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Monomial ideals and minimal non-faces
of Cohen—Macaulay complexes

Naoki Terai Takayuki Hibi

Abstract

Let A be a simplicial complex of dimension d — 1 on the vertex
set V and write & for the number of “minimal” subsets ¢ C V with
f(6) =i+ 1 and 0 ¢ A. We discuss what can be said about the
combinatorial sequence (£;,&,...,£y) associated with A.

§1. Background and results

(1.1) A simplicial complex A on the vertex set V = {z1,29,...,2,} is
a collection of subsets of V' such that (i) {z;} € A for every 1 <7 < v and
(i) e € A, 7 C o= 7 € A. Each element o of A is called a face of A. Set
d := max{f(c);o € A} and define the dimension of A to be dimA =d —1.
Here §(o) is the cardinality of a finite set o.

Let A = k[zy,2,,...,2,] denote the polynomial ring in v-variables over
a field k. Here, we identify each z; € V with the indeterminate z; of A.
Define Ia to be the ideal of A which is generated by square-free monomials
iy Tiy * = Tqpy 1 S il < ig <0 <L ir S v, with {:c,-l,:z:,-,,--—,:v,'r} ¢ A. We
say that the quotient algebra k[A] := A/I, is the Stanley-Reisner ring of A
over k. We refer the reader to, e.g., [Bru-Her], [H], [Hoc] and [Sta] for the
detailed information about algebra and combinatorics on Stanley-Reisner
rings of simplicial complexes.

Let A denote the set of all subsets ¢ of V such that (i) ¢ &€ A and
(ii) o — {2} € A for each z € ¢. Then, it follows immediately that the
set of square-free monomials z; @y, --- @;. with {z;,,2;,,---,2;.} € Aa is
a minimal system of generators of the ideal In. We write & = &(A) for
the number of ¢ € Ay with §(6) = ¢+ 1. Thus § = 0if i > d. In
the present paper, we are interested in the combinatorial sequence ¢(A) :=
(é1,&2,. .., €a) associated with a simplicial complex A of dimension d — 1.



If d = 2, then we easily see that there exist simplicial compiexes A and
A’ with £(A) = (1,2) and €(A') = (2,1), while there exists no simplicial
complex A with £(A) = (1,1).

(1.2) In what follows, we consider A to be the graded ring A = @, An
with the standard grading, i.e., each degz; = 1, and may regard k[A] =
@D,>0(k[A])n as a graded module over A with the quotient grading. Let
A(7), j € Z, denote the graded module A(j) = Brez[A(G)]n over A with
[A(j)]n := Anyj. Here Z is the set of integers.

A graded finite free resolution of k[A] over A is an exact sequence

0 — @PA(—7)™ 2 2 D A(-§)P E5 A S kAl — 0 (1)
j€Z j€Z

of graded modules over A, where each @;cz A(—7 )ﬁ ‘i is a graded free module
of rank ¥z Bi; (< o0), and where every ¢; is degree-preserving. The
homological dimension hds(k[A]) of k[A] over A is the minimal h possible
in (1). It is known that v — d < hda(k[A]) € v. The second inequality
is Hilbert’s syzygy theorem ([Bru-Her, Corollary (2.2.14)]), and the first
inequality follows from Auslander-Buchsbaum formula ([Bru-Her, Theorem
(1.3.3)]). A finite free resolution (1) is called minimal if each f;; is smallest
possible. A minimal free resolution of k[A] over A exists and is essentially
‘unique. See, e.g., [Bru-Her, p. 35]. '

Suppose that a finite free resolution (1) is minimal with A = hd4(k[A]).
We say that §;; = ﬂ{}(k[A]) is the i;-th Betti number of k[A] over A. Since
the kernel of g is equal to the ideal /A, each By;,, coincides with ¢;(A).
Thus, discussing the sequence £(A) = (é1,&,,...,€4) of A is our starting
point of combinatorial study on the doubly indexed Betti number sequence
{B:;}i.j) of k[A] over A. Note that, in general, 8;; may depend on the base
field k if i > 3.

We are now in the position to give the main result in this paper. We
say that a simplicial complex A of dimension d —1 on the vertex set V with

§(V) = v is Cohen-Macaulay over a field k if hd4(k[A]) = v —d.

(1.3) THEOREM. Fiz an integer d > 2 and suppose that a sequence
(M15M2, - - - ,Ma) € Z% with each 7; > 0 is given.

(a) There exists a Cohen-Macaulay complex A of dimension d — 1 with
E(A) = (&1,&, ..., €q) such that & = n; for each 2 <1 < d and & > 7.

(b) Set g := max({i;n; # 0}U{0}). Then, there ezxists a Cohen-Macaulay
complex A of dimension d — 1 with £(A) = (&1, 62,...,&4) such that & = n;
for each @ # q and (if ¢ > 0 then) &, > 1,.
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In Section 2, after summarizing some fundamental results on Cohen-
Macaulay complexes, our proof of Theorem (1.3) will be given. We conclude
this paper with making a collection of examples in Section 3.

§2. Proof of Theorem (1.3)

First, we recall some basic results on Cohen-Macaulay complexes. Again,
we refer the reader to, e.g., [Bru-Her], [H], [Hoc] and [Sta] for further infor-
mation about Cohen-Macaulay complexes.

(2.1) Let Hi(A;k) denote the i-th reduced simplicial homology group
of A with the coefficient field k. Note that H_;(A;k) =0if A # {0} and

o= 629,

If o belongs to A, then we define the subcomplexes linka (o) to be
linka(o)={reAjont=0,0Ur € A}.

Reisner’s criterion [Rei] guarantees that a simplicial complex A is Cohen-
Macaulay over k if and only if H;(linka(o); k) = 0 for each o € A (possibly
o = 0) and for every i # dimlinka (o).

The following Lemma (2.2) follows from a simple observation (e.g., [H,
p. 57 - 58]) based on the reduced Mayer—Vletorls exact sequence together
with Reisner’s criterion.

. (2.2) LEMMA. Let A be a simplicial complex of dimension d — 1 on the
vertex set V, and let A'; A" be subcomplezes of A. Suppose that A' and
A" are Cohen-Macaulay complexes of dimension d — 1 and that A’ N A"
consists of all subset of a face o of A with §(o) = d. Then A’ U A" is
Cohen-Macaulay.

Let A’ (resp. A”) be a simplicial complex on the vertex set V' (resp.
V) with V'NV” = 0. Then, the simplicial join A’ * A" of A’ and A" is the
simplicial complex {0/ U ¢”;0’ € A’,6” € A"} on the vertex set V' U V".
Note that dim A/« A" = dnn A+ dun A" +1

(2.3) LEMMA. IfA" and A" are Cohen—Macaulay, then A'xA" is Cohen-

Macaulay.



The ¢-skeleton of a simplicial complex A is defined to be the subcomplex
A0 = {g € A;i(0) <i+1} of A, where 0 < i € Z.

(2.4) LEMMA (e.g., [Bru-Her, Exercise (5.1.23)]). Every skeleton of a
Cohen-Macaulay complex is Cohen-Macaulay.

(2.5) Let A’ and A” be simplicial complexes of dimension d — 1 with
E(A) = (€1,&5,...,€) and E(A") = (&,€5,...,&]). We choose any face
o of A’ and any face 7 of A" with §(c) = §(7) = d. Identifying o with 7
yields a new complex A of dimension d — 1. If {(A) = (&3, &3, ..,&4), then
& =& +E forevery 2 < i < dand & > € +¢]. Moreover, thanks to Lemma
(2.2), if both A’ and A" are Cohen-Macaulay, then A is Cohen-Macaulay.

(2.6) Let A’ and A” be simplicial complexes with §(A’) = (1,£5,...)
and §(A") = (€7,€5,...). Then &(A'*A") = &(A")+&(A”) for every ¢ > 1.

Let 27*! denote the set which consists of all subsets of a (j + 1)-element
set {z1,22,...,2j31} and define T';(1) to be the simplicial complex 27+ —
{z1,%2,...,2;41} of dimension j — 1. Moreover, for each integer n > 1, we
define I';(n + 1) to be the simplicial join I'j(n) * I';(1) of I';(n) and T';(1).
Then, by Lemma (2.3), every I';(n) is Cohen-Macaulay. If {(T';(n)) =
(é1,&2,...), then & = 0 for each ¢ # j and ¢; = n. Also, set I';(0) := 0.

(2.7) Let A be a simplicial complex of dimension d — 1 with £(A) =
(é1,&2,--.,&2) and AL the i-skeleton of A. If E(AWD) = (A, Ag,..., Aip1),
then A; = ¢; for every 1 < 7 <7 and Ajy1 = &iv1 + fiy1, Where fiyy is the
number of faces o of A with (o) = ¢+ 2.

Proof of Theorem (1.3). (a) First, note that £(2¢) = (0,0,...,0), where
2% is a Cohen-Macaulay complex of dimension d — 1 which consists of all
subsets of a d-element set. We now show that if there exists a Cohen-
Macaulay complex A of dimension d — 1 with {(A) = (&, ¢&2,...,€:) and if
2 < i < d, then there exists a Cohen-Macaulay complex A’ of dimension
d — 1 with {(A") = (£,8&3,...,&)) such that §; = ¢; for each 2 < j # 1
and & = & + 1. For this, choose any face o of A with f(¢) = d and any
face T of the simplicial join [';(1) * 2¢~* with §(7) = d (in the notation of.
(2.6)). Then, thanks to (2.5), identifying o with 7 yields a required complex
A’ of dimension d — 1. On the other hand, if A is a Cohen-Macaulay
complex of dimension d — 1 with é(A) = (1,&,,...,&4), then the similar
technique enables us to show that there exists a Cohen—Macaulay complex
A’ of dimension d — 1 with {(A’) = (€1, €5, ... ,£)) such that £ = ¢; for each
i # 1 and & > £;. .



(b) Fix an integer d > 2 and suppose that a sequence (91,72, ...,74) € Z¢
with each 7; > 0 is given. We set ¢ := max({é;7; # 0}U{0}). Let T
denote the simplicial join T';(n;) * [a(ns) * -+ - * T4(na). Then, by Lemma
(2.4) together with (2.7), the (¢ — 1)-skeleton T'®~1) is a Cohen-Macaulay
complex with (T4~} = (n1,92,...,74-1,7¢ + f,), where f, is the number
of faces o of I' with §(¢) = ¢+ 1. Thus, the simplicial join T'9=1) x 24-9 js 5
desired Cohen-Macaulay complex. Q. E. D.

§3. Some examples-

(3.1) Let d = 3 and (&,&2,&) = (1,3,0). Then, there exists a sim-
plicial complex A of dimension two with £(A) = (1,3,0). In fact, if
V = {a,b,z,y,z} and In = (ab,azy,bzy,zyz), then A is of dimension
two whose maximal faces are {a,z,z}, {a,y, 2}, {b,z,2} and {b,y,z}. On
the other hand, we show that there exists no Cohen—-Macaulay complex A of
dimension two with £(A) = (1,3,0). Suppose that A is a Cohen-Macaulay
complex of dimension two with {(A) = (1,3,0) on the vertex set V with
§(V) = v. Let f; denote the number of faces o of A with f(o) = ¢ + 1.
Then, fo=v,fi=v(v—-1)/2—-1and f, =v(v—-1)(v—-2)/6 — (v —2) — 3.
Since A is Cohen~-Macaulay of even dimension, the reduced Euler charac-
teristic ¥(A) = fo — fi + fo — 1 is non-negative. Hence, we have v > 6. Let
My, My, M3, M, be square-free monomials with deg M; = 2 and deg M; = 3
for 2 <7 < 4 such that I = (M;, My, M3, M,). Then, there exists z € V
such that o | M; (i.e.,  divides M;) and z | M; for some 1 < 1,7 < 4 with
t# 3. Say,t=1and j =2 Ify| M3 and z | My with y,z € V, then.
V — {a,y,z} belongs to A. Hence dimA > v — 4. Thus v = 6. Now, let
V = {a,b,x1,29,23,24} and M; = ab. Then, either a or b divides M; for
'some 2 <4 < 4. Say, a | My. If a| M3 and z; | My, then V — {a,z;} € A
and dimA > 3, a contradiction. Thus, a € V divides neither M3 nor M.
Similarly, b € V does not divides both M3 and M. Hence, there exists
I <5 <4 with 2; | M; and a; | My. Then, again V — {a, z;} belongs to A
and we have dimA > 3.

(3.2) Let d = 2 and A a simplicial complex of dimension one with
Q) = (&,€2) = (1,n). Then A is equal to a complete graph minus one
edge. Hence, we have n = (v 4 2)(v — 2)(v — 3)/6 for some 3 < v € Z.
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