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MARKOV PROPERTY AND
COKERNELS OF LOCAL OPERATORS

KOICHIRO IWATA AND JORG SCHAFER

ABSTRACT. We discuss Gaussian generalized random fields indexed by smooth sec-
tions of vector bundles with respect to Markov properties. We propose a new set-up
which is suitable for the present question and within which new phenomena are de-
tected naturally. In particular, we give a counterexample to the belief that locality
in the RKHS implies germ Markov property. We also prove the close connection
between Markov property and cokernels of local operators. '

1. INTRODUCTION

In a paper by Preiss and Kotecky [8] delicate points concerning Markov properties
of generalized random fields are discussed. They clearly pointed out the origin of
confusions so far and they selected a presumably most suitable definition, which we
shall also follow. -

Let {X(¢); ¢ € Cs°(R%)} be a generalized random field defined on a complete
probability space (2, F, P). If D is an open subset of R¢, then we define

Fp = 0{X(¢); supp p C D} VN,
where N is the trivial sub o-field of F. On the other hand we set

fc = ﬂ {Fp;CcD,D open }

for cllobsed subsets C. We shall use  to denote the closure.

(1.1) Definition. We say that {X(y)} is germ Markov, if F5 L Fre\p | Fap for
any open subset D. (Two sub o-fields 75 and Fre\p are conditionally independent
given Fsp.)

A superstition on Gaussian generalized random fields used to be that the germ
Markov property is equivalent to the locality of the reproducing kernel Hilbert space
for the covariance. A counterexample, given in [8], to the above assertion is a mean
zero Gaussian system with

(12) Bx(ef]) = [ {o(e) + (@)}
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2 KOICHIRO IWATA AND JORG SCHAFER

We can check that 75 L Fg\p and Fyp = N for any open subset by examining
the corresponding condition in the Sobolev space carrying the inner product (1.2).
Hence {X(y)} is germ Markov. But the bilinear form for the reproducing kernel
Hilbert space (RKHS) has an integral kernel Ze~1==%| and therefore it is not local.

The superstition in former days was caused by the misunderstanding that the
following would hold whenever open subsets D, D_ cover R¥.

(1.3) fD+ =}-IR"\D_ VFD.,.nD_-

However, as for the Gaussian system characterized by (1.2) we have Fg # Flo, 00y V
F(=o0,0), because the latter is independent of o{X(f)}, where f(z) = e~1%l. Thus
this example also serves as a counterexample to (1.3). '
Based on the discussion so far, Preiss and Kotecky (8] proposed the so-called
“MI-Markov property” which is eqmvalent to the following definition.

(1.4) Definition. We say that {X(¢)} is c-Markov, if it is germ Markov and
satisfies

(1.5) Fge = Fpa\p V Fp for all open subsets D of R%.

(1.6) Remark. We can prove that, actually, (1.4) is equivalent to the fact that
Fp, L Fp, | Fp,nD, holds for any open covering {D;, D2} of R¢. This suggests
the name “c”-Markov. ‘

In order to compensate the incompleteness of this note concerning historical
developments we refer to [3], {6], [11] and references therein. The present topic was
also treated in the framework of Dirichlet spaces, see [5], [9] and [10]. However,
within this framework one can only handle scalar random fields, i.e. fields indexed
by scalar valued functions.

Therefore, in section 2 we introduce a new set-up which fits Gaussian generalized
random fields indexed by sections of vector bundles and we explain the relation
between a new Markov property to be defined below and the locality. Qur new
formulation can be proven to be equivalent to (1.4) as far as Gaussian systems are
considered. In addition we shall mention the connection to the results mentioned
above. Within our set-up degenerate fields, i.e. with degenerate covariance are easy
to handle. Actually in the context of multicomponent fields very large degeneracy
naturally happens, and in contrast to the non-degenerate scalar situation genuine
new phenomena arise. This is shown in section 3, where we report on a Gaussian
generalized random field whose reproducing kernel Hilbert space has locality but
which is not germ Markov. Moreover, for a class of Gaussian generalized random
fields we give a necessary and sufficient condition to be Markov (Theorem 3.13).
This criterion is clearly different from those appearing in the context of Dirichlet
spaces, see [10]. In particular, we see that locality of the RKHS is only part of the
necessary condition. Together with the example of Preiss and Kotecky this shows
the subtleties in the relation between germ Markov property and locality.

2. THE MARKOV PROPERTY AND THE LOCALITY

We formulate the question in terms of Hilbert space category, since we shall discuss
Gaussian systems. Let E — M be a real vector bundle over a paracompact C'*°-
manifold. We use the notation D = D(E) for the totality of C*>°-sections of E with
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compact supports. D is equipped with the Schwartz topology. Our objects to study
are continuous linear maps
v:D—H

with real Hilbert spaces H as targets, in which the images are dense. Given
v: D — 'H, we introduce a family of closed subspaces {H(D)} (resp. {H(C)}) of
H indexed by open (resp. closed) subsets of M as follows:

H(D) := {+(¢); supp ¢ C D},

(2.1) H(C) ::k‘n {H(D); ccD,D open}-

In the study of a Gaussian generalized random field {X(¢); ¢ € D}, the map
7: D — 'H is induced by the correspondence ¢ — X(¢) and therefore H is
realized as a closed subspace of the L%-space on (,F,P). We here adopt the
conclusion of Lemma 3 from (3] as a definition of Markov property. In our context
it reads as follows: f

(2.2) Definition. The map v: D — H is called Markov if
H(D) = H(OD) + H(M \ D)* for all open subsets D,

where L means the orthogonal complement.

With the help of standard martingale convergence theorems and Wiener-Ito
chaos decomposition one can prove that Definition 2.2 is actually another formu-
lation of the c-Markov property for Gaussian generalized random fields. We recall
the following fact, which is a standard tool to push the argument in the present
subject and whose proof is thus omitted.

(2.3) Lemma. Let Ko, KX, and K, be closed subspaces of H. K1 =Ko+ (/C1 ﬂlCz'L)
together with Ko C K is equivalent to that Ky ﬂ/Cg Ko and Kt = (lCl NK, 'L) +

(K1 + /Cz) :

The relation to the c-Markov property is now explained (with Remark 2.8 below
taken into account).

(2.4) Theorem. The map v: D — H is Markov, if and only if
H =H(D)+ H(M \ D) and H(D) = H(8D) + (H(D) N H(M \ D)*)
hold for all open subsets D.

(2.5) Remark. The latter condition appearing in (2.4) corresponds to the germ
Markov property. It then follows from (2.3) that v: D — H is not germ Markov
unless H(8D) = H(D) N H(M \ D).

We see that the Markov property defined in (2.2) consists of two conditions: The
first one reads as

(2.6) | H(M \ D)+ c H(D),
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for all open subsets D. This condition has been formulated as locality of the dual
(so called reproducing kernel) Hilbert space. In our set-up it is rather called semi-
locality. The second condition is given by

(2.7) H(8D) = H(D)NH(M \ D)

for all open subsets D, which so far received less attention than (2.6). The reason
is probably because within the framework of Dirichlet spaces (and scalar random
fields) (2.7) is trivially fulfilled, compare [10]. However, within the framework of
generalized random fields mdexed by sections of bundles it appears very naturally
as a necessary non-trivial condition.

(2.8) Remark. Since H = H(M\ D)*+H(M\ D) is always valid, (2.6) implies that
H = H(D) + H(M \ D). If (2.6) holds for all open subsets, then we can show that
H = H(D) + H(M \ D). Therefore Definition 2.2 alrea,dy includes the postulate
corresponding to (1.5).

One of the aim in the present paper is to show by concrete examples that we really
decompose Definition 2.2 into two independent parts. An example mentioned in
the previous section is germ Markov and hence, according to Remark 2.5, satisfies
(2.7), while the condition (2.6) breaks down. The other example we give, see
Remark 3.12, satisfies (2.6), while the condition (2.7) breaks down. Thus, according
to Remark 2.5 again, it is not germ Markov.

3. A COUNTEREXAMPLE

We mention a typical situation in which condition (2.7) fails. We suppose that M
is compact and connected. Given a fiber metric and a Radon measure chosen from
the C'*°-category, one can speak of square integrable sections of E — M. We will

use the short hand notation L?(E)’ to denote the collection of elements in D'(E)
- which are realizable as square integrable sections. Then clearly for each open subset
D we have the orthogonal direct sum decomposition

{f € L2(E) ; supp f C M\ (")D}
={f € L2(E) ; supp f C ]VI\E} &) {f € L2(E); supp f C D}.

If L*(E)' in (3.1) is replaced by a subspace equipped with a stronger vector
topology, condition (2.7) might break down, as we describe now using facts of the
preceding paragraph. Let F — M be another real vector bundle over M and
L: D(F) — D(E) be a linear elliptic differential operator with transposed mapping
L': D'(E) — D'(F). We denote the cokernel D(E)/ImageL by cokerL. Then
cokerL and the kernel kerL’ are naturally paired by

kerL’(ha [@])COker»L = D’(hﬁsp)'Da h € keI‘LI,(p € D(E)7

where D(E) 5 ¢ — [¢] € cokerL is the canonical mapping. Since L is a Fredholm
operator according to the general theory of elliptic differential operators, see e.g. [1],
this dualization determines the isomorphism kerL’ ~ Hom(cokerL, R) of two finite
dimensional vector spaces.

Let W' be a subspace of L?(E)' such that each ¢ € D(E) whose support does
not meet an open set D is characterized by the property that p/(f,o)p = 0 for
all f € W' with suppf C D. A typical example of such W' is a Sobolev space of
positive order with an inner product obtained by usual coordinate patching.

(31)



MARKOV PROPERTY AND COKERNELS OF LOCAL OPERATORS 5

(3.2) Definition. Given.an L2-norm on D(E), II: W' — cokerL denotes the linear
mapping characterized by

vkerL'<h;Hf>cokerL =.(h7f)L7(E)’ he kerL', f € w'.

Here we implicitly used the fact kerL' C L*(E)’, which follows from the elliptic
- regularity, see e.g. [1]. We intend to describe the so called unique continuation in
terms of the mapping II. We recall the following.

(3.3) Definition. We say L' has the unique continuation property if any h € ker L'
vanishing on a non-empty open subset vanishes throughout M.

It is known that quite a large class of elliptic differential operators have the unique
continuation property. We refer to [4] for this and the relation to strong continuation
as well as for historical development.

(3.4) Lemma. The unique continuation property for L' with respect to a non-
empty open subset D is equivalent to the surjectivity of the mapping

{f € W';suppf C D} > f — IIf € cokerL.

(3.5) Corollary. Let II be as in (3.2), and let H' be a subspace of W' with
kerII C ‘H'. Suppose that H' is equipped with a vector topology such that the
inclusion mapping H' — L2(E)' is continuous and moreover L' has the unique
continuation property with respect to open subsets D and M \ D, both of which
are non-empty. If

{veH' ;suppvC M\OD}

3.6 _ i
(3:6) vC{vEH’;supvaM\D}+{v€H’;supvaD},

then W' C H'.

Proof. Given f € W', with the help of Lemma 3.4, we can choose f;, fo € W'
so that suppfi C M \ D and f; + f € kerll, respectively suppfe C D and
fo — f € kerIl. We set v := f; + fo € kerll C H', which has the property that
supp v C M \ OD. It then follows from (3.6) that there exist vy, vy € H' with
vy € {v €H' ;suppv C M\ 5} and ve € {v € H'; supp v C D‘} respectively, and
v = v1 + v. Since the closure above was considered with respect to a vector topol-
ogy stronger than the L?(E)'-topology, we see that v; is contained in the first term
of the sum of the right-hand side of (3.1) and v, is contained in the second one. By
virtue of (3.1), we must have v; = f; and vy = f,, which implies f; € H'. Thus we
get f=H+f—-fi€ketll+H CcH. O

We now choose a Sobolev space of non-negative integer order as W',

(3.7) Lemma. Let H' be a closed subspace of W'. Then the following is equivalent
to (3.6).
{veH ;suppvc M\OD}

3.8 —
(32) C{vE'H’;supva.M\D}-i—{vE'H’;supvaD}.
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Proof. Clearly with respect to a natural Sobolev inner product we have
{veH ;suppvc M\ D} L {veH;sippvCD}.
Thus (38) is equivalent to (3.6). O
We need a criterion whether a subspace H' is closed in W'. In the following lemma,
W' may be any subspace of L?(E)'.

(3.9) Lemma. Let II be as in (3.2), and let H' be a subspace of W' with kerIl C
H'. Suppose that W' is equipped with a vector topology such that the inclusion
mapping W' — D'(E) is continuous. Then H' is closed in W'.

Proof. We set N := {Ilv € cokerL;v € H'}. Since kerll C H', we see that
H = {v e W,;Ilv € N}. On the other hand the continuity of the inclusion
mapping W' — D'(E) implies that of II, whose target is of finite dimension. Thus
the statement follows. 0O

We suppose that L' has the unique continuation property. For example we
consider the Laplace operator for a compact Riemannian manifold. Let H' be a
subspace of W' with kerll C H'. Then, by Lemma 3.9, H' is closed in W’. Any
Hilbert space structure on H" which forces the inclusion mapping H' — D'(E) con-
tinuous induces the same Fréchet topology as that induced by a natural Sobolev
inner product on W', due to the closed graph theorem. Therefore all of the re-
quirements in Corollary 3.5 and Lemma 3.7 are fulfilled. We denote the topological
dual of H' by H. Since the dual pair D(E), D'(E) is reflexive, a continuous linear
mapping v: D(E) — H is defined by

1 (v, 7(e))n = o {v,0)p, vEH, o€ DE).

We note that the image (D) is dense in H and the canonical norm is given by

I (@)lln = sup{|o (v, 0)pl5 v € H', o]l 1} ¢ € D(E).
Because (2.7) is the dual condition of (3.8) we get

(3.10) Proposition. Suppose H' # W'. Then (2.7) breaks down for any non-void
and non-dense open subset D of M.

Let us adjust the order of the Sobolev space W' to the order of the differential
operator L and provide W' with an equivalent norm :

(3.11) I fllwr = T f llcokert + IIL' 1l L2cry -
Set H' := {v € W'; Tlv = 0}. || - ||w~ restricted on M’ is denoted by || - ||
(3.12) Remark. || - |5 is semi-local in the sense that two elements in H' with

disjoint supports are mutually orthogonal. Actually the semi-locality is the dual
condition of (2.6). Therefore we get an example which satisfies (2.6) but does not
satisfy (2.7) if cokerL # {0}. '

In order to describe the canonical norm for H, we introduce the “Green” operator
G for L. Let A: L%(F) — L?(F) denote the orthogonal projector with kerA = kerL.
Then G: D(E) — D(F) is determined by GLE = A for £ € D(F) and kerG =
(ImageL)*. We now evaluate ||y(¢)lln = ||GellL2(r). This gives us at last the
following theorem, cf. [11].
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(3.13) Theorem. A mean 0 Gaussian random field {X(go)}gpefp with E[ X (¢)? ] =
(G, Go)2(v) is Markov iff cokerL = {0}.

(3.14) Remarks. (i) The theorem is inspired by solving L'X = Y for “Gaussian
white noise” Y, see [2], [6] and [12].

(ii) In the theorem above we may replace “Markov”, which actually means c-
Markov, by any of the following Markovian properties: sharp Markov in the sense
of Nelson, see [7], abstract Markov, see [12], or germ Markov.

In a separate article we shall present the logical development leading to the
present example and the proofs in detail as well. Furthermore, we intend to prove,
that (3.13) is the “generic” case in the sense that no matter how Markov property
is interpreted there exist no Markovian solutions of stochastic PDE’s described in
Remark 3.14, unless L has trivial cokernel.
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