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HOMOLOGY OF HYPERELLIPTIC
MAPPING CLASS GROUPS FOR SURFACES.

NARIYA KAWAZUMI

Department of Mathematics, Faculty of Sciences,
Hokkaido University, Sapporo, 060 Japan

INTRODUCTION.

The simplest of compact Riemann surfaces are hyperelliptic curves. By definition
these curves are the compactifications of the plane curves in the (z, w) plane

2g9+2

w? = H(Z—ai), (ai a5, (E#5)

i=1
and admit the hyperelliptic involutions given by
(z,w) — (z,—w).

The hyperelliptic mapping class group A, is the subgroup of the mapping class
group I'y corresponding to the hyperelliptic curves. As is known, Ay = T'y, and
Ay # T4 for g > 3. The cohomology of the group Ay has been studied by Benson-
Cohen [2], Boedigheimer-Cohen-Peim [4], Cohen [5] [6] and so on. They utilize so-
phisticated techniques coming from algebraic topology. The purpose of the present
paper is to show an alternative, more geometric and elementary way to analyze the
cohomology of the group A,. ‘ '

We fix our notations. Throughout this paper let ¢ > 2 and ¥, an oriented
2-dimensional C'*™° manifold of genus g. Usually the group of path-components
moDifft(Z,) is denoted by Ty (or M,) and called the mapping class group of
genus g, where Diff +(2y) denotes the topological groups consisting of all orientation
preserving diffeomorphisms of the C*° manifold 2, endowed with the C*° topology.
Let a point p € X, be fixed. Similarly we denote

I}l :=mDiff*(84,p) and Tyy:= 7roDiﬁ'+(Eg,TpEg),
where

Diff* (Z,,p) := {f € Dift*(S,); £(r) = p}
Diff* (2, T,%,) := {f € Diff*(Z,,p); (df)p = 17,5, }-
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20F36, 20F38, 20J05, 57NO5. M
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2 NARIYA KAWAZUMI

Then we have exact sequences
0—m(Ty) = T; =T, — 1,
0—~Z—-Ty, ——>F;—-+1 and

0 = m(T*8,) = Ty — Ty — 1,

where we denote by T* X, the fiber bundle over ¥, obtained by deleting the zero
section from the tangent bundle TZ,. _

Let ¢« € I'y be the mapping class of a hyperelliptic involution. Our main object
to study in this paper is the centralizer Ay of ¢ in the group T'y:

Ay:={p€ I‘g;¢t¢>‘l =1},

which we call the hyperelliptic mapping class group of genus g.
Let k be a field. We denote its characteristic by ch k. Easily one can deduce

(0.1) H*(Ay; HY (S, k) =0, if chk # 2.

Introduce the fiber producf Ag1 = Ay xp, Ty1. By (0.1), if chk [ (2 — 2g), the
extension .
00— m(T*8,) = Ag1 > Ay — 1

induces a Gysin exact sequence ‘
(02) o HA00) B HUA,) = HM () B HM(Bg0) — -
with coefficients in the field k, where € is given by

€:=ex—(2—29)"te1? € HY(Ay;k)

(Proposition 1.8). Here e, € H?*(T',;Z) is the n-th Morita-Mumford class [10] [11].

Let Hy 1 denote the space of holomorphic isomorphism classes (i.e., the moduli)
of triples (C,p,v), where C is a hyperelliptic curve of genus g, p € C, and v €
T*C :=T,C — {0}. In §2 we prove that H,, is an Eilenberg-MacLane space of
type (Ag,1,1), and give its description with the (braid) configuration spaces of the
complex line C. The description induces a cohomology exact sequence

(29) -+ — HI"*(Bygy1) = HY(Ay,1) = HY(Bagy2) = H ™ (Baygy1) — -+,

with arbitrary (trivial) coefficients. Here B, denotes the Artin braid group of
n-strands.

The group structure of the integral cohomology of the Artin braid group B, has
been already determined completely by Vainshtein [12] based on works of Arnol’d
(1] and Fuks [7]. Especially H*(B,;Z) has no p-torsion provided that p > [n/2]. In
83, using these results and the two exact sequences stated above, we compute the
cohomology H*(Ay; k) in the case when chk > g+ 1. The groups H*(A, : k) with
anytrivial field coefficients have already been determined by Boedigheimer-Cohen-
Peim [4]. They utilize sophisticated techniques coming from algebraic topology,
while our computation is more geometric and elementary.

The author would like to express his gratitude to Prof. Y.Matsumoto, Prof.
S.Morita and Dr. Y.Kasahara for helpful discussions:
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1. Symmetric Mapping Class Groups.

The purpose of this section is to prove the Gysin sequence (0.2) under some slightly
general situations.

Let G be a finite subgroup of the mapping class group I'y. The group G acts on
the surface I, because of the Nielsen realization [9]. Let S; be a subgroup of T’y
including G as a normal subgroup. We impose the following condition on the finite
group G; :

(1.1)  The quotient orbifold £,/G is the sphere S* ﬁith some elliptic points.

The group (t) of order 2 generated by the hyperelliptic involution ¢ satisfies the
condition, and we may take the hyperelliptic mapping class group A, as S,.
Let £ be a field with chk J$G. From the condition (1.1) follows

H*(G; H\(Z4: k) = 0.

Hence all the E%'? terms of the Lyndon-Hochschild-Serre (LHS) spectral sequence
of the extension

0-G— S8 —8,/G—1

with coefficients in H!(Z,; k) vanish, and so we obtain

(1.2) H*(Sy; HY(B,;k)) =0, if chk [{G.
Especially we have

(1.3) - H*(Ag; HY (Zg3k)) =0, ifchk#2.

Let §; and S,,1 denote the fiber products S} := 8, xr, Ty and S, 1 := & xr, Ty
respectively. The group extension ‘

(1.4) 0=Z— 8 —8)—1
defines the Euler classe € H 2(5;;2). We consider the extension
(1.5) 0 m(E,) =S, =8 — 1.

Let foper @ H1(S3) — H7%(S,) denote the Gysin map induced by the extension
(1.5). Substituting (1.2) into a lemma of Morita ([10] Proposition 3.1), we have

Proposition 1.6. Let k be a field with chk [ (2 — 29)§G. Then the LHS spectral
sequence of the extension (1.5) degenerates itself into a decomposition

HI(Ski k) = HI(S;3K) @ e U HX(Sy3 k).

Here it should be remarked that the bundle T* X, is aspherical (i.e., an Eilenberg-
MacLane space of type (m, 1)). We have an extension

1.7 0— m(T%8,) = S;1 > S, — 1.
; g g g
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Proposition 1.8. Let k be a field with chk [ (2 — 2¢9){G, and introduce a 4-
dimensional class ¢ € H*(S,; k) defined by

e:=ey3—(2—29)"te;
Here en = [, "1 € Hz"(I‘g, Z) is the n-th MontapMumford class[10][11] Then
we have a Gysm exact sequence
I Hq+a('59.1) = H’(Sg) - HqH(Sy) - Hq+4(8y,l) -
with coefficients in k.

When G = () and §; = A, the Gysin sequence (1.8) is nothing but the sequence
(0.2) stated in Introduction.

Proof. Since chk }(2 — 2g), we have k[S,]-isomorphisms
HYT*Z,) = H(T*Z,) = H'(Z,),
which implies the LHS spectral sequence of the extension (1.7) is given by
2 0, otherwise.

Hence it suffices to show that we may exchange the image d3(1) € H*(S,) of
1 € E3® = HO(S,) under the transgression ds for our class . From the Gysin
sequence induced by the extension (1.4)

H(87) 5 HY(S;) = HY(Sg1)  (exact)
and the decomposition (1.6), the image of d3(1) in H*(S;) is given by
ds(1) = (ae + w)e € H(S;)

for some w € H%(S,) and a € k. Applying the Gysin map Jiber to the above, we
have

0= ds(1) = (ae® + we) = ae; + (2 — 29)w,
fiber fiber :
which means w = (a/(29 — 2))ey, i.e., d3(1) = a(e? — (2 — 2g)~leje). Hence we
obtain

(D)= 1/@-20) [ ds(e=(e/2-2) [ (€ -@-2)ere)
= (a/(2-29))e.

Now, if a # 0, we may exchange ds(1) for € to obtain the Gysin sequence (1.8).
Hence it suffices to show that ¢ = 0 under the assumption a = 0. Suppose a = 0,
which implies d3(1) = 0 and

(r9) - 0 — HY(S,) — H*(S,,1) (exact).

If €2 is given by e = u+ve, u € HY(S,), v € H%(S,) from the decomposition (1.6),
then u = e? — ve vanishes in H*(S,,1) and so in H*(S,) from (1.9). Hence

v=(2-2¢9)! ve=(2—2g)! e?=(2-29)"te1, and
fiber fiber

e:ez—velz/ e2 —ve? = 0.
fiber

This completes the proof of Proposition (1.8) O__.
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2. Description of Moduli.

For ¢ > 2 let H,; denote the space of holomorphic isomorphism classes (i.e., the
moduli) of triples (C,p,v), where C is-a hyperelliptic curve of genus g, p € C
and v € T,C — {0}. In this section we prove that the space H,, is an Eilenberg-
MacLane space of type (Ag1,1) and give an description of Hy; with the (braid)
configuration spaces of the complex line C to obtain a cohomology exact seqence
(2.9).

It should be remarked that the holomorphic automorphism group of each triple
(C,p,v) € Hy,y is trivial. In fact, since ¢ > 2, any holomorphic automorphism of
C is an isometry under the hyperbolic metric, and any isometry fixing the tangent
space of one point coincides with the identity on the path-component containing the
point. This fact implies the existence of the universal family over the moduli H, ;.
The universal Riemann surface is given as the moduli of quadruples (C,p,v,p1),
where (C,p,v) € Hy; and p; € C, and its relative tangent bundle over Hy ; is given
as the moduli E, ; of quintuples (C, p,v,p;,v1), where (C,p,v) € Hy 1, p1 € C and
vy € T,,C. The diagonal map (C,p,v) € H;y, — (C,p,v,p,v) € Eg; is well-
defined and gives the tautological section of E;; — Hy ;. Thus the holonomy
homomorphism h associated to the universal family E,; has its own values in the
fiber product Ay 1:

h: 7('1(Hg,1) hand Ag,l = Ag ng I‘g,l.

Propoéition 2.1. The moduli H, 1 is an aspherical space (i.e., an Eilenberg-
MacLane space of type (x,1)), and the holonomy homomorphism h : wi(Hy 1) —
Ag,1 Is an isomorphism.

Proof. For a hyperelliptic curve C of genus ¢ we consider a bijection 4 of the set
{1,2,...,29+2} onto the set of all Weierstrass points of C. In this paper we call it
a level (structure) over the hyperelliptic curve C. We denote by Hy,; the space of
holomorphic isomorphism classes (i.e., the moduli) of quadruples (C, p, v, §), where
(C,p,v) € Hy1 and § is a level over C. Since the automorphism group of each triple
(C,p,v) € Hy, is trivial, the map w; : flg,l — Hg 1 given by forgetting the level
structure forms a principal G;,42 bundle. Here Gy443 is the 2¢g + 2-th symmetric
group. When we denote by H ¢ the moduli of levelled hyperelliptic curves (C, 8), the
natural map s : Hy1 — Hy, (C,p,v,8) — (C,0) is a C= fiber bundle whose fiber
is diffeomorphic to T*X,/(t), because the automorphism group of each levelled
hyperelliptic curve (C, ) is just {¢).
The well-known isomorphism

' ﬁg = {(z4...,22942) € (P* - {0, 1,00})¥ % 2 # zi (i# 7))}

implies that H, ¢ is aspherical. The space TX X, /() is also aspherical. Therefore the
space Hy 1 and hence the space Hy 1 = Hy,1/G2442 are aspherical.
In view of a theorem of Birman-Hilden [3] we have an extension

(2.2) 0— (1) = Ay — T2 1,

~ where I'} = moDiff*(S?, {n-point set}). It should be noted that I'} admits mapping
classes permuting the n reference points. Let A, and 1"3“'2 denote the kernels of
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the natural surjections Ay — &a412 and 1“?,-"*2 — &gg42, respectively. As is well-

known, m1(H,) = I'2*2. From the comparison of the restriction of (2.2) to the
subgroup 1‘3”2 with the homotopy exact sequence associated to the fiber bundle
wy : Hyy — H, follows a natural extension

0— 7I’1(Tx29) — Wl(ﬁg’l) - A-_q o d 1,
which implies a natural extension
0 — m(T*%,) — m(Hy1) — Ay — L.

Thus the holonomy homomorphism A is an isomorphism. O

The configuration space F,,C of ordered n points on f,he complex line C is defined
by ;
F.C:={(a1,...,an) €C* a; #a; ifi#j},

on which the n-th symmetric group &, acts freely by permuting of the components
2z;’s. We denote by B, C the quotient space F,,C/S,. By definition the Artin braid
group B, is equal to the fundamental group m(B,C). We introduce a complex
manifold X,;, n > 2, defined by

f=2"4s2" Pt sa1z+ 8,
f(z) has no multiple roots. ’

Xp 1= {f € Clz);

which is an open set of C"~1. Clearly we have a natural isomorphism

B, C=X,xC
‘ n 1 n 1 n
(a1,...,a5) — (Hi=1(_z —a; + ;Zi___la;), ;Eizla;),

so that we have
(2.3) _ X, ~ K(Bp,1).
Néw we introduce a subset of the moduli Hy; by

W, = {(C,p,v);p is a Weierstrass point.} C Hy ;.
We shall give natural holomorphic isomorphisms

Xog+1 2 W, and Xogyz & Hyy — W,

Let f = [[2%7*(z — a;) be a polynomial belonging to Xag4+1. We define the hyper-
elliptic curve H(f) by glueing two affine plane curves

2941
w?= f(z1) = H (z1 —a;) and
i=1
2941

w? = z2g+2f(z—1) =z HQ: a;z)
i=1
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along {z1 # 0} and {z # 0} under the relations
ziz=1 and w=2z,~ty,,

We denote by oo the point (2, w) = (0,0) and call it the point at infinity. Since w
is a coordinate centered at oo, we may define

of) = (;,d;)w € T H(f).

Thus we obtain a natural holomorphic map

Hagtr : Xogpr — Mg, [ (H(f),00,v(f)),
whose image is included in W,. When we set

29+1
foo(@) = [] (2= 2a:) € Xags (A€ CT-{0}),
i=1
we deduce ,
(2.4) (H(f),00,20(f)) = (H(f(any),00,v(f(a3))) € My,

for any A € C — {0}. A straightforward argument involved with (2.4) shows
Lemma 2.5. The holomorphic map Hagyy : X994y — W, is an isomorphism:
H2g+1 ZX29+1 =3 W_q.

Next let f = H?i'l"z(z — @;) be a polynomial belonging to X344 in turn. We
define the elliptic curve H(f) by glueing two affine plane curves
2942
wi? = f(z1) = [[(z1—a) and
i=1
2942
w? = 22y+2f(z—1) — H (1 _ a;z)
i=1
along {z; # 0} and {z # 0} under the relations _
ziz=1 and w=z "y,
We denote by ooy the point (z,w) = (0, 1) and call it the point at infinity associated
to the polynomial f. Since z is a coordinate centered at ooy, we define

u(f) = (;;’;)wl & Tuo, H ().

Here it should be remarked that (dw/dz)e, = 0. Thus we obtain a natural holo-
morphic map
Hagiz : Xagrz — Mgy, [ (H(f), 001, u(f)),
whose image is included in Hy; — W,. When we set
2942

foo(2) = T] (z = Aai) € Xagpa (A€ C—{0}),
i=1
we deduce
(2.6) (H(f),00,Au(f)) = (H(f(5)), 0055y, u(f(2))) € My,1
for any A € C — {0}. A straightforward argument involved with (2.6) shows
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Lemma 2.7. The holomorphic map Hagy2 : Xagy2 — Hg1 — W, is an isomor-
phism: _
Hagya : Xagy2 = Hyy — W,
It is necessary to describe the tubular neighbourhood of X344, embedded in Hy
through the map Hj,y1. We remark

4

dzzz-"”f(z‘l) =1 atz=0forany f € Xgg4:.

Hence there exist two open neighbourhoods U; and U3 of X441 % {0} in X441 XC
such that the map

X2g+1 xCOU — X2g+1 x C
(f,2) = (f, 22912 f(z"1))

is a holomorphic isomorphism of &, onto U,. We denote the inverse of this isomor-
phism by ‘ ‘
uZ""ula (faC)H(f)z(faC))'

When the point (f,w) € Xp,41 x C satisfies (f,w?) € Ua, the point

p(f,w) = (z(f, w?), w) € C2.

belongs to the curve H(f) and w is a coordinate of H(f) near the point p(f, w). We
endow each H(f) with the hyperbolic metric. Consider the open neighbourhood U
of Xog41 X {0} in Xa441 % C defined by

(fawz) €u2

o0, i.e., (z,w) = (0,0) is the unique
U= (fiw) € Xag41 x G ( . )= ).
closest Weierstrass point of p(z, w)

with respect to the hyperbolic metric.

The map

it~ o, () = HO20, (35) )
rlJ,w

is an open embedding. In fact, it suffices to show the injectivity of the map Hy.
Suppose '

)& H®), P, (1) )

p(h,z)

(H(f), p(f, w), (E%)

p(f,w)

for (f,w),(h,z) € U. The holomorphic isomorphism ¢ preserves the hyperbolic
metric and the Weierstrass points, and so maps the infinity co to the infinity oco.
This implies that there exists an affine transformation z — Az+4v, u,v € C, p # 0,
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mapping the roots of f onto those of h. From the definition of Xa441 follows v = 0,
namely, h = f,). If (z/,w’) = (2, w) ((z,w) € H(f)), we have

o = P 1z and (wl)2 (zl)29+2f(”)((zl) 1) =pu 1w2
Hence we obtain v’ = pu;~!w for some pl +/B, and £ =y~ Ly from p(h,z) =
¢(p(f,w)). Furthermore

(7)o =), =m (%)
.. L= <. =K .. )
4w/ yh ) dw / o) dw/ yhz)

which shows p; = 1. Consequently we obtain z = w and h = f(,,3) = f, as was to
be shown.

Thus the normal bundle of the embedding Hag41 : Xag41 — Hy,1 is complex
analytlcally trivial. From the Thom isomorphisms
H*? (Hy L Hgr — W) = H(X32441)

q+2(Hg 1, Hpt = Wy) = q(X29+1)’

follows a cohomology exact sequence
- = H17}(Xg41) — HY(Hgp) — H(X2g42) = HI™H(Xag41) — -+
with arbitrary (trivial) coefficients. Since H,; ~ K(Ag1,1) (2.1) and X, ~
K(Bn,1) (2.3), we obtain a cohomology exact sequence
(29)  -o = H'"*(Bagi1) — HY(Ag,1) — HY(Bagi2) = HI7 (Bygyr) — -+

with arbitrary (trivial) coefficients.

We conclude this section with two remarks.

First, using this description of the moduli Hy 1, one obtains the following pre-
sentation of the group Ay ;:

(2.8)

generators: oy, 1<i<2g+1,
relations: ;07 = oj0y, if |1 — j| > 2,
0i0i410; = 0i410;0;41, forl << 2g,
(020'3 "'02g+1)2g+1 =0102°---02¢4102g41 0201
A presentation of the group A; is obtained by adding a single relation:

(0109 02941) 12 =1

to the above.

Second the sequence (2.9) gives us some information on the cohomology H*(A,;
F2). As has been proved by Fuks [7], the natural surjection ¢, : B, — &, of the
Artin braid group B, to the n-th symmetric group &, induces a surjection

$n” : H* (6, F2) — H*(Bg; Fa).
Clearly the surjection ¢zg+2 Bagya — Gagyo passes through Ay 1. Hence H*(Ay1;
F3) — H*(Bag42;Fa) is surjective and the sequence (2.9) decomposes itself into the
short exact sequences
(2.10) 0 — HI7%(Bagy1;Fa) — HY(Ay1;F2) = HY(Bygy2;F2) — 0.

Since the F5-Betti numbers of B, have been determined by Fuks [7], one can obtain
those of Ay ;. -—
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3. Computations.

Now we shall give computations of the cohomology of the hyperelliptic mapping
class group A, based on the results in the preceding sections.
We begin by the first and the second cohomology. The sequence (0.2) implies

HYAg1: k)= HY(Ag; k), ifg=1,2and chk f(2-2g).

In view of the presentation of the group A, given by Birman-Hilden [3] Theorem
8, p.110, we have

Z[2(2g +1), if gis even,

(3.1) Hl(AsﬁZ) = { Z/4(29+ 1), if ¢ is odd.

Hence

0, ifchk f2(9—1)(2¢9 +1),

(32) H'(Agu;k) = H'(Agsk) = { k, ifchk|(2g+1)and chk f2(g—1).

From a result of Arnol’d 1] we have Hy(B,;Z) = Z and H%(Bggy2;k) = 0, if
chk # 2. Substituting them into (2.9), we obtain
0— HYAy1) = k—k— H*(Ay1) = 0 (exact),
and so
(3.3) H*(Ag 1 k) = HY(Ag k) = HY(A,1;k) if chk J2(g - 1).
Next we study the third cohomology. From Arnol’d [1] we have |
H?*(Bagy2; k) = H3(Bagt2;k) =0, ifchk#2.
This ivmplies that the map in (2.9)
HY(Bag41)(2 k) — H3(Ay,)
is an isomorphism for chk # 2. Consider the Gysin map induced by the extension
o T HY (g3 k) — HO(Ag k),
or equivalently, the map
i H3(Hy k) — HXTXH(f); k) =k
induced by the natural map
§TXH(F) = oty (p,9) = (H(S),p,0),

where f € Xa,49 and T* H(f) is the bundle obtained by deleting the zero section
from the tangent bundle of the Riemann surface H{f).
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Proposition 3.4. Let k be a field with chk # 2. The Gysin map induced by the
extension (1.7)

; m o H3(Ag 1 k)2 k) — HO(A k) (2 k)
is an isomorphism if and only if chk ) g(g + 1)(2¢ + 1). Especially, if chk [

2(g — 1), the necessary and sufficient condition for the class ¢ to be non-zero is
chk|g(g+1)(29+1).

Proof. Let A denote the set of all Weierstrass points on H(f) and F, the fiber
of T H(f) over the point a € A. Set U := T*H(f) ~ U,e Fa- We have the
commutative diagram

ot

HI(B29+1) = Ha(Hyl,l’Wg) = Ha(fg,l)

!
H'(Uaea Fa)

since the map i is transversal to the submanifold Wy (2 X2441) C Hy,1. Here all the
vertical arrows are induced by the map i and the 2 left isomorphisms are the Thom
isomorphisms (2.8). From (2.4) the image of the generator of H(Fq;Z) under i,
is represented by the loop in X344, f(exp4,m,), 0 €t £ 1. The loop induces a
braid in ng+12 ’

(0102 -2, 20D,

Therefore i* : H*(H,,1) = k — H3(T* H(f)) = k is equivalent to the multiplication
by 8g(g + 1)(2¢9 + 1), which completes the proof. O

When £ is a field with chk J2(g —1)g(g+1)(2¢ + 1), we may choose an element
& € H3(A,1; k) satisfying m(€) = 1 € H(A,; k). The map defined by

IR

BT H(f),0) — HYT*H(),

HI(Ag) — H™*3(A,,), u— €U Ty
gives a right-inverse of the Gysin map m. Consequently

Corollary 3.5.  Let k be a field with ch k Y2(g—1)g(9+1)(29 +1). Then we have
an isomorphism
H*(Ag 11 k) = (kD k) @ H*(Ag; k),

where £ € H3(Ay 15 k).
According to Vainshtein [12], HY(B,; k) vanishes if ¢ > 2 and chk > [n/2).

Corollary 3.6. If k is a field with chk = 0 or (> g+ 2 and #2g+1), then we
have

H*(Ag;k) =k (in dim0).

Proof. From (3.2) and (3.3) follows H1(A,;) = H2(A,;) = 0. As was already
shown, H3(A,1) = k. Substituting the results of Vainshtein [12] stated above into
(2.9), we obtain HY(Ay ;) = 0 for ¢ > 4. The corollary follows from the previous
one. O

Remark. This result and Theorems 3.8, 3.12 are included in those of Boedigheimer-
Cohen-Peim [4]. In the case chk = 0, this result follows from Arnol’d [1] by a
consideration involved with differential forms (cf: [8]).
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For the rest of this paper we study two easy cases.
First we consider the case when p = 2¢g + 1 is a prime number and when k is a
field with chk = p = 2¢g + 1. (3.1) induces a surjection

(3.7) XAy —Z/2g+1=Z/p.

Theorem 3.8 (F.R.Cohen [2][5]). Supposej) = 29 + 1 is a prime number and
let k be a field with chk = p. Then the surjection x (3.7) induces an isomorphism

X" H' (Z/p k)= H* (Ay; k).

Proof. Under the representation of Birman and Hilden [3] Theorem 8, p.110, the
mapping class v defined by

v = (1172 - Tog)(Tog41 -+ T T o - Tagt)
is of period 2¢ + 1 and satisfies x() # 0 € Z/p. This implies that the surjection x
splits, and so the homomorphism x* : H*(Z/p; k) — H*(A,; k) is injective. Recall
that H4(Z/p; k) = k for each ¢ > 0. Consequently it suffices to show
(39.9) dim HY(A,; k) < 1 '

for each ¢ > 1. In view of the results of Vainshtein [12] quoted in the proof of
Corollary 3.6 we have

H*(Bag41; k) = H*(Baga; k) = H*(S'; k).
Substituting them into the sequence (2.9), we obtain H¥(A, ;) = 0 for ¢ > 4. This
implies ;
HI=3(8,) > HY(Ag) — H(Ay) =0 (exact)

for ¢ > 4. Therefore the proof of (3.9.q) is reduced to that in the case ¢ < 3. (3.9.1)
and (3.9.2) follow from (3.2) and (3.3). (3.9.3) is already proved before Proposition
3.4. This completes the proof of the theorem. 0O

Finally we consider the case p = ¢ + 1 is a prime number and k is a field with
chk=g+1.

Proposition 3.10. The Poincaré series of the cohomology group H*(Ag; k) is
given by
1+ 3 4439 4 ¢2041,

Proof. From (3.2) and (3.3) follows H'(A, 1) = H3 (A1) = 0. It is alrevady shown
that H3(A, 1) = k. As has been proved by Vainshtein [12],

H*(Bygt1;k) = H*(S*; k), and
k, ifg=0,1,2g,2g+ 1,
= { & T1=0100

0, otherwise.
Substituting them into (2.9), we have an isomorphism H?(Ay 1) & HY(Bgg42) for
g > 4. The proposition follows immediately. 0O

HY(A,;) = H¥(A,) =0 by (3.2) and (3.3). Hence e; = 0 € H*(A,) and so
(3.11) e=ey € HY(Ak), ifchk=g+1.
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Theorem 3.12. Suppose p = ¢ + 1 is a prime number and k is a field with
chk = p =g+ 1. Then the Poincaré series of the cohomology group H*(A,; k) is
given by

(1483 29 44294 (1 — ¢~

Especially the group H*(Ag; k) is a free module over the polynomial algebra klez]
(freely) generated by the second Morita-Mumford class e; € H*(Ag; k).

Proof. It suffices to show that the Gysin map in (0.2) m : Hq(Ag 1) = HI73(Ap)
is a zero map for each ¢ > 3.

It is already proved in Proposition 3.4 for the case ¢ = 3. If ¢ # 3,2¢,29 + 1,
then H9(A,1) = 0 and the Gysin map is also a zero map. Especially the Poincare
series in question coincides with

QA+ 4129 42291 —tH = 1+ 8) 1 -tH)?

modulo ¢29. Since g 4+ 1(> 3) is a prime number, g is even and 29 — 3 = 1,
2g — 2 = 2 mod 4, which implies H?9-3(A,;) = H*-%(A,) = 0. Thus the Gysin
map m : H1(Ay1) — HI73(A,) is a zero map for ¢ = 2g,2¢ + 1, therefore, for all
¢ > 3. This completes the proof. [
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