 50) <X M(O) < u(0) + %

Hence,

max{ks,[Ms]}

1 max{%[Ms]} )u1 1 Z 1
IS1] < {+= (ri = mim1)"}2 {5 P Do s
M immin{kar (Ms]}+1 M immin{kar (Ma]}+1 ( PE:e gol)+z-1 M- (X M(o)+z-1))2

1 max{Ms,kar} 1

< {Cl}%{ﬁ Z ( 41(0) 1—uy (0)—s) )2}%
2 2

t=min{Ms,kps}+1 A

1 lkM—Msl 1 1
= (P e

Therefore it follows from the convergence of %}IL — sas M — oo that limps..o S = 0.

[Step 3] We claim that limps_eo Sz = 0.
By (4.5), there exists a positive constant C, such that

1 [Ms]
'M Z(Ti -— Ti_1)2 < CQ.
t=1

10
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Hence, by using (4.7) of [Step 2], we have the estimate:

1 [Ms]

182l < {= (Zl(r;—n--m)
1 (1 - 259 - ) — () + ) 1
(> =( M ’
2 AELO 4 i )(1——1M—<° =) (0) + 1) (1 — w(0) - i
X"(0)
S~ wo)]
1

< {02}§{S(Aﬂ1291u1(0)(1 —u1(0) — 5)

1 21 X10(0)
) 2 —uy(0)[.
+ )\_z%gll-ulzo —3(1 . ul(o) _ S)) } I IW ul( )I

Therefore, we see from (4.3) that limps_,., Sz = 0.

[Step 4] We claim that limps_, S5 = 0.

Now for any arbitrary real number ¢ > 0, we take a natural number N such that
% < &. Here C is a positive constant, which is defined later by (4.8).

Let L be a natural number such that [Ms] divided by L equals N and let r be the
remainder: [Ms] = NL+r and 0 <r < L. We note that M — oo iff L — oo. Put

1 [Ms]

= >r Z azMén

= ME““L:@%H“’
where
1
M N (0) + 5T — w(0) - G
X <>+ﬂ’°—ll)<i—u1(o> )

11



By Schwarz’s inequality, we get

1 N kL 1 NL+r

|S5 — Z| SIM o> (aim—an)b] + lff > aiméil
k=1i=(k-1)L+1 t=NL+1

CET Y @PHET Y jaw—ap?
M k=1i=(k-1)L+1 M k=1i=(k-1)L+1 ’

s 1 NL+r 1

+ —NZH%“(&) ) (ﬁ()\ul(o)(l —u1(0) — 5))?

W=

*

Since the running suffix ¢ in the region (k — 1)L + 1 < ¢ < kL of the first term of the
right-hand side means that

i—1 s(k—1) (k=1)(r +1) 1

M TN ST N AN

i—1 s(k—=1) _ N(L-1)—r(k—1) 1
— < —

% NS¢ NZL <2

we have the estimate:

N
1
o Z las,ar — ax?

| (552 - LBy (1 (0) + 554) — (1 - g (0) — a1y
Au1(0) + 5)(1 = u1(0) = 5 ) (w1 (0) + 2EZ)(1 - wy (0) — HEZL)

|2

(2)° !
Sl 2 0 — Dm0 + T = (o) - )

k=14i=(k—-1)L+1
+ 1 2
A(ua(0) + 'ﬁl-)(l - uy(0) - %)(Ul (0) + sgk—ll)
< 3t 1 * : .
= N2 ')y (0)(1 -y (0) - 3)2 Auy (0)2(1 — (0) — s)

By (4.5), there exists a positive constant Cs such that

1 kZL 2 1 Ni-{:-r 2
max{ max {+ (1 — mic1)’}, = (1 — 7i-1)"} < Cs.
kSN LT L iNin ‘

12



Hence,

1 1

185 — Za| < [{sCs}*{25%( O =) =7 T wOPa—n@) =5
1 1 Ok
TS o wm =9 ¥

= — < €,

N

where

1 1

C= s\/az[\/is()\m(o)(l — 13 (0) — 5)? * Aup(0)2(1 — uy (0) — S))
1

Aup(0)(1 — uq(0) — 3)]

(4.8)

+

This fact yields
Jim |85 — Zu| = 0.

On the other hand, noting that 0 AA,I < 7%, we see from (4.4) that limas_e Zpr =
0.
Therfore it follows that limps_,. S3 = 0.

[Step 5] It is easy to see that when M tends to infinity, the fourth sum S; is convergent
to the non-random function v(s) such that

_1 1
v(8) =5/, ((0) + )1 — u1(0) ——p)dp
1, (w(0)+$)(1=w(0))

AL O —w(0) —s)

x (M)
[Step 6] It follows from Step 1 - Step 5 that ul(t) = limps o0 2 M(t) exists and it is
equal to

u(0)eM
ul(O)e)‘t + 11— ul(O)
This is a logistic distribution; which coincides with the solution of the deterministic

system (3.7).
Consequently we complete the proof of Theorem 4.1. [

—Uj (0)
0) + /(; X[v(s),00) (t)ds =

13
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