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1. INTRODUCTION

Crystal surfaces are often endowed with energies whose dependence on orien-
tation n (outward unit normal) displays "low energy cusps" at a finite set Tl of
orientations;?! such energies lead to crystal shapes that are fully faceted, the
orientations of the facets being the orientations ne¢T. A possible model?2 for the
planar evolution of such crystals is based on an evolution equation relating the
normal velocity Vi(t) and crystalline curvature

Ki(t) = XjLi(t)_l . (11)
of each facet F;, where Li(t) is the length of F;, while X; has constant value -1,

+1, or O according as the crystal is strictly convex, strictly concave, or neither

near F;; this evolution equation has the form’
p(ndVi(t) = tnyK;t) - U, (1.2)

where g(n;)> 0, the kinetic modulus, and 8(n;) >0, the Wulff modulus,® depend
only on the (fixed) orientation n;eJl of F;, and where U is the constant bulk energy

in is the set of orientations that appear on the Wulff crystal (the unique crystal that
minimizes total surface energy at fixed enclosed area (in the plane)).

2Proposed independently by Taylor (Ta] and Angenent and Gurtin [AG] (cf. [Gu]).

3!(n) is the length of the facet on the Wulff crystal that has orientation n. For all of our
results, except those of Section 5, we use only the condition 8(n)>0; the form of the

underlying surface energy is irrelevant.



of the crystal relative to its exterior.

In many respects this evolution equation exhibits behavior typical of a para-
bolic PDE,%* and it seems reasonable to ask whether it has an associated
comparison principle. What makes this question especially important is that
comparison can form the basis for weak formulations of the underlying evolution
problem.® |

We here establish such a comparison principle:® we show that if C and C
are admissible evolving crystals with €(0) contained in €(0), then C(t) is contained
in C(t) as long as both evolutions are well defined.

4For example, the curve-shortening equation V=X (V=normal velocity, K-=curwvature) for
smooth boundary curves; in fact, Giréo and Kohn [GK] and Girio [Gi] use crystalline evolution
as a method of approximating generalized curve-shortening equations.

5This issue will Dbe addressed in a forthcoming paper of Giga. For smooth interfacial
energies comparison is a key tool in establishing global existence via the level-set method
[CGG,ES). An alternative approach to existence is that of Fukui and Giga [FG], who establish
a weak formulation for motion by crystalline curvature using an adaptation of nonlinear
semnigroup theory; the study [FG] is limited to U=0 and to an interface which is. the graph of
a (spatially periodic) function. ’

6 The comparison theorem (12H) of (Gu] is valid only when restricted to convex crystals.



2. CRYSTALS
Let C be the closure of an open, possibly unbounded set in the plane. We then
refer to C as a crystal if its boundary 9C is a piecewise linear curve; that is, if 9C

is the finite union
oC = U F; | | | o (21)

of (closed, maximally connected, possibly infinite) line segments F; called facets.
‘We use the following terminology: (2.1) is the facet decomposition of 9C; the
point of intersection of adjacent facets is called an edge; the outward unit normal
n to oC is the orientation of C.

We will study crystals whose orientation belongs to a finite subset Jl of the
unit circle S'; M is related to the lattice structure of the crystal and should be
envisaged as representing stable orientations of the crystal surface. The unit
vectors neJl will be referred to as admissible orientations. The identification of
admissible orientations n with their argument 8¢R/2nZ through n = (cosg,sin®)
renders meaningful the term adjacent orientations, -or, more precisely, -
adjacent orientations, as well as the assertion "m lies between n and p" (for
m,n,peN).

Let C be a crystal and let a be a point on dC. Then C is admissible at a if:

(i) the orientation of each facet containing a is Tl-admissible; and
(ii) for a an edge, the orientations of the two facets that intersect at a are

Jl-adjacent. '

C is admissible if C is admissible at each point of dC. We will also use a local
definition of admissiblilty: C is admissible near a if there is an open set W con-
taining all facets containing a such that C is admissible at every point of WNaC.
Here is is imbortant to note that, since facets are (relatively) closed, if an open set
W contains a facet F, then W contains all facets adjacent to F.

For acR? and neS?, let

H(an) = { xeR?: (x-a)n<0) (2.2)

denote the halfspace whose boundary contains a and whose outward unit normal
is n; for n an admissible orientation, #(a,n) furnishes a trivial example of an ad-
missible crystal.

Given a cfystal C, let F be a facet of C, let n be the orientation of F, and let L
denote the length of F. The transition number % for F is defined as follows: for



acF,
X = -1 if the facets adjacent to F belong to H(a,n);
X = +1 if the facets adjacent to F belong to H(a,-n);
X =0 - otherwise;

Roughly speaking, X is -1 or +1 according as C is convex or concave near F (Figure
1). In fact, we say that C is convex if the transition number of each of its facets

is -1,
Finally, the crystalline curvature K of F is defined by

K= xL? if L ¢ eo;
K=20 if L = oo,
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Figure 1. The set N of admissible orientations and a corresponding crystal C. The

transition numbers are X1=+1, X,=X,4=0, X3=X4=X5=X6=X7=-1.



3. MAXIMUM PRINCIPLE

A classical maximum principle—for smooth real functions—asserts that if f<f
in a neighborhood of x4 and if f(x4) = f(x,) = y,, then
() f'(xq) = F'(xg),

(i) £"(x0) = T"(x0). |
The first condition asserts that the graphs of f and f have a common normal at
(%0,Y0), while (ii) compares curvatures of the two graphs.

We now derive an analogous result for crystals. Let € and C be crystals. We
say that dC touches 9T at a from inside if a ¢ dCN AT and if there is an open
neighborhood W of a such that: h
(a) W contains all facets of C that contain a or all facets of G that contain a; and
(b) CAWcCTnw.

There are four possibilities for the touching of C and € (Figure 2):

(1) facet-facet: a belongs to a facet interior of each crystal;

(2) edge-facet: a belongs to an edge of one crystal and a facet interior of the
other; ' '

(3) proper edge-edge: a belongs to an edge of each crystal and, near a, C and C

intersect only at a;

(4) improper edge-edge: a belongs to an edge of each crystal, but the touching
at a is not proper. “ 3 ;
The next result is an analog of the classical maximum principle.

MAXIMUM PRINCIPLE FOR CRYSTALS. Let C and T be crystals with C and
T admissible near a. Assume that dC touches 9T at a from inside. Then:
(i) There are facets F and F of C and T such that acFNF and such that the
orientation of F equals that of F. Moreover, if a is a proper edge-edge
touching{ then the set of orientations of facets of C meeting at a equals the

corresponding set for C.
(ii) IfF and F are facets of C and C with acFNF and with the orientation
of F equal to that of F, then the curvatures K and K of F and F satisfy
K < K. (3.1)
If K=K=0, then 0C = 2T in some neighborhood of F and F.

Proof. For a facet-facet touching the definition

"9C touches OC at a from inside" | (3.2)
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Facet-facet Edge-facet'

Proper edge-edge

> Improper edge-edge

Figure 2. The four types of touching at a.



implies that the facets of C and T whose interiors intersect at a must have the
same orientation, for otherwise they would cross. Consider next an edge-facet
touching with F and e, respectively, the facet and edge in question. Then (3.2)
implies that the orientation of F must lie between those of the facets G and H of
the other crystal that meet at e. But, by admissibility, the orientations of G and H
must be Jl-adjacent. Thus the orientation of F must coincide with either that of G
or that of H.

For an improper edge-edge touching there are facets F and F of C and C such
that acFNF and such that, for some beFNF, 9C touches dC at b from inside, with
the touéhing of facet-facet type; thus, as above, F and F must have the same
orientation.

For a proper edge-edge touching there are two subcases to consider; to state
these let W be an open set that contains a and intersects only those facets of T
and E that contain a. Case o: WNAC and WNIC are contained in a halfspace H
with a<9oH. Case p: there is a halfspace H with a<d¥ such that WNIC is contained
in ¥ and WNOT is contained in the closure of the complement of H. These two
cases are shown in Figure 3 and in either case the requirement that n; and n, not
lie between nj and nj; and that h; and nj not lie between n; and n, implies that
n; = n; and n, = Nj, so that the set of orientations of facets of & meeting at a
equals the corresponding set for C.

(ii) We assume first that both F and F are finite. Let X and L denote the
“transition number for—and length of— F, and let ¥ and L denote the correspon-
ding quantities for F. Suppose that K>0 so that ¥ = 1. By (3.2), either X <0 or X=1
and L> L. In both cases K<K and in the latter case equality holds only if L= L, so
that 9C = 3T in some neighborhood of F = F. The case X<0 is treated analogously. If
K=0, then X =0 and X <0, so that K<K. Finally, if F and F are infinite, then
K=K=0; if F is infinite and F finite, then K=0 and X <0, so that K< K, and
similarly for F is infinite and F finite. O

Remarks.

1. If in (i) of the Maximum Principle, a is an improper edge-edge touching,
then the set of orientations of facets of C meeting at a may not equal the corres-
ponding set for C (Figure 2). ,

2. The edge-facet and improper edge-edge touchings are essentially facet-facet
touchings; that is, there are points b arbitrarily close to a such that dC touches
9C at b from inside with b a facet-facet touching.
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Figure 3. Proper edge-edge touching.



4. EVOLVING CRYSTALS. COMPARISON THEOREM

Our final step is to establish a comparison theorem for crystals C(t) that
evolve with time t. The set Tl of admissible orientations is fixed throughout the
discussion.

By an admissible evolving crystal € (of duration T=Te) we mean a one-
parameter family C(t), 0st<T, of admissible crystals such that, writing

N = -
oC(t) = U Fy(t) ‘ (4.1)
i=1 ‘ S

for the facet decomposition of dC(t):

(i) N is independent of t,

(ii) each facet F(t) has orientation n; that is independent of t,
(iii) the position vector of each edge varies smoothly in t.
C is convex if C(t) is convex for 02 t<T. Implicit in the definition of an admissible
evolving crystal is the requirement that a facet present at some t¢[0,T) is present
for all te[0,T), so that facets are neither created nor destroyed.

We say that an admissible evolving crystal C corresponds to data {p,?,U)

if: ' _

(i) B(n)>0 and ¢(n)>0 for every admissible orientation neﬂ,

(i) each facet Fi(t) evolves on (0,T¢) according to the evolution equation

BV = MK + U, | Y

with n; the orientation, V(t) the normal velocity in the direction n;, and K;(t)
the crystalline curvature of Fi(t).
Here g is the kinetic modulus, ¢ is the Wulff modulus, and U is the bulk energy.
For our first comparison theorem the two crystals correspond to the same
moduli, but the bulk energies are different. In stating this theorem note that, for
C and T admissible evolvihg crystals, the distance

dist (9C(1),dC(t)) = inf { 1x - XI; x€dC(t), XeIT(1)) (4.3)
is actually attained, since each crystal has a finite number of facets.

FIRST COMPARISON THEOREM. Let C and C be admissible evolving crystals
of equal duration T. Let {g,!,U} and {B,Q,I—J} denote the data corresponding to C
and C, with U » U. Assume that



c(0)c E(o). | (4.4)
Then: |
(a) C(t)cT(t) for all te[0,T).
(b) dist (9C(t),0T(t)) is a nonincreasing function of t.

Proof. The proof will proceed in a series of steps.

1. Admissible evolving crystals are translation invariant: if C(t), 02t<T, is an
admissible evolving crystal corresponding to data {g,%,U)} and r is a vector, then
C(t) +r, 0<t<T, is an admissible evolving crystal corresponding to the same data.

2. An admissible evolving crystal C corresponding to {8,2,U} has its evolution
governed by a system of coupled ODE's’ (one equation for each facet) and from
the theorem on smooth dependence on data for this ODE system one can show
that for each € there is an admissible evolving crystal C; that satisfies C.(0) = C(0),
corresponds to the data {B,?,U+¢)}, and is such that: (i) its duration T, satisfies
T,—T as €—0; and (ii)

dist (9C.(t),0C(t)) - 0 as €—0

uniformly for t in any closed interval of [0,T). ‘

3. Our next step is to show that, granted (a), d(t) := dist (3C(t),dT(t)) is nonin-
creasing. It suffices to show that d(0) skd(t), 0<t<T. There is a vector r with length
d(0) such that C(0) +r is contained in C(0). By Step 1, C(t) +r is an admissible
evolving crystal, and appealing to (a) for this translated crystal, we conclude that
C(t) + r is contained in CT(t). Thus d(0) < d(t). k '

4. We turn now to the proof of (a). Assume that C(t) is not contained in C(t)
at some t¢(0,T). Then

0 <to:=sup{t Ct)cTH)) ‘ (4.5)

satisfies to<T. Further,‘ in view of the Maximum Principle and Remark 2 of
Section 3, C(tg)C C(ty) and there is a point be C(te)N T(ty) such that dC(ty) touches
dC(ty) at b from inside with b either a facet-facet touching or a proper edge-edge
touching; and such that: |

(«) for b a facet-facet touching, if F and F are the relevant facets of C and C,
then F and F have common orientation, n say, and the normal velocities V and Y
of F and F in the direction n satisfy

7¢t. (10.18) of [AG), (12.29) of (Gul.



V(ty) 2 Vito); ‘ (4.6)

(B) for b a proper edge-edge touching, b is an edge of adjacent facets F; and F,
of C and an edge of adjacent facets f‘:,_ and i_, of C, and (renmumbering if
necessary), for i=1,2, F; and F; have the same orientation n; and

Vilte) = Vylte) or V,(to) 2 Volte), | (4.7)

where V; and V; are the velocities of F; and F; in the direction n;.

5. Assume that U> U. Consider (o) of Step 4. By the Maximum Principle, the
crystalline curvatures corresponding to F and F satisfy K(to) < K(to). Thus, applying
‘the evolution equation (4.2) to each of the crystals, we find, with the aid of (4.6),
that UsU, a contradiction. An analogous argument yields a contradiction for (p) of
Step 4. Thus (a) is proved for U>U.

6. Our final step is to prove (a) for U= U. In place of C we use the admissible
evolving crystal C; corresponding to U+¢ (> U) discussed in Step 2. By Step 5,
C()C T(t) for 0st< T, and letting €= 0 we conclude that C(t)c T(t) for 0<t<T. 0O

Remarks. .

1.1f U> U, (1) is actually contained in the interior of C(t) for 0<t<T. Indeed, if
not there is a t;>0 such that dC(t;) touches dC(t;) at some b from inside. Since
C(t)c T(t) for all t>0 and since t; >0, we have the same speed relations of facets
near b as described in Step 4 of the proof of the First Comparison Theorem, an
observation that yields, via the argument of Step 5, a contradiction to U> U.

2. The standard proof of comparison for the heat equation does not require
differentiability of the initial data. Within our framework differentiability is
analogous to admissibility. Our assumption of admissiblilty of the initial crystal
allows for thé simple argument given in Steps 4 and 5. If we drop this assumption
(but continue to assume that the crystal is admissible for t> 0), then, letting tq be
as defined in (4.5), there is a t; >ty and a point beC(t;)\ €(t;) such that

dist(b,dC(ty)) 2 dist(x,dT(ty)) for all xeC(t), 0 <t < t,.

One can compare orientations, curvatures, and speed around b and reach a con-
tradiction to U> U as in Step 5. This argument furnishes a proof for nonadmissible
initial data but requires U> U as well as continuity of C(t) and T(t) (as sets) up to
t=0. For the case U = U, our argument of Step 6, which utilizes the corresponding

ODE systern, does not apply directly, as this system is not well defined for facets of
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zero length. We will not consider this question in the present paper.

A useful extension of the comparison theorem allows the moduli of the cry-

stals to differ.

SECOND COMPARISON THEOREM. Let € and T be admissible evolving crys-
tals of equal duration T, with either C or € convex. Let C and € correspond
to data {p,2,U)} and {8,?,U), with

U/ = U/p, 2/p > ¥/B. (4.7)
Assume that
C(0)c T(0). (4.8)

-Then:
(a) C(t)cT(t) for all te[0,T).
(b) dist (dC(t),0T(t)) is a nonincreasing function of t.

We omit the proof, which is similar to the proof of the first comparison
theorem.

We now give a weaker notion of an evolving crystal By a weakly admissible
evolving crystal € corresponding to the data {g,?,U) we mean a one-para-
meter family C(t), 0st<T, of crystals such that:

(i) C(t) is continuous in t on [0,T:) as a set-valued function [AF];

(i) there are finitely many times tg= 0<t;<t,¢...<ty <Te such that Cis an
admissible evolving crystal corresponding to {g,?,U} on each [t;tj.,),
J=0,1,2,...,M-1. |

This definition allows for the disappearance of facets at the times t,t,,...<tpy.q.

THEOREM. The two comparison theorems hold without change for weakly

admissible evolving crystals.
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5. BOUNDS ON CRYSTAL GROWTH

We now use the second comparison theorem to establish bounds on crystal
growth.® We assume we are given a bulk energy U, a kinetic modulus g(n) >0,
and a Wulff modulus 2(n)> 0, with both moduli defined for every neJTl. We assume
further that the Wulff modulus correspond to interfacial energy f(n)>0, neN.
Precisely, we assume that the discrete set f(n)-1n, ne7, lies on the boundary of

its convex hull, so that the Wulff crystal
A={x: xn s f(n) for all neN)} | (5.1)

is convex and fully faceted with Tl as its set of orientations; ¢(n) is then the length
of the facet on A with orientation neT.% Granted this, if B(n) satisfies

f(bn)b_(n) = K = constant (5.2)
and if z(t) is a solution of the differential equation

kz'(t) = -{U + z(t)-1] o (5.3)
on a maximal time-interval (0,T) with z(t) 2 0, thenl0

C(t) = z(t)A is an admissible evolving crystal ,
corresponding to the data {p,?,U). (5.4)

For U= 0, C(t) shrinks to a point in finite time; for U<O0, Ey(t) will shrink to a point
or grow without bound according as z(0) < |Ul or z(0) > |UI.

Let C be an admissible evolving crystal corresponding to the data {p,?,U}, and
let z57>0 and z¢*> 0 denote the largest and smallest numbers such that, for som‘e

vectors b~ and b™,
2o"(A+b”) € C(0) C zg*(A+b*). | (5.5)

Further, let k*>0 denote the smallest constant such that g*(n):= k*f(n)-12p(n) for
all neT, and let K™ >0 denote the largest constant such that p~(n):= k" f(n)-1<s(n)
for all neT, and let z(t) with z*(0) = zo* denote the solution of (5.3) with k=%,

8¢Cf. Soner [Sol, -who uses analogous ideas to bound the growth of smooth crystals.
9ct. §12 of [Gul.
10(Ta) for U=0; (12G) of [Gul for the general case.
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Then, by (5.4) and the second comparison theorem,
z7(t)(A+b7) € Tt) € z*(t)(A+b*). (5.6)

Thus for U20 or for U<0 and |U| sufficiently small, C(t) lies between convex
crystals that each shrink to a point in finite time; for U<0 and [U| sufficiently
large, C(t) lies between convex crystals that grow without bound.
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'FIGURE CAPTIONS

Figure 1. The set Tl of admissible orientations and a corresponding crystal C. The
transition numbers are X =+1, X,=Xs=0, X3=X4=Xs=X¢=X,=-1.

Figure 2. The four types of touching at a.

Figure 3. Proper edge-edge touching.



