Title	A time-like surface in Minkowski 3-space which contains light-like lines
Author(s)	Izumiya, S.; Takiyama, A.
Citation	Hokkaido University Preprint Series in Mathematics, 272, 1-7
Issue Date	1994-12-1
DOI	10.14943/83419
Doc URL	http://hdl.handle.net/2115/69023
Туре	bulletin (article)
File Information	pre272.pdf

A TIME-LIKE SURFACE IN MINKOWSKI 3-SPACE WHICH CONTAINS LIGHT-LIKE LINES

S. Izumiya and A. Takiyama Series #272. December 1994

HOKKAIDO UNIVERSITY

PREPRINT SERIES IN MATHEMATICS

- # 246 T. Nakazi, M. Yamada, (A2)-Conditions and Carleson Inequalities, 27 pages. 1994.
- # 247 N. Hayashi, K. Kato and T. Ozawa, Dilation Method and smoothing Effect of Solutions to the Benjamin-ono Equation, 17 pages. 1994.
- # 248 H. Kikuchi, Sheaf cohomology theory for measurable spaces, 12 pages. 1994.
- # 249 A. Inoue, Tauberian theorems for Fourier cosine transforms, 9 pages. 1994.
- # 250 S. Izumiya, G. T. Kossioris, Singularities for viscosity solutions of Hamilton-Jacobi equations, 23 pages. 1994.
- # 251 H. Kubo, K. Kubota, Asymptotic behaviors of radially symmetric solutions of $\Box u = |u|^p$ for super critical values p in odd space dimensions, 51 pages. 1994.
- # 252 T. Mikami, Large Deviations and Central Limit Theorems for Eyraud-Farlie-Gumbel-Morgenstern Processes, 9 pages. 1994.
- # 253 T. Nishimori, Some remarks in a qualitative theory of similarity pseudogroups, 19 pages. 1994.
- # 254 T. Suwa, Residues of complex analytic foliations relative to singular invariant subvarieties, 15 pages. 1994.
- # 255 T. Tsujishita, On Triple Mutual Information, 7 pages. 1994.
- # 256 T. Tsujishita, Construction of Universal Modal World based on Hyperset Theory, 15 pages. 1994.
- # 257 A. Arai, Trace Formulas, a Golden-Thompson Inequality and Classical Limit in Boson Fock Space, 35 pages.
 1994.
- # 258 Y-G. Chen, Y. Giga, T. Hitaka and M. Honma, A Stable Difference Scheme for Computing Motion of Level Surfaces by the Mean Curvature, 18 pages. 1994.
- # 259 K. Iwata, J. Schäfer, Markov property and cokernels of local operators, 7 pages. 1994.
- # 260 T. Mikami, Copula fields and its applications, 14 pages. 1994.
- # 261 A. Inoue, An Abel-Tauber theorem for Fourier sine transforms, 6 pages. 1994.
- # 262 N. Kawazumi, Homology of hyperelliptic mapping class groups for surfaces, 13 pages. 1994.
- # 263 Y. Giga, M. E. Gurtin, A comparison theorem for crystalline evolution in the plane, 14 pages. 1994.
- # 264 J. Wierzbicki, On Commutativity of Diagrams of Type II₁ Factors, 26 pages. 1994.
- # 265 N. Hayashi, T. Ozawa, Schrödinger Equations with nonlinearity of integral type, 12 pages. 1994.
- # 266 T. Ozawa, On the resonance equations of long and short waves, 8 pages. 1994.
- # 267 T. Mikami, A sufficient condition for the uniqueness of solutions to a class of integro-differential equations, 9 pages. 1994.
- # 268 Y. Giga, Evolving curves with boundary conditions, 10 pages. 1994.
- # 269 A. Arai, Operator-theoretical analysis of representation of a supersymmetry algebra in Hilbert space, 12 pages. 1994.
- # 270 A. Arai, Gauge theory on a non-simply-connected domain and representations of canonical commutation relations, 18 pages. 1994.
- \$271 S. Jimbo, Y. Morita and J. Zhai, Ginzburg landau equation and stable steady state solutions in a non-trivial domain, 17 pages. 1994.

A TIME-LIKE SURFACE IN MINKOWSKI 3-SPACE WHICH CONTAINS LIGHT-LIKE LINES

Shyuichi Izumiya and Akihiro Takiyama

Simple characterizations of a pseudosphere or a time-like plane in Minkowski 3-space by the existence of light-like lines are given.

1. INTRODUCTION

There are many simple characterizations of a sphere in Euclidean 3-space [1,3,4]. For example "all geodesics are plane curves" characterizes a sphere or a plane. In [4] Takeuchi gave a much simpler and practical characterization of a sphere. Her characterization is as follows: if there exist four geodesics through each point of a complete surface such that they are plane curves, then the surface is a sphere or a plane. She also gave other characterizations of a sphere or a plane in [4].

In this paper we consider the similar problem for a pseudosphere $S_1^2(r,a)$ (for definition, see Section 2) and a time-like plane in Minkowski 3-space. The normal vector field on a pseudosphere in \mathbb{M}^3 is light-like. We say that a surface S in \mathbb{M}^3 is time-like if the normal vector field on S is space-like. It is easy to show that if all geodesics on a time-like surface are plane curves then the surface is an open subset of a pseudosphere or a time-like plane in Minkowski 3-space \mathbb{M}^3 (cf., [5]). We give characterizations which are much simpler and peculiar to the case for a pseudosphere or a time-like plane in Minkowski 3-space \mathbb{M}^3 . Our main results are as follows.

THEOREM A. Let S be a connected time-like surface in Minkowski 3-space \mathbb{M}^3 . For each point p of S, suppose that there exist two light-like curves on S through p such that they are plane curves. Then S is a open subset of a pseudosphere or a time-like plane.

We have corollaries of the theorem as follows:

COROLLARY A.1. Let S be a time-like surface in Minkowski 3-space \mathbb{M}^3 . For each point p of S, suppose that the intersection of S and T_pS , which is considered as an affine plane in \mathbb{M}^3 , is the two lines such that each direction is light-like. Then S is a pseudosphere.

The assumption of the corollary can be interpreted as that if two lines can be pressed entirely at a point p of the surface, then these are the light cone on the tangent plane.

We have a simple characterization of a time-like plane in M³ as an corollary of Theorem A.

COROLLARY A.2. Let S be a connected time-like surface in M^3 . For each point p of S, suppose that there exist two light-like curves of S which are plane curve and one non-light-like line on S through p. Then S is a open set of a time-like plane.

Another characterization by the existence of planar geodesics is given by the following.

THEOREM B. Let S be a connected time-like surface in Minkowski 3-space \mathbb{M}^3 . For each point p in S, suppose that there exist one light-like curve and two non-light-like geodesics on S through p such that they are plane curves. Then S is an open subset of a pseudosphere or a time-like plane.

We also have the following simple characterization of a time-like plane in M³ as a corollary of Theorem B.

COROLLARY B.1. Let S be a connected time-like surface in Minkowski 3-space \mathbb{M}^3 . For each point p in S, suppose that there exist one light-like curve, one non-light-like geodesics on S such that they are plane curves and one non-light-like line through p. Then S is an open subset of a time-like plane.

We remark that these theorems are the best possible in some sense (cf., Section 4). For space-like surfaces, the induced metric on the surface is positively definite, so that we can give characterizations of a hyperbolic surface $H_1^2(r,a)$ by exactly the same arguments as those in [1,3,4]. Thus we do not consider this case in this paper.

All surfaces and maps considered here are of class C^{∞} unless stated otherwise.

2. BASIC NOTIONS

Let $\mathbb{R}^3 = \{(x_1, x_2, x_3) | x_1, x_2, x_3 \in \mathbb{R}\}$ be the usual oriented 3-dimensional vector space and differential manifold, which is oriented by $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$ and given the Euclidean differentiable structure. Minkowski 3-space is defined by $\mathbb{M}^3 = \{\mathbb{R}^3, I_{(2,1)}\}$, where $I_{(2,1)} = dx_1^2 + dx_2^2 - dx_3^2$. Thus the metric tensor is given by

< X, Y $>= x_1y_1 + x_2y_2 - x_3y_3$, where X= (x_1, x_2, x_3) and Y= (y_1, y_2, y_3) . A vector X in M³ is called light-like if < X, X >= 0, space-like if < X, X >> 0 and time-like if < X, X >< 0. A curve γ is called light-like if its tangent vector field γ' is always light-like. We also say that a curve γ is non-light-like if its tangent vector field γ' is always space-like or time-like. The pseudosphere is defined to be

$$S_1^2(r,a) = \{(x_1, x_2, x_3) | (x_1 - a_1)^2 + (x_2 - a_2)^2 - (x_3 - a_3)^2 = r^2 \},$$

where $a = (a_1, a_2, a_3)$ is the center and r > 0 is the radial of $S_1^2(r, a)$.

The Levi-Civita connection of \mathbb{M}^3 is denoted by ∇ . Let S be a surface in \mathbb{M}^3 . We say that S is time-like if the normal vector field to S is space-like. Let $\Pi(X,Y)$ be a second fundamental form tensor of S in \mathbb{M}^3 . Since S is a time-like surface, there exists (at least locally) a unit normal vector field ξ on S. We have the following formula:

$$<\Pi(X,Y),\xi>=<-\nabla_X\xi,Y>.$$

If we denote that $\Pi(X,Y) = \sigma(X,Y)\xi$, we have $\sigma(X,Y) = \langle -\nabla_X \xi, Y \rangle$, so that $-\nabla_X \xi$ is the shape operator in this case It is well-known that the shape operator is self-adjoint with respect to \langle , \rangle (i.e., $\langle -\nabla_X \xi, Y \rangle = \langle X, -\nabla_Y \xi \rangle$).

We now state some lemmas for preparing the proof of main results.

LEMMA 2.1 Let V be a time-like plane in \mathbb{M}^3 . If $\langle X, X \rangle = 0$ and $\langle Y, Y \rangle \neq 0$, then $\langle X, Y \rangle \neq 0$.

Proof. Since V has two light-like direction, there exists $Z \in V$ such that $\langle Z, Z \rangle = 0$ and $Z \notin \langle X \rangle_{\mathbb{R}}$. It follows that there exist real numbers λ, μ with $\mu \neq 0$ such that $Z = \lambda X + \mu Y$. Thus we have

$$0 = \langle Z, Z \rangle = 2\lambda \mu \langle X, Y \rangle + \mu^2 \langle Y, Y \rangle$$
.

If $\langle X, Y \rangle = 0$, then $\langle Y, Y \rangle = 0$. This is a contradiction

Since the light direction on a time-like plane in Minkowski 3-space M^3 is constant, we have the following simple lemma.

LEMMA 2.2 Let γ be a light-like plane curve in \mathbb{M}^3 . Then it is a line, especially a geodesic in \mathbb{M}^3 .

We also have the following lemma for light-like line on a surface in M³.

LEMMA 2.3 Let γ be a light-like line on a time-like surface in \mathbb{M}^3 and ξ be a normal unit vector field on S. Then there exists an real number k such that $-\nabla_{\mathbf{X}}\xi = k\mathbf{X}$, where \mathbf{X} is a tangent vector of γ .

Proof. Since γ is light-like line, we have $\sigma(X, X) = 0$ (cf., [2], page 103 Corollary 9). It follows that

$$< -\nabla_{\mathbf{X}}\xi, \mathbf{X} > = \sigma(\mathbf{X}, \mathbf{X}) = 0.$$

Suppose that there are no real numbers k such that $-\nabla_{\mathbf{X}}\xi = k\mathbf{X}$. Since $\dim S = 2$, for any $\mathbf{Y} \in T_p S$, there exist real numbers λ, μ such that $Y = \lambda(-\nabla_{\mathbf{X}}\xi) + \mu k\mathbf{X}$. Thus we have

$$\langle X, Y \rangle = \lambda \langle -\nabla_X \xi, X \rangle + \mu \langle X, X \rangle = 0.$$

Let Y be a tangent vector at p which has another light-like direction. Then we have

$$< X + Y, X + Y > = < X, X > +2 < X, Y > + < Y, Y >$$

=2 < X, Y >= 0,

This contradicts to the fact that X + Y is not light-like.

Let γ be a non-light-like curve. We may assume that γ is parametrized by arc length s. Thus we have $\langle \gamma'(s), \gamma'(s) \rangle = \varepsilon(s) = \pm 1$. By the exactly same arguments as in the case for a curve in Euclidean 3-space, we have the following Frenet-Serret formula (cf., [5]): There exist field of vectors $\mathbf{n}(s)$, $\mathbf{b}(s)$ with $\langle \mathbf{n}(s), \mathbf{n}(s) \rangle = \delta(s) = \pm 1$, $\langle \mathbf{b}(s), \mathbf{b}(s) \rangle = -\varepsilon(s)\delta(s)$ and functions k = k(s), $\tau = \tau(s)$ along γ such that

$$\nabla_{\gamma'(s)}\gamma'(s) = k(s)\mathbf{n}(s)$$

$$\nabla_{\gamma'(s)}\mathbf{n}(s) = -\varepsilon(s)\delta(s)k(s)\gamma'(s) + \varepsilon(s)\tau(s)\mathbf{b}(s)$$

$$\nabla_{\gamma'(s)}\mathbf{b}(s) = \tau(s)\mathbf{n}(s).$$

If γ is a plane curve, then $\tau(s) \equiv 0$, so that we have

$$\nabla_{\gamma'(s)}\gamma'(s) = k(s)\mathbf{n}(s)$$
 and $\nabla_{\gamma'(s)}\mathbf{n}(s) = -\varepsilon(s)\delta(s)k(s)\gamma'(s)$.

Suppose that γ is also a geodesic of S, then

$$\nabla_{\gamma'(s)}\gamma'(s) = \Pi(\gamma'(s), \gamma'(s)) = \sigma(\gamma'(s), \gamma'(s))\xi(\gamma(s))$$

(cf., [2], page 103 Corollary 9). It follows that $n(s) = \pm \xi(\gamma(s))$, so we have the following lemma.

LEMMA 2.4 Let S be a time-like surface in Minkowski 3-space \mathbb{M}^3 and γ be a non-light-like geodesic on S which is parametrized by arc length s such that it is a plane curve. Then $\sigma(\gamma'(s), \gamma'(s)) = 0$ when k(s) = 0 and $\nabla_{\gamma'(s)}\xi(\gamma(s)) = \mp \varepsilon(s)\delta(s)k(s)\gamma'(s)$ when $k(s) \neq 0$.

3. PROOF OF RESULTS

We now give a proof of Theorem A.

Proof of Theorem A. Let γ_i (i=1,2) be two light-like curve on S through p such that they are plane curves. By Lemma 2.3, we have $-\nabla_{\mathbf{X}_i}\xi = k_i\xi$ for some k_i , where \mathbf{X}_i is the tangent vector of γ_i (i=1,2). If $k_1 \neq k_2$, we have

$$k_1 < X_1, X_2 > = < k_1 X_1, X_2 > = < -\nabla_{X_1} \xi, X_2 >$$

= $< X_1, -\nabla_{X_2} \xi > = < X_1, k_2 X_2 > = k_2 < X_1, X_2 >,$

so that $< X_1, X_2 >= 0$.

Since $X_1 + X_2$ is not light-like vector, we have

$$0 \neq < X_1 + X_2, X_1 + X_2 > = < X_1, X_1 > +2 < X_1, X_2 > + < X_2, X_2 > = 2 < X_1, X_2 > .$$

This is a contradiction, so that we have $k_1 = k_2$. Since dimS = 2, p is an umbilic point.

Proof of Corollary A.1. By the assumption, for each point $p \in S$, there exit two light-like line on S which through p. By Theorem A, S is a pseudosphere or a time-like plane, however, a time-like plane does not satisfy the assumption.

Proof of Corollary A.2. It follows from Theorem A that there exists real number k such that $-\nabla_{\mathbf{X}}\xi = k\mathbf{X}$ for any $\mathbf{X} \in T_pS$. By the assumption, there exists a non-light-like line γ on S through p, so that we have $-\nabla_{\gamma'}\xi = k\gamma'$. Since γ is a line, $\sigma(\gamma', \gamma') = 0$. Thus we have

$$k < \gamma', \gamma' > = < k\gamma', \gamma' > = < -\nabla_{\gamma'}\xi, \gamma' > = \sigma(\gamma', \gamma') = 0,$$

so that k=0 because γ is non-light-like. Therefore p is a geodesic point. This completes the proof.

Proof of Theorem B. Let γ be a light-like line on S through p. By Lemma 2.3, there exists a real number k such that $-\nabla_{\gamma'}\xi = k\gamma'$. Let γ_i (i=1,2) be non-light-like planar geodesics. By Lemma 2.4, we have $-\nabla_{\gamma'_i}\xi = k_i\gamma'_i$ $(k_i \neq 0)$ or $\sigma(\gamma'_i, \gamma'_i) = 0$. Thus we distinguish the following three cases.

Case 1) $k_1 \neq 0$ and $k_2 \neq 0$.

Assume that k=0, so that $-\nabla_{\gamma'}\xi=0$. Since $\dim S=2$, there exist real numbers λ , μ such that $\gamma'=\lambda\gamma'_1+\mu\gamma'_2$. Thus we have

$$0 = -\nabla_{\gamma'}\xi = \lambda(-\nabla_{\gamma'}\xi) + \mu(-\nabla_{\gamma'}\xi) = \lambda k_1 \gamma_1' + \mu k_2 \gamma_2'.$$

Since γ_1', γ_2' are linearly independent, $\lambda k_1 = \mu k_2 = 0$, then $\lambda = \mu = 0$. This contradicts the fact that $\gamma' \neq 0$. It follows that there exist three principal directions γ', γ_1' and γ_2' , then p is an umbilic point.

Case 2)
$$\sigma(\gamma_1', \gamma_1') = \sigma(\gamma_2', \gamma_2') = 0$$
.

In this case $\langle -\nabla_{\gamma_i'}\xi, \gamma_i' \rangle = \sigma(\gamma_i', \gamma_i') = 0$ (i = 1, 2) and $-\nabla_{\gamma'}\xi = k\gamma'$. Since $\gamma', \gamma_1', \gamma_2'$ are linearly independent, there exist non-zero real numbers λ, μ such that $\gamma' = \lambda \gamma' + \mu \gamma_2'$. Thus we have

$$0 = <-\nabla_{\gamma_1'}\xi, \gamma_1'> = 2\lambda\mu < -\nabla_{\gamma'}\xi, \gamma_2'> = 2\lambda\mu < k\gamma', \gamma_2'> = 2\lambda\mu k < \gamma', \gamma_2'>,$$

so that $2k < \gamma', \gamma_2' >= 0$. By the assumption, we have $< \gamma', \gamma' >= 0$ and $< \gamma_2', \gamma_2' >\neq 0$. It follows from Lemma 2.1 that $< \gamma', \gamma_2' >\neq 0$. Thus we have k = 0, 4 so that $-\nabla_{\gamma'} \xi = 0$. For any $X \in T_p S$, there exist real numbers ν, ρ such that $X = \nu \gamma_1' + \rho \gamma'$. We have

$$\sigma(\mathbf{X}, \mathbf{X}) = 2\nu\rho\sigma(\gamma', \gamma_1') = 2\nu\rho < -\nabla_{\gamma'}\xi, \gamma_1' > = 2\nu\rho < 0, \gamma' > = 0.$$

This means that p is a geodesic point.

Case 3) $k_1 \neq 0$ and $\sigma(\gamma'_2, \gamma'_2) = 0$. If $k \neq k_1$, we have

$$k < \gamma', \gamma_1' > = < k\gamma', \gamma_1' > = < -\nabla_{\gamma'}\xi, \gamma_1' >$$

$$= < \gamma', -\nabla_{\gamma'}\xi > = < \gamma', k_1\gamma_1' > = k_1 < \gamma', \gamma_1' > .$$

It follows that $\langle \gamma', \gamma'_1 \rangle = 0$. This contradicts to Lemma 2.1, so that $k = k_1$. Since γ', γ'_1 are linearly independent, p is an umbilic point. This completes the proof of Theorem C.

Proof of Corollary B.1. Since a non-light-like line on S is a planar geodesic, S is totally umbilic by Theorem B. By exactly the same arguments as those in the proof of Corollary A.2, S is totally geodesic. This completes the proof.

4. EXAMPLES

In this section we give some examples which indicate that Theorems A, B and those corollaries are the best possible.

EXAMPLE 4.1. We consider the following parametrized surface in M³

$$X(u,v) = (\cos u, \frac{1}{\sqrt{2}}(\sin u + v), \frac{1}{\sqrt{2}}(-\sin u + v)),$$

where |u|, |v| are small enough. The surface is a part of a cylinder whose rulings are light-like in \mathbb{M}^3 , so that it has only one light-like line through each point. This example describes that Theorem A is the best possible.

EXAMPLE 4.2. Since a pseudosphere has just two light-like curve through each point, Corollary A.2 is the best possible.

EXAMPLE 4.3. We consider the following ruled surface in M³

$$X(u,v) = (a(\cos u - v\sin u), b(\sin u + v\cos u), v),$$

where a, b > 0 and $a \neq b$. An outside of some closed subsets on the surface has two non-light-like line through each point. Of course these lines are planar geodesics on the surface, so that Theorem B and Corollary B.1 are the best possible.

REFERENCES

- [1] OGIUE, K and TAKAGI, R: A Submanifold which contains Many Extrinsic Circles. Tsukuba J. Math. 8 (1984), 171-182
- [2] O'NEIL, B: Semi-Riemannian Geometry. Academic Press (1983)
- [3] TAKEUCHI, N.: A Sphere as a Surface which contains Many Circles. Journal of Geometry 24 (1985), 123-130
- [4] TAKEUCHI, N.: A Surface which contains planar geodesics. Geometriae Dedicata 27 (1986), 223-225
- [5] TAKIYAMA, A: Characterizations of a pseudosphere in Minkowski 3-space. Master Thesis of Hokkaido University (1995)

S. Izumiya and A. Takiyama Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060, Japan.