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Representation of Canonical Commutation
Relations in a Gauge Theory, the Aharonov
-Bohm Effect, and Dirac-Weyl Operator

Asao Arai
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

Abstract

We consider a representation of canonical commutation relations (CCR) appear-
ing in a (non-Abelian) gauge theory on a non-simply connected region in the two-
dimensional Euclidean space. A necessary and sufficient condition for the representa-
tion to be equivalent to the Schrodinger representation of CCR is given in terms of
Wilson loops. A representation inequivalent to the Schrédinger representation gives a
mathematical expression for the (non-Abelian) Aharonov-Bohm effect. Some aspects
of the Dirac-Weyl operator associated with the representation of CCR are discussed.

AMS classification numbers (1991): 81505, 81R05, 81Q05, 81Q10, 81Q60

1 Introduction

Let H be a Hilbert space. For a linear operator T on H, we denote its domain by D(T).
We say that a set {Qj,Pj}?zl of self-adjoint operators on H is a representation of the
canonical commutation relations (CCR) with d degrees of freedom if there exsits a dense
subspace D of H such that (i) D € N%,_,[D(Q;Pc) N D(PxQ;) N D(Q;Qx) N D(P;Py)] and
(ii) @; and P; satisfy the CCR '

[Q;, Pr] = ihdjx,
’ [ijQk] = 0, [Pj,Pk]zo, jk=1,---,d,

on D, where h is the Planck constant divided by 2.

As is well known, a standard representation of the CCR is the Schrédinger represen-
tation {Qf ,PJS ;‘-l:l which is given as follows: H = Lz(Rd),Q;9 = z; (the multiplication
operator by the jth coordinate z;), PJS = —ihD; (D; is the generalized partial differential
operator in z;, D = S(R?) (the Schwartz space of rapidly decreasing C* functions on
R?) or D = C$°(R?) (the space of C* functions on R? with compact support).

In relation to the Schrédinger representation, it is convenient to introduce a techni-
cal term : A set {Qj,Pj}?=1 of self-adjoint operators on a Hilbert space H is called a
Schradinger d-system if there exist mutually orthogonal closed subspaces H, of H such
that H = @, H. with the following properties: (i) each H, reduces all @;,P; ; (ii)
the set {@;, P; };l=1 is, in each H,, unitarily equivalent to the Schrédinger representation

{va P]S}_‘71=1 [21]'



Since the pioneering work of von Neumann [19], many studies have been done in
connection with representation theory of CCR (see, e.g., [21] and references therein). A set
{Q;, P; }f=1 of self-adjoint operators on a Hilbert space H is called a Weyl representation
with d degrees of freedom if ); and P; satisfy the Weyl relations

eitQJ' eist = e—istﬁ5jkeispk eitQJ' ,

Qi = sRugitQi  GitPigisPe — gisPegits ik 1 ... d steR.

The Schrodinger representation {Qf ,PJS }jﬂ is a Weyl representation of CCR. Von Neu-
mann established a uniqueness theorem in the sense that, if H is separable, then every
Weyl representation of CCR with d degrees of freedom is a Schrodinger d-system ([19),
21]).

It follows from the von Neumann theorem that a Weyl representation is a representa-
tion of CCR. But the converse is not true." Namely, there exist representations of CCR
which are not Weyl ones and hence not Schrodinger systems. Such examples have been
discussed by some authors (e.g., [13], [16], [26], [27] and references therein). These exam-
ples, however, do not seem to have something to do with physics ( with possible exception
[13)). |

In what follows, we say that a representation of CCR is an equivalent (resp.inequivalent)
representation if it is (resp. not) a Schrédinger system.

Recently H. Reeh found a physically interesting inequivalent representation of CCR
[23] : He considered a quantum system of a charged particle moving in the plane R? under
the influence of a perpendicular magnetic field concentrated at the origin and showed that,
if the value of the magnetic flux is not in a discrete set, then the representation of CCR
satisfied by the position and the physical (kinetic) momentum operators of the particle is
an inequivalent representation. This inequivalent representation is interesting in that it
may be regarded as a mathematical expression of the Aharonov-Bohm effect [1], although
the quantum system under consideration is an idealized onel.

Motivated by the work of Reeh just mentioned, a systematic mathematical approach
was undertaken to analyze a two-dimensional quantum system of a charged particle with
a perpendicular magnetic field which may be strongly singular at arbitrarily fixed points
ay,---ay in R? [3]. If the magnetic field is concentrated on the set {a,}]_,, then the
position'and the physical momentum operators of the particle gives a representation of
CCR with two degrees of freedom. Mathematical aspects concerning this representation
were clarified, including a complete characterization of the representation in terms of “local
quantization” of magnetic flux 2. Moreover, in connection with this work, mathematical
analysis of the Dirac-Weyl operator defined in terms of the physical momentum operator
has been made in some detail [4, 6].

1A characterization of the Aharonov-Bohm effect in terms of representations of local currents is given
in [17]. The author is grateful to Prof. G.A. Goldin for informative comments in this respect.

2Recently, H.Kurose and H.Nakazato [18] have taken another approach to this subject ; they construct
a x-representation of the Weyl algebra with two degrees of freedom induced by a one-dimensional repre-
sentation of the fundamental group of the non-simply connected space M (see (1.1) below) and prove that
the *-representation is uintarily equivalent to the *-algebra generated by the position and the physical mo-
mentum operators considered in [3]. Their approach can be generalized to the non-Abelian case discussed
below in the present paper.



From the view-point of gauge theory, these studies were concerned with an Abelian
gauge theory on the non-simply connected region

M := R?\ {a,}),. (1.1)

It is natural to ask what the non-Abelian case is like. This question was pursued in [5]
and some results in the Abelian case has been extended to the non-Abelian case. As in
the Abelian case, if the gauge field strength is concentrated on {a,}Y_,, then the position
and the physical momentum operators of a quantum mechanical particle interacting with
the gauge field give a representation of the CCR with two degrees of freedom. This repre-
sentation is characterized in terms of Wilson loops of the gauge potential. An inequivalent
representation appearing in this case may be regarded as a “non-Abelian Aharonov-Bohm
effect”. '

The purpose of the present paper is to give a survey of results obtained in [3] - [6] as
well as some additional new results.

2 Representation of CCR in a gauge theory

We consider a gauge theory on the non-simply connected region M given by (1.1). As the
gauge group we take the unitary group U(p) of order p (p > 1). Since the Lie algebra of
U(p) is the algebra of p X p anti-Hermitian matrices, which we denote by M2%(C), a gauge,
potential in the present case is given by an M;h(C )-valued 1-form ‘

A(T) = Al(r)dm + Az('l‘)dy, r= (iL‘, y) €M,

on M, where A;(r),j = 1,2, are M;,‘h(C)-valued functions. We assume that each A; is
continuously differentiable on M, unless otherwise stated. The gauge filed strength is an
M;‘h(C)-valued 2-form given by

F(A):=dA+ANA= Fadz Ady

with
Fi2 = Dy Az — DyAy + [Ay, Ag),
where D; and D, are partial differential operators in the distribution sense in z and y,

respectively.
We say that A is flatif F(A) =0 on M.

Remark : By a theorem in distribution theory, A is flat if and only if there exist a
nonnegative integer L and p x p matrices T ¢ M;}h(C),n =1,---,N,a,8=0,1,---,L;
such that

N L :
Dedy(r) = Dyds(r) + [Ax(r), Ax(r)] = 3 30 TADIDE6(r —an),  (21),
. n=1la,8=0

where 6(r) is the Dirac delta distribution on R?. It is an open problem to find all solu-
tions (up to gauge transformations) to this non-linear partial differential equations ( or,
equivalently, to give a complete characterization of M;h(C)-valued, flat 1-forms) (see §6
for a partial result).



Henceforth we use a system of units where A = 1. The physical (kinetic) momen-
tum operator P = (P;, P;) of a quantum mechanical particle interacting with the gauge
potential A is given by

Py = —iD, —iA;, P, =—iD, —iA,,

acting in L?(R?; C?), the Hilbert space of CP-valued square integrable functions on RZ.

For an open set D in R?, we denote by C3'(D; CP) the set of CP-valued, m times
continuously differentiable functions on D with compact support. We denote by gy, qo
the multiplication operators by z and y, respectively. The following proposition is easily
shown:

Proposition 2.2. Suppose that A is flat. Then {g;, Pj}§=1 satisfies the CCR with two
degrees of freedom '

[Qj,Pk]ziéjka [qj,Qk]=07 [Pj9Pk]:0, jak=172-

on CZ(M;CP). »

This proposition shows that, if A is flat and each P; is essentially self-adjoint, then
{qj,Pjﬁ:l gives a representation of the CCR with two degrees of freedom, where P,
denotes the closure of P;. Then it is an interesting problem to find a necessary and
sufficient condition for the representation to be a Schrédinger 2-system. To solve the
problem, we first examine if ¢; and P; satisfy the Weyl relations with two degrees of
freedom.

3 Commutation relations of the unitary groups generated
by the position and the physical momentum operators
Let M,(C) be the set of p X p complex matrices and B be an M,(C)-valued, continuous,

piecewise differentiable function on the interval [a,b]. Then one can define the product
integral for B by :

b
H eB(T)dT = lim eB(tn)(t"—t"—l)eB(tn—l )(tﬂ—1 —tn__z) ces eB(tl )(tl —t0)7

n—oo

where a = tg < t; < -+- < t, = b,max; |t; — t;_1] — 0 (n — o0) [14].

Let C be a continuous, piecewise differentiable path in M and v(7) = (v1(7),72(7)), 7 €
[a,b] (a < b,a,b € R) be a parametrization of it. The Wilson loop of C' with a gauge
potential A is defined by

b
Wa(C) = Pe~Jo# = [ e~ 00 nlrytAz(r(r))in(n)}er,

where 4;(7) = dv;(r)/dr,j = 1,2. It follows that W,4(C) € U(p).
We write a,, = (an1,0n2). For t,s € R, let

R, = R\{anlsanl_slnz 17"'7N}7 Rt = R\{an27an2_t|n= 17"'?N}’



]

and
Ms,t = Rs X Rt-

For each (z,y) € M,;, we define a closed path Cy st in M by

Comst = {@+7o0<T <1 U{(E+s,y+r<T<1)
U{(z+s—7s,y+t)J0 <7 <1}U{(z,y+t-T1)|0 < T < 1},

which is the rectangle starting from and ending at (z,y) :(z,y) = (z+ s,9) — (z + s,y +
t) = (z,y+t) — (z,y). With this path, we can define a U(p)-valued function on M, by

Ws/}t(% Y) = Wa(Cryist)s (2,9) € M.

For each s,t, W;}t is continuous on M, ;. Since the two-dimensional Lebesgue meausre
R?\ M,; is zero, W;‘}t can be regarded as an almost everywhere (a.e.) finite function on
R? (with respect to the Lebesgue measure). Hence the multiplication by the function Ws“}t
defines a unique unitary operator on L%(R?;C?). We denote this unitary operator by the

same symbol W;"ﬁ.
In the rest of this section, we assume the following

Assumption (P) : Each P; is essentially self-adjoint.

We have the following result concerning the commutation relations on the unitary:
groups generated by P; and P;:

Theorem 3.1. For all s,t € R,

e’ispl e‘itpz - (Wsj}t) * eitpz e’iSP1 .

The idea of proof of this theorem is to apply the Trotter-Kato producf formula [22,
p.297, Theorem VIIL.31]:

.5 . n
P = s — lim (eij/nesAJ‘/n) ,

n—oo

where s'— lim denotes strong limit and py = —iDg,ps = —iD,. See [5] for the details.

Remarks:

(i) Theorem 3.1 may be regarded as a mathematical expression for the (non-Abelian)
Aharonov-Bohm effect.

(ii) Theorem 3.1 is interesting also from an operator-theoretical point of view. Let
S and T be self-adjoint operators on a Hilbert space. We say that S and T strongly
commute if their spectral measures commute. A necessary and sufficient condition for §
and T to strongly commute is that for all a,b € R, e?*Te®S = eibSeieT [22, §VIIL5]. As
already shown (Proposition 2.1), P; and P, commute on C3(M;CP), provided that A is
flat. Theorem 3.1 shows, however, that, even in such a case, P, and P, do not necessarily
strongly commute. The case where P, and P; do not strongly commute corresponds to
the Aharonov-Bohm effect.

8 A class of gauge potentials satisfying this assumption will be given in §5.



In the same way as in the proof of Theorem 3.1, we can obtain the following result:

Theorem 3.2. For all s,t € R,

L eth;, — e—zst5jk ethk ezsqj, j, k= 1, 2.

Theorems 3.1 and 3.2 imply the following theorem:

Theorem 3.3. The set {e™%,¢Fi|t € R,j = 1,2} of unitary operators satisfies the
Weyl relations with two degrees of freedom if and only if W’;;‘t = I for all s,t € R.

As a corollary of Theorem 3.3, we obtain the following:

Corollary 3.4. Suppose that A is flat. Then the representation {qj,lsj}g=1 of CCR
is a Schrodinger 2-system if and only if W;‘}t = I for all s,t € R.

- Thus a complete characterization of the representation {g;, P;}%_; of CCR is given in
terms of the Wilson loops of the rectangles Cy y.s 1.
In the Abelian case p = 1, we have

Wa(C) = %40,

where ®4(C) := i [, A is the magnetic flux passing through the interior of the loop C.
The condition W;}t = I,Vs,t € R, is equivalent to that, for each (s,t), ®4(Cry;st) € 27
a.e.(z,y), where Z is the set of integers. In this case we say that the magnetic flux is

locally quantized [3].
As a generalization of this notion to the non-Abelian case, we say that the “gauge
flux” is locally quantized if Ws“}t = I for all s,t € R.

Remark : Suppose that A is flat. Let ro be any point in M and Cpr, be a loop at »o.
Let [Cp,] be the homotopy class of loops at 7o to which Cr, belongs. Then the mapping
[Cp,] = W4(Cr,) gives a p-dimensional unitary representation of the fundamental group
of M (cf.[17, 18]).

4 Condition for the local quantization of the gauge flux

Let CT(a,) be the circle with center a,, radius € > 0 and initial point r (|r —a,| =€) (
the direction is taken to be anticlockwise). We set

b = min a, —a
nFEM; n,m:l,---,Nl " ml

Theorem 4.1. The equality Ws’;‘t = I holds for all s,t € R if and only if A is flat and
there exists a constant 6§ € (0,60) such that, for alle < § and some 7y, with |Pn — an| = ¢,
Wu(CT(ay)) =1, n=1,---,N,.

This theorem can be proven by employing some results in the theory of product inte-
grals [14]. See [5, §3].
By Theorem 4.1 and Corollary 3.4, we obtain the following result:



Theorem 4.2. Suppose that A is flat and Assumption (P) is satisfied. Then the
representation {qj,Pj}§=1 of CCR is a Schridinger 2-system if and only if there ex-
ists a constant § € (0,60) such that, for all ¢ < é and some r, with |r, — a,| = ¢,

Wa(CT(@n)) =1, n=1,---,N.

5 Essential self-adjointness of the physical momentum op-
erator

Let Sj = R\ {anj}n=y (4 = 1,2) and

;n-,——Cgl(RX52;CP),D;n=CSn(S1XR;CP), m=0,1,2---.

Definition 5.1. We say that an M;}h(C)-va.lued 1-form A is in the class A, if there
exist U(p)-valued functions gy € C™ (R x 83;U(p)) and g5 € C™*+(S; x R;U(p)) such
that Ay = g7 ' Dogi, Az = 97" Dyga.

Theorem 5.2. Suppose that A € An,_1(m > 1). Then each P; is essentially self-
adjoint on DT*.

Proof : We have Py = g}'lpjgﬂb, ¥ € DT and g; is a bijection on the space DT Since
p; is essentially self-adjoint on D7, the desired result follows. O

Theorem 5.3. Suppose that A; € C’m(M;M;h(C)) (G=12)(m>1)and A =
Ardz + Aady is flat on M. Then A € Ap,. In particular, each P; is essentially self-adjoint
on D}’”’l.

The idea of proof of this theorem is to decompose R X S (resp. S; X R) as a union
of simply-connected regions and to use a lemma of Poincaré type [25] on each simply-

connected region. See [5, Theorem 4.3].
Combining Theorem 5.3 with Theorem 4.2, we obtain the following result:

Theorem 5.4. Suppose that A; € C’m(M;M;,‘h(C)) (G =12)(m>1)and A =
Aydx + Aady is flat on M. Then each P; is essentially self-adjoint on D;"+1, More-
over, the representation {g;, Pj}§=1 of CCR is a Schrédinger 2-system if and only if there
exists a constant § € (0,80) such that, for all ¢ < § and some v, with |r, — a,| = ¢,
Wa(Cl"(an)=1, n=1,---,N.

6 A characterization for a class of flat gauge potentials

Let A be a flat gauge potential on M. We fix a point 7 in M and denote by Cp, , a loop
at 7o going around a, in such a way that the intersection of the interior domain of Cp, ,
and the set {a,}_, is {a,}. Then, for each n = 1,---, N, the unitary operator

Un = WA(C’I‘O,n)

depends only on the homotopy class of Cp, ,. We introduce a class of flat gauge potentials
on M:



Definition 6.1. Let A be a gauge potential on M. We say that A is in the set Lg if
A is flat and [U,,,Up] =0,m,n=1,---,N.

For p x p Hermitian matrices T,,,n = 1,---, N, we define M;‘h(C)-va.lued functions
Bj(';Tla e aTn)aj = 1727 by

an, ' : -
Bi(ri Ty, T)—’Z(y 2"3 Ty, B2(T;T1a""Tn)=-zZ——_

T’I'L’
n—l - anl n=1 |T - anlz
and set
B(r;Th,---,Tn) = Bi(r;Th, -, Tn)dz + Bo(r; 11, -+, Ty )dy. (6.1)

Note that, if [T, Tm] = 0,m,n = 1,--+, N, then B(»;T3,---,T,) is a flat gauge potential.
The following theorem characterizes the class Lo:

Theorem 6.2.% A gauge potential A is in the class Lg if and only if there exist a family
{T.}N_, of commuting p X p Hermitian matrices and a U(p)-valued, twice continuously
differentiable function g on M such that g(ro) = I and

A=gB(;Th, - ,Tn)g"1 - (dg)g—l. (6.2)

Proof : We give only an outline of proof. Let Cp, be a loop at 7. Then we can show
that, if T,’s commute each other, then

2w knTy
WB(';T];"'yTn)(CTO) = W—B (CTO )—1 =€ ZanED’ro [} (6.3)

where Dy, is the interior domain of the loop C'r, and k;, is the rotation number of Cp,
with respect to a,.

Necessity : Let A € Lo. Then there exists a family {T,,}Y_; of commuting p x p
Hermitian matrices such that

U, = e2™knIn p=1,... N. (6.4)

With these T,,’s, we define a 1-form B := B(:;T1,---,T,) by (6.1). Then, by (6.3), we

have
WA(C"'O) = WB(C"'O)'

We denote by C7 a path from g to 7 in M. The commutativity of 7,,’s and Uy’s ensures

that
B(r):= WA(Cro)B("')WA(Cro)

depends only on ». We then intorduce
/‘Ij =A; - Ej, j=12.
By using a basic theorem in product integration [14, p.21, Theorem 3.2], we can show that

WZ(CIQ ) = WA(C;O )W_B(Cgo )7

4This result has been obtained through joint work with H. Kurose.



which implies that the function
g(r) = Wx(CF,)

depends only on 7. With this g we can see that g(ry) = I and (6.2) holds.
Sufficiency: The flatness of A follows from a direct computation and the flatness of
B(+;T1,-++,Tn). By a theorem on product integation [14, p.21, Theorem 3.2], we have

W4(CT,) = g(r)Wg(Cr,),

which, together with condition g(ro) = I, implies (6.4). Hence A € Lo. O

For A € Lo, {g;, P;}}-; gives a representation of CCR (Theorem 5.3). On this repre-
sentation we have the following result:

Theorem 6.3. Let A € Ly and T,,n = 1,---,N, be as in Theorem 6.2. Then
{g;, P; Y2, is a Schrédinger 2-system zf and only zf, for eachn=1,---,N, all the eigen-
values of T,, are integers.

Proof. We have
Wa(C? (an)) = Wa(CF, )™ " Wa(CT) Y,

~ which, together with Theorem 5.4, gives the desired. O

Remark : (i) Let {T,})_, be a family of commuting p x p Hermitian matrices and
define A by (6.2) with a function g € C?(M;U(p)). Then A is flat. If g has no singularity
at a,,n = 1,---,N, and can be extended to a function in C?(R?;U(p)), then one can
show that A satisfies the following distribution equation (cf. (2.1)):

N
Dz'A2 - -DyAl + [A17A2] = —2mi Z g(an)Tng(an)_la(T - a’n)' (65)

n=1

If g has singularity at some a,’s, then derivatives of the delta functions §(» — a,) may
appear on the right hand side of (6.5), depending on the form of singularity of g. See [4,
§1I] for the Abelian case. '

(ii) The class Lo is a special class of flat gauge potentials. It is an open problem to
give a complete (explicit) characterization of general flat gauge potentials.

7 Dirac-Weyl operator

In what follows, the domain D(S + T') of the sum S + T of two linear operators S and T
on a Hilbert space is always taken to be D(S5) N D(T), unless otherwise stated.
Let 04,7 = 1,2,3, be the Pauli matrices:

01 0 —i 1 0
1= 10 2TV 0 )0 BTVo -1 )

Let A be an M;‘h(C)-valued, continuously differentiable 1-form on M ( not necessarily
flat). Then the Dirac-Weyl operator with this gauge potential is given by

P=01®P+0:0 P,

9



acting in the Hilbert space
C? @ L*(R* C?) = L*(R%; CP) D L*(R%; CP) = {( ﬁ; ) | i € L¥(R%: C7), 5 = 1,2} :

It is easy to see that J) is a symmetric operator. One of the important problems concern-
ing the operator P is to prove its (essential) self-adjointness or to construct self-adjoint
extensions of it. This problem is not so trivial, because the gauge potential A(r) can be
strongly singular at » = a,,n =1,---, N. We first present some results on this aspect.

7.1 Self-adjoint extensions of the minimal Dirac operator

Let
Prmin =P|C5°(M; C?),

the restriction of P to C§°(M;CP). We call it the minimal Dirac operator. By the reason
mentioned above, one can not expect that P, is essentially self-adjoint. To construct
self-adjoint extensions of Pmin, We take a method used in [7].

We can write
0 D_
pmin - ( D+ 0 ) )

Dy =P +iPy, D(Dz)=Cg(M;CP).

where

It is easy to see that
DycD-, D_cCDj. (7.1)

In particular, Dy are closable.

Theorem 7.1. The following operators D;,i = 1,2, are self-adjoint ertensions of

Prin: _
0 Di 0 D
Dl = ( D+ 0+ ) 9 ﬁZ = ( Di O ) 9

where D4 denote the closures of Dy respectively.

In the case where the gauge flux is locally quantized, we can prove the following
theorem:

Theorem 7.2. Suppose that the gauge fluz is locally quantized. Then D is a self-
adjoint extension of Dmin. Moreover,

p*= P!+ Pj. (7.2)

Proof : In the present case, A is flat (Theorem 4.1). Hence each P; is essentially self-
adjoint on C§°(M; C?) (Theorem 5.3). Moreover, P; and P, strongly commute (Theorem
3.3). Hence, applying [8, Theorem 3.4], we conclude that oy ® P; and o2 ® P, strongly
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anticommute®. Hence P is self-adjoint and (7.2) holds [29]. It follows from (7.1) that P
is an extension of Pmin. O

Remark : The part of self-adjointness of D in Theorem 7.2 can also be proven by
employing the fact that, under the present condition, the representation {qj,Pj}J2-=1 of
CCR is a Schrédinger 2-system (Theorem 3.3).

7.2 Zero-energy states

The zero-energy states of the Dirac operators J;,j = 1,2, are particularly interesting. We
first note the following fact:

Theorem 7.3. Suppose that the gauge fluz is locally quantized. Then ker ) = {0}.
Proof : Similar to the Abelian case [4, Theorem 4.2]. O

Remark : In the Abelian case, Theorem 7.3 implies that the Aharonov-Casher theorem
[2], which relates the number of the zero-energy states of the Dirac-Weyl operator with a
regular gauge potential to the total magnetic flux, does not hold in the present singular
case.

In the case where the gauge flux is not necessarily quantized, we proceed as follows.

Lemma 7.4. B
ker D = {0}.

Proof : Similar to the proof of [4, Lemma 4.3].
It follows from Lemma 7.4 that

ker P1 = {0} P ker D}, ker Py = ker DX {0}

Thus we need only to identify ker Di. As usual, we denote by z = z + iy the complex
number corresponding to the point r = (z,y). We set

ap = Qp1 + tGn2, n=1,---,N.

Theorem 7.5. Let A be of the form (6.2) with g a U(p)-valued, twice continuously
differentiable function on M and {T), YV_. a family of commuting px p Hermitian matrices.
Let ¥

Qf gi o T (7) = () edom=y Tr1oIT =Gl (),

where f is a CP-valued function on M. Then

ker D} = {Qgm,..T.|f* is @ meromorphic function on C \ {a 3,

N
with a polynomial order at infinity, e2an=1 Tnlos =@l ¢ ¢ L*(R?;CP)}

' 5Two self-adjoint operators S and T on a Hilbert space are said to strongly anticommute if, for all ¢t € R,
e'ST C Te 5. See [8, 9, 10, 20, 24, 29] for the general theory of strongly anticommuting self-adjoint
operators and [11] for applications to Dirac-type operators.
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ker D* = {Qfy-1...-T.|f is a meromorphic function on C \ {a,}1_,

N
with a polynomial order at infinity, e~ Loney Tnlog|T—anl ¢ ¢ L*(R* CP)}

In particular, if (i) N = 1 or (ii) N > 2 and the gauge fluz is locally quantized, then
ker D3 = {0}. A

This theorem is a generalization of [4, Theorem 4.7] in an Abelian case. The method
of proof is similar to that of the cited theorem. Theorem 7.5 shows that, in the case where
N > 2 and the gauge flux is not locally quantized, the zero-energy state of the Dirac
operators ker D; may be degenerate. See [4] for a detailed anaysis on the degenerate
zero-energy states in the Abelian case. ’

7.3 Supersymmetric structure

It is easy to see that I:= o3 @ I leaves D(J);) invariant and

I'D;+ P, =0 on D(P;)

Let
H;=p% j=12.

Then each quadruple {C? ® L*(R?;CP?),H;,P;,T} is a model of supersymmetric quan-
tum mechanics ([12], {28, Chapt.5]). By Theorem 7.5, the supersymmetry breaking in
these models depends on whether the gauge flux is quantized or not and hence has an
interrelation to the Aharonov-Bohm effect.

7.4 Strong coupling limit of the zero-energy-state density

In this subsection we restrict our attention to the Abelian case p = 1. For a constant
g > 0, we define D;(g) (resp. P(g) ) to be the operator J; (resp. J) ) with A replaced by
gA. The zero-energy-state density (ZESD) of P;(q) is defined by

dimker P;(q)
Hry= Y @I, (7.3)
k=1
where {1/1,9 )}S:ln ker P;(a) is a complete orthonormal system of ker J;(g). The right hand

side of (7.3) is independent of the choice of complete orthonormal systems of ker P;(q).
As for the ZESD P,(r) of a self-adjoint extension of P(q)|Cs°(R?; C?) with a regular

magnetic field
B := DxAz - DyA1

on R?, the following result is known [15]: for any sequence {g, }32, with ¢, — oo (n — o0),

im Fo=() _ -2-1;13(1»), ac. (7.4)

=00 gy,

This result, which ineans that the magnetic field is recovered as a strong coupling limit
of the ZESD, may be regarded as a local form of the Aharonov-Casher result on the
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degeneracy of zero-energy states [2]. As already remarked, in the case of singular gauge
potentials considered in the present paper, the Aharonov-Casher result does not hold.
Hence, in such a singular case, we can not expect that (7.4) holds. But it is interesting to
see how the ZESD behaves in the strong coupling limit ¢ — oo in that case.

In the Abelian case, (6.2) is the general form of flat gauge potentials on M. In this
case we can write g(r) = (") with ¢(r) a real-valued function on M and the quantity
27T, physically means the magnetic flux at a,,.

In what follows, we consider only the simplest (but non-trivial) case N = 2 and present
results only for the strong coupling limit of ggz)('r) (the other case g,(ll) can be treated

similarly). We assume that
T,>0, v=1,2,

and set

e.(q) =qT, — [¢T,], v=1,2,

where [z] denotes the largest integer less than or equal to z. It follows that 0 < ¢,(q) < 1.
Let -

2
Q(r) = £196(7) (H Ir —a, |~ (z - a,,)[qT"]) .

v=1

Lemma 7.6. dim kerﬁz(q) = 1-if and only if

e1(g) +e2(9) > 1. | (7.5)

In that case, the zero-energy state ofﬁZ(q) is given by ( Qqér) ) (up to constant multi-

ples).
Proof : This is a special case of Theorem 7.5 (the case N = 2). O

Remark : Under condition (7.5), ¢T7 and ¢T; are not integers, i.e, the magnetic flux is
not locally quantized.

Henceforth we consider only the case where (7.5) is satisfied. Under this condition, we

have ’
() __Jr = ey 1O — a] 22

||quli2 B fR2 |'f' - a;1|‘251(‘1)|'r — a2|"252(q)dr'

2q(r) = o{I(r) = (7.6)

In the present case, the magnetic field is not a function, but a distribution. Hence it
is natural to take the strong coupling limit of py(r) in the distribution sense. For this
purpose, for each u, A € (0,1) satsifying u+ A > 1, we define a functional ®, ) on L*°(R?)
( the Banach space of essentially bounded functions on R?) by v

eua(f) = /Rz | /() dr, fe L*(R?.

r — a1|?#|r — ay|??

In terms of this functional, the zero-energy-state functional

o)1= [, ealr)f(r)ir
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is written

e @er@(f)
QEI(Q)JZ’(Q)(]‘)

As (7.6) shows, the g-dependence of g, comes only from the factors ¢,(g),v = 1,2. It is
obvious that limg_, €,(g) does not exist. But, for suitable monotone increasing sequences
{g,}2., of positive numbers satisfying

Qq(f) =

gn — 0 (n— ), e1(gn)+e2(gn)>1, n2>1, (7.7)

the limits
Ay = nlgréo eu(gn), v=12, (7.8)

may exist, depending on the choice of {g,}52,. For this reason, we discuss the strong
coupling limit of the ZESD according to the magnitude of A,,v = 1,2.

We denote by B(R?) the set of bounded continuous functions on R?. Limiting behav-
iors of the functional @, » in 4 and A are given in the following lemma. :

Lemma 7.7.
(i) Let po, Ao € (0,1) such that pg + Ao > 1. Then, for all f € L®(R?),

lim ‘I’p,,,\(f) = Q/.to,x\o(f)'

H=r o 1)\-">\0

(ii) Let Mo € (0,1). Then, for all f € B(R?),

lin (L= W)8a(f) =

u—1,2—=Xo 1 a2|2'\° )

(iii) Let T > 0. Then, for all f € B(R?),

s

}Al—»Hi(l - #)q’u,(f—Hu)/T(f) = m(f(al) + 7f(a2)).
Proof. See [6]. O
A simple application of Lemma 7.7 to g4(f) gives the following result.
Theorem 7.8. Let {q,}2, be a sequence satisfying (7.7) and (7.8).
(i) Suppose that A1, Az € (0,1) such that A1 + Az > 1. Then, for all f € L*(R?),

o
Jm eq.(f) = 6%

(ii) Suppose that Ay = 1, Xy € (0,1). Then, for all f € B(R?),
lim g,,(f) = f(a1).

T=—r 00
(iii) Let T > 0 and suppose that, for all sufficiently large n, 1 — £1(gn) = T(1 — £2(gn))
and Ay = 1 (hence Ay = 1). Then, for all f € B(R?),

lim o, (/) = 72 T(0)

=00 1+
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Remark. One can eaily find examples of {g,}52, for each case in Theorem 7.8.
As a corollary, we obtain the folloiwng:

Corollary 7.9. Let {g,}32, be a sequence satisfying (7.7) and (7.8). Then, for all
cases (i)-(iii) in Theorem 7.8,

im 2=U) o fepmY).

n—>00 q,n

This result shows, as expected, that the Erdés’ theorem [15] does not hold in the
present case.

In a special case of part (jii) of Theorem 7.8 a strong coupling limit of the ZESD
recovers the magnetic field :

Corollary 7.10. Let {gn}s%; be a sequence satisfying (7.7) and (7.8) with A\, = 1,v =
1,2. Suppose that, for all sufficiently large n, Ty(1 — €1(gn)) = T2(1 — €2(gn)). Then,
nl—lengo(Tl + Tz)gqn(’l') = T16('r - al) + T26(1‘ — a.2) (79)

in the distribution sense. In particular, if ¢ is a twice continuously differentiable function

on R?, then .

S B(r) (7.10)

nli_{%o(Tl + T2)eq,(r) =
in the distribution sense.

Proof. Formula (7.9) follows from a simple application of part (iii) of Theorem 7.8
with 7= Ty/Ty. If ¢ satisfies the assumption, then

B = 27!'[T16(7‘ - 0.1) + T26(1‘ -— az)].
Hence (7.10) follows. O
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