<table>
<thead>
<tr>
<th>Date</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 23, 2003</td>
<td>Gregory SEREGIN</td>
<td>Interior regularity of $L_3;\infty$-solutions to the Navier-Stokes equations</td>
</tr>
<tr>
<td></td>
<td>Takaaki NISHIDA</td>
<td>Heat convection problems and computer assisted proof</td>
</tr>
<tr>
<td></td>
<td>Akihiro SHIMOMURA</td>
<td>Modified wave operators for Maxwell-Schrodinger equations</td>
</tr>
<tr>
<td></td>
<td>Hideaki SUNAGAWA</td>
<td>Remarks on the large time asymptotics for nonlinear Klein-Gordon systems</td>
</tr>
<tr>
<td>July 24, 2003</td>
<td>Hirokazu NINOMIYA</td>
<td>Curved traveling front of Allen-Cahn equations</td>
</tr>
<tr>
<td></td>
<td>Masahiro YAMAMOTO</td>
<td>Uniqueness in inverse scattering problems with a single incident wave</td>
</tr>
<tr>
<td></td>
<td>Shinya NISHIBATA</td>
<td>Asymptotic behavior of spherically symmetric solutions to the compressible Navier-Stokes equation with external forces</td>
</tr>
<tr>
<td></td>
<td>Dening LI</td>
<td>Conical shock waves in supersonic flow</td>
</tr>
<tr>
<td></td>
<td>Yasushi TANIUCHI</td>
<td>Remarks on global solvability of 2-D Boussinesq equations with nondecaying initial data</td>
</tr>
<tr>
<td>July 25, 2003</td>
<td>Ryuichi SUZUKI</td>
<td>Blow-up of solutions of quasilinear parabolic equations with localized reactions</td>
</tr>
<tr>
<td></td>
<td>SAKAGUCHI</td>
<td>Initial behavior of solutions of diffusion equations and symmetries of domains</td>
</tr>
</tbody>
</table>
UNIQUENESS IN INVERSE SCATTERING PROBLEMS WITH A
SINGLE INCIDENT WAVE

J. CHENG AND M. YAMAMOTO

1. INTRODUCTION

Let \(D \subset \mathbb{R}^2 \) be a bounded domain and \(k \in \mathbb{R} \). For \(x \in \mathbb{R}^2 \), we set \(r = |x| \). We consider a scattering problem with sound-soft obstacle:

\[
\Delta u + k^2 u = 0 \quad \text{in} \quad \mathbb{R}^2 \setminus \text{cl}(D)
\]

(1.1)

\[
u = 0 \quad \text{on} \quad \partial D
\]

(1.2)

\[
\lim_{r \to \infty} \sqrt{r} \left(\frac{\partial}{\partial r} u^S(x) - iku^S(x) \right) = 0.
\]

(1.3)

Henceforth \(\text{cl}(D) \) denotes the closure of a domain \(D \), and we set \(i = \sqrt{-1}, \ d \in S^1 \equiv \{ x \in \mathbb{R}^2 ; |x| = 1 \} \) and

\[
u^S(x) = u(x) - e^{ikx \cdot d}.
\]

Under suitable conditions on \(D \), for \(k \in \mathbb{R} \) and \(d \in S^1 \), there exists a unique \(H^1 \)-solution \(u(x) = u(D)(x) \) to (1.1) - (1.3), and we can define the far field pattern \(u_{\infty}(D) \left(\frac{\cdot}{r} \right) \):

(1.4)

\[
u^S(D)(x) = \frac{e^{ikr}}{\sqrt{r}} \left\{ u_{\infty}(D) \left(\frac{x}{r} \right) + O \left(\frac{1}{r} \right) \right\} \quad \text{as} \ r \to \infty.
\]

Inverse scattering problem: Determine \(D \) from the far field pattern \(u_{\infty}(D) \) for given \(k \) and \(d \) (possibly by changing them).

This inverse problem is also physically significant and has been studied by many authors. We refer for example to Colton and Kress [1].

The first basic topic for this inverse problem is the uniqueness: Does

\[
u_{\infty}(D_1)(x) = u_{\infty}(D_2)(x), \quad |x| = 1
\]

(1.5)

(for possible several \(d \) and \(k \)) imply \(D_1 = D_2 \)?
There is a classical uniqueness result within smooth D_1, D_2 if (1.5) holds for an infinite number of $d \in S^1$, which is proved based on Schiffer's idea (see Theorem 5.1 in [1]). For the uniqueness by means of a finite number of $d \in S^1$, see Colton and Sleeman [2], Theorem 5.2 in [1]. Moreover the uniqueness is known with a single d, provided that D_1, D_2 are contained in a ball of radius ρ such that $k\rho < \pi$. See Corollary 5.3 in [1], [2].

An important open problem is the uniqueness in the inverse scattering problem with a single (d, k). This problem is interesting from the theoretical point of view, because the far field patterns with many d are overdeteminig data for determination of D and we can expect the uniqueness with a single far field pattern. Moreover the formulation with a single (d, k) is helpful for justification of numerical reconstruction of D, because one can usually use far field patterns observed by taking a single or a finite number of d.

2. Main result

Let $k \in \mathbb{R}$ and $d \in S^1$ be arbitrarily fixed. Henceforth, for $P, Q \in \mathbb{R}^2$, we understand that \overline{PQ} is an open segment (not including the end points P and Q). Moreover for a polygonal domain D and $P \in \partial D$, $Q \notin cl(D)$ such that $\overline{PQ} \in \mathbb{R}^2 \setminus cl(D)$, by $\angle(\overline{PQ}, \partial D)$ we denote the least angle among the two angles in $\mathbb{R}^2 \setminus cl(D)$ formed by \overline{PQ} and ∂D. By a polygonal domain D, we mean that ∂D is composed of a finite number of segments.

Definition 2.1. Let $D \subset \mathbb{R}^2$ be a bounded polygonal domain. Let ℓ-points P_1, \ldots, P_ℓ, $\ell \geq 2$, satisfy the following conditions (i) - (iv):

(i) $P_1, \ldots, P_\ell \in \partial D$.

For $1 \leq j \leq \ell$, we set

$$\theta_j = \begin{cases}
\text{the exterior angle of } D \text{ at } P_j, & \text{if } P_j \text{ is a vertex of a polygon } D, \\
\pi, & \text{otherwise}.
\end{cases}$$

(ii) $\overline{P_jP_{j+1}} \subset \mathbb{R}^2 \setminus cl(D)$ for $1 \leq j \leq \ell$.

(iii) $\angle(\overline{P_{j-1}P_j}, \partial D) = \angle(\overline{P_jP_{j+1}}, \partial D)$, $1 \leq j \leq \ell$, if $\overline{P_{j-1}P_j}$ does not bisect θ_j at P_j.

(iv) For $1 \leq j \leq \ell$, we have $\frac{\theta_j}{\angle(\overline{P_{j-1}P_j}, \partial D)} \in \mathbb{Q}$.

Here we set $P_0 = P_\ell$ and $P_{\ell+1} = P_1$ and
\[
TR(D : P_1, ..., P_\ell) = \begin{cases}
\text{a closed broken line } P_1 \to P_2 \to \cdots \to P_\ell \to P_1 &
\text{if } P_1 P_\ell \text{ does not bisect } \theta_1 \text{ at } P_1, \\
\text{a non-closed broken line } P_1 \to P_2 \to \cdots \to P_\ell, & \text{otherwise.}
\end{cases}
\]
We call $TR(D : P_1, ..., P_\ell)$ a trapped ray of D with rational angles.

By $TR(D)$, we denote the sum of all the trapped rays of D with rational angles. If $TR(D) \neq \emptyset$, then we call D trapping with rational angles.

In other words, if $TR(D) = \emptyset$, then there are no rays in $\mathbb{R}^2 \setminus d(D)$ which go out to ∞ after finite times reflecting on ∂D subject to physical law (iii) with stricter constraint (iv) for angles of incidence.

We can state our main result:

Theorem 2.2. Let $k \in \mathbb{R}$ and $d \in S^1$ be arbitrarily fixed and let
\[
(2.1) \quad \partial D_1 \cap TR(D_2) = \emptyset \quad \text{and} \quad \partial D_2 \cap TR(D_1) = \emptyset.
\]
Then $u_\infty(D_1)(x) = u_\infty(D_2)(x), \ |x| = 1$, implies $D_1 = D_2$.

Corollary 2.3. Let D_1 and D_2 be star-shaped polygons. Then $u_\infty(D_1)(x) = u_\infty(D_2)(x), \ |x| = 1$, implies $D_1 = D_2$.

By the definition, the break of condition (2.1) happens rarely. However we do not know the uniqueness if (2.1) does not hold. In fact, we have the following trapping D_1, D_2 where our proof does not work.

Example 1. Let us form D_1, D_2 as follows.

1. We take a square $A_1 A_2 A_3 A_4$. For convenience, we set $A_1 = (0, 0), A_2 = (1, 0), A_3 = (1, 1), A_4 = (0, 1)$.

2. In the interior of the square $A_1 A_2 A_3 A_4$, we take a regular triangle $B_1 B_2 B_3$ (i.e., the lengths of the sides are equal). Here we choose vertices B_1, B_2, B_3 such that $B_1 \to B_2 \to B_3$ is counterclockwise and that $\overline{B_1 B_2} \parallel \overline{A_1 A_2}$.

3. Take the midpoints P_1 and P_2 of the sides $\overline{B_1 B_3}$ and $\overline{B_2 B_3}$ respectively.

4. Take a point Q_1 on the segment $\overline{B_2 P_2}$ arbitrarily.

5. Take two points Q_2, Q_3 on the side $A_2 A_3$ such that $\overline{B_3 Q_3} \parallel \overline{A_1 A_2}$ and $\overline{Q_1 Q_2} \parallel \overline{A_1 A_2}$.
(6) By D_1 we denote the interior bounded by the closed broken line $A_1A_2Q_2Q_1B_2B_1B_3Q_3A_3A_4$ (which is a non-convex polygon with those vertices). By D_2 we denote the interior bounded by the closed broken line $A_1A_2Q_2Q_1P_2P_1B_3Q_3A_3A_4$ (Figure 1).

Then D_1 is trapping with rational angles. In fact, let P_3 be the midpoint of the side B_1B_2. For D_1, we can see that $P_1P_2P_3$ satisfies conditions (i) - (iv), and we have $TR(D_1) \cap \partial D_2 \supset P_1P_2 \neq \emptyset$, that is, condition (2.1) does not hold. In this example, we note that $TR(D_1 : P_1, P_2, P_3)$ is a closed broken line $P_1 \to P_2 \to P_3 \to P_1$. For these D_1 and D_2, our proof does not work.

![Figure 1](image)

REFERENCES

DEPARTMENT OF MATHEMATICS, FUDAN UNIVERSITY, SHANGHAI 200433, CHINA

E-mail address: jchong@fudan.edu.cn

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, TOKYO 153-8914, JAPAN

E-mail address: myama@ms.u-tokyo.ac.jp