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Unitary equivalence between a spin 1/2 charged particle »
in a two-dimensional magnetic field and a spin 1/2 neutral particle

with an anomalous magnetic moment in a two-dimensional electric field

OsaMU OGURISU

Department of Mathematics, Hokkaido University
Sapporo 060, Japan

26, February 1993

Abstract. We prove the unitary equivalence between the Dirac Hamiltonian Hp for a rela-
tivistic spin 1/2 neutral particle with an anomalous magnetic moment in a two-dimensional
electrostatic field E = (E;, E;) and the direct sum of the Dirac-Weyl operators D(4A) for a
spin 1/2 charged particle in two-dimensional magnetic fields +=dA with the vector potential
A = Eydz! — Edz?, (2',2%) € R%. As applications, we investigate the ground state and the
spectra of Hp.



1. Introduction

Recently V. V. Semenov [1] stated that a relativistic spin 1/2 neutral particle with an anoma-
lous magnetic moment x in a two-dimensional electrostatic field has (N — 1)-fold degeneracy
of the ground state, where the integer IV is determined by p and the total charge in the
field. (In fact, the degeneracy of the ground state is equal to 2(N — 1). See Corollary 3.4
and Remark 3.5.) He pointed out that this phenomenon is similar to the phenomenon
Y. Aharonov and A. Casher discussed in [2]; A non-relativistic spin 1/2 charged particle
in a two-dimensional magnetic field has (IV — 1)-fold degeneracy of the ground state, where -
N is determined by the charge and the total magnetic flux.

In this Letter we clarify why the Dirac Hamiltonian Hp discussed by Semenov [1] has .-
2(N — 1)-fold degeneracy of the ground state: We prove that Hp is unitary equivalent to
the direct sum of two Dirac-Weyl operators, each of which has (IV — 1)-fold degeneracy of
the ground state. This is done in section 2. In section 3, we apply the result in section 2 to
investigating the ground state and the spectra of Hp. «

2. The unitary equivalence

We consider a quantum system of a relativistic spin 1/2 neutral particle with an anomalous
magnetic moment x € R\ {0} in a two-dimensional electrostatic field E(r) = (E;(r), E2(r)),
r = (z!,2%) € R?, with E; € C*°(R? — R), j = 1,2. As usual, we denote p; = —i8/0z7,j =
1,2, and the Pauli’s spin matrices by

1 (01 2 [0 =i\ .5 (1 0
A= 0) 2= 7) =06 5):

Let m > 0 be a constant denoting the mass of the particle. Define the Dirac Hamiltonian

HD [1a 3] by
A*
w=(7 20

A=) o(p; +inE;)
Jj=1,2

acting in L?(R?%; C*), where

acting in L?(R?; C?). Since E; and E, are C®-functions, it follows from Chernoff’s theorem
[4] that Hp is essentially selfadjoint on C§°, where C° is C§°(R?%; C*). We denote the closure
- of Hp [ C§° by the same symbol.

Let A = Aj;dz! + A;dz? on R? be a real 1-form denoting a vector potential. The
Dirac-Weyl operator D(gA) for a spin 1/2 charged particle with charge ¢ is given by

D(gA) = > o’(p; — q4;)
J=1,2

acting in L?(R?;C?). If A; € C*®°(R? — R), j = 1,2, then D(gA) is essentially selfadjoint "
on C§°(R? C?) [4]. In this case we denote the closure of D(gA) [ C§°(R?; C?) by the same
symbol. The operator U on L%(R?; C*) given by

1 0
U=

O -~ OO
OO - O

0 0
0 0
0 1
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is unitary. Now, we can state the main theorem of this Letter.

Theorem 2.1. Define a 1-form A = E,dz' — Eydz®. Then the operator equality

D(uA) + mo® 0 )

UTHpU = ( 0 D(—pA) — mo?®

(2.1)

holds.

Proof. By direct computations, we can verify (2.1) on C$°. Since E; and E, are C®-
functions, the operator on the right hand side of (2.1) is essentially selfadjoint on C§° [4]. On
the other hand, Hp is essentially selfadjoint on C§° and U is bijective on C§°. Therefore,
(2.1) as an operator equality follows. O

3. Applications

In this section, by employing known results for a spin 1/2 charged particle in a two-
dimensional magnetic field, we obtain some corollaries of Theorem 2.1. We assume that
there exists a function ¢ € C*(R? — R) such that

o¢ .
EJ = -—'5;:7, J = 1,2.

Throughout this section, we put A = E,dz! — Eydz?. We have dA =A¢dz! A dz?. Note that
—A$/4m is the charge density per unit volume. We denote by o(A4) and ¢.(A) the spectrum
and the essentially spectrum of the operator A, respectively. We need the following lemma.

Lemma 3.1 (Ref. 5, Proposition 2.5). Let Hj,j = 1,2, be Hilbert spaces, S: Hy — Hy
be a densely defined closed linear operator and m be a non-negative constant. Let

m S*
r=(5 2)
acting in Hy @ H,. Then

o(T)={Vm?+s;s€a(S"S)}U{-Vm?+s;s€a(55)},
0e(T)={Vm?2 +5;5€0.(S*S)}U{~vVm? +5; 5 €0.(55%)}.

We remark that, in general, o(55*)\{0} = ¢(5*S)\{0} and 0.(SS*)\{0} = 0.(S*S)\{0}
(see [6]). With the aid of Lemma 3.1, we can prove the following:

Corollary 3.2. For simplicity, we put p = 1.

(i) If Ag(r) — 0 as |r| — oo, then g.(Hp) = (—o0, —m] U [m, 0);

(ii) If A¢(x) — 1 as |r| — oo, then o(Hp) = {£v2k+m? ; k € N} U {m} and m is
isolated; ‘

(iii) If A¢(r) — oo as |r| — oo, then o(Hp) is discrete except for m and m is an isolated
point of the essential spectrum.

Proof. First, we treat the case (ii). From Example 4.1 and the proof of it in [5], we see
that o(D(£A)?) = {2(k — 1) ; k € N}, 0 is isolated and ker D(+A) C ker(o® F 1). Hence,
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applying Lemma 3.1 to D(+A) + mo®, we obtain that o.(D(£A) £ me®) =
{+V2k +m?,—v2k + m?; k € N} U {m} and m is isolated. Thus, Theorem 2.1 implies
the desired result. In the cases (i) and (iii), we can obtain the desired results in a way similar
to the case of (ii). O

Remark 3.3. Corollary 3.2 gives us a classification of the spectrum of Hp by the asymptotic
behavior of the charge density per unit volume at infinity. (cf. [5].)
We next investigate the ground state of Hp. We put e(z) =1,z > 0, ¢(z) = -1, 2 < 0.

Corollary 3.4. Suppose that the limit v = lim|p|—co #(r)/log |r| exists. Let N be the largest '
integer strictly less than |uv|. Then

dimker(H% — m?) = max{2(N —1),0} and ker(H% — m?) = ker(Hp — e(uv)m). |

Proof. In general, for a selfadjoint operator T, kerT? = kerT. By Theorem 3.1 and
Corollary 3.2 in [7], we can prove that dim ker D(+xA) = max{N — 1,0} and ker D(£uA) C
ker(o®  e(uv)). Hence, by Theorem 2.1, we can obtain the desired results. O

Remark 3.5. Semenov [1] also considered the ground state of Hp. But, counting up the
ground state, he seems to have neglected spin components and so reached the wrong conclu-
sion: “this particle has (V — 1)-fold degeneracy of the ground state”.

Remark 3.6. Note that the number N is determined by the asymptotic behavior at |r| = oo
of the scalar potential ¢(r).
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