Instructions for use

Title
Hodge Theory and Algebraic Geometry

Author(s)
Matsushita, D.

Citation
Hokkaido University technical report series in mathematics = 北海道大学数学講究録, 75: 1

Issue Date
2003-01-01

DOI
10.14943/633

Doc URL
http://hdl.handle.net/2115/691; http://eprints3.math.sci.hokudai.ac.jp/0278/

Type
bulletin

Note
Hodge Theory and Algebraic Geometry 2002/10/7-11 Department of Mathematics, Hokkaido University 石井志保子
(東工大)Nash problem on arc families for singularities 内藤広嗣 (名大多元) 村上雅亮(京大理) Surfaces
with c^2_1= 3 and \kappa(O) = 2, which have non-trivial 3-torsion divisors 大野浩二(大阪大) On certain boundedness
of fibred Calabi-Yau s threefolds 阿部健(京大理) 春井岳(大阪大) The gonarlity of curves on an elliptic ruled
surface 山下剛(東大数理) 开多様体のp進etale cohomology と crystalline cohomology 中島幸喜(東京電機大
) Theorie de Hodge III pour cohomologies p-adiques 皆川龍博 (東工大) On classification of weakened Fano 3-
folds 斉藤夏男(東大数理)Fano threefold in positive characteristic 石井亮(京大工)Variation of the
representation moduli of the McKay quiver 前野俊昭(京大理)群のコホモロジーと量子変形 宮岡洋一(東大数
理) 次数が低い有理曲線とファノ多様体 池田京司 (大阪大) 共有な有限変数の代数多様体の分類の分類 鈴木香織(東大数理)
\rho(X) = 1, f \le 2 のQ-Fano 3-fold Fanoの分類

There are other files related to this item in HUSCAP. Check the above URL.
Let F be an algebraic number field. Let $\Sigma_F = \text{Hom}(F, \mathbb{C})$ and X_F the free abelian group generated by Σ_F. Let ι denote the complex conjugation on Σ_F and X_F. Then one can define a map called regulator

$$\rho : K_{2m-1}(F) \to (X_F \otimes \mathbb{R}(m-1))^{\tau = \text{id}}.$$

In [9], Zagier conjectured that the image of ρ can be expressed in terms of the m-th polylogarithm function

$$\text{Li}_m(z) = \sum_{k \geq 1} \frac{z^k}{k^m}, \quad |z| < 1.$$

More precisely, he conjectured that $K_{2m-1}(F)$ is isomorphic modulo torsion to a certain subquotient $B_m(F)$ of $\mathbb{Z}[F^\times - \{1\}]$ called the m-th Bloch group of F, and that the composite of the isomorphism with the regulator ρ can be expressed by values of $\text{Li}_m(z)$ at algebraic numbers. The conjecture was solved affirmatively for $m \leq 3$, but it is still open when $m \geq 4$.

As for the construction of the map $B_m(F) \to K_{2m-1}(F)\mathbb{Q}$, two methods are well-known. Beilinson and Deligne showed that the above map can be constructed under the existence of an appropriate category of mixed Tate motives [1]. On the other hand, de Jeu also constructed the map by using the wedge complexes developed by himself [5]. In this note, we will present an alternative approach. The main tool here is higher Bott-Chern forms developed by Burgos and Wang [4].

1. The Bloch group

First we introduce a one-valued version of the polylogarithm function:

$$P_m(z) = \mathcal{R}_m \left(\sum_{k=0}^{m-1} \frac{z^k B_k}{k!} (\log |z|)^k \text{Li}_{m-k}(z) \right),$$

where \mathcal{R}_m is Re or Im according as m is odd or even and B_k is the k-th Bernoulli number. This is a one-valued real analytic function on \(\mathbb{P}^1_{\mathbb{C}} - \{0, 1, \infty\} \).
In this note, we are interested in \(K \)-theory in rational coefficients, therefore we will define Bloch group with rational coefficients. Let \(F^\times_Q = F^\times \otimes_\mathbb{Z} \mathbb{Q} \) and define a map

\[
\beta_2 : \mathbb{Q}[F^\times - \{1\}] \rightarrow F^\times_Q \wedge F^\times_Q
\]

by \([x] \mapsto x \wedge (1 - x)\). Set \(A_2(F) = \text{Ker} \beta_2 \) and

\[
C_2(F) = \left\{ \sum_i n_i [x_i] \in A_2(F) ; \sum_i n_i P_2(x_i^2) = 0 \text{ for any } \sigma \in \Sigma_F \right\}.
\]

It turns out that \(C_2(F) \) is generated by

\([x] + [y] + \left[\frac{1-x}{1-xy} \right] + [1 - xy] + \left[\frac{1-y}{1-xy} \right]\)

for all \(x, y \in F^\times - \{1\} \) with \(xy \neq 1 \). The quotient group \(B_2(F) = A_2(F)/C_2(F) \) is called Bloch group of \(F \).

Suppose \(m \geq 3 \) and subgroups \(C_{m-1}(F) \subset A_{m-1}(F) \subset \mathbb{Q}[F^\times - \{1\}] \) are given. Define a map

\[
\beta_m : \mathbb{Q}[F^\times - \{1\}] \rightarrow F^\times_Q \otimes (\mathbb{Q}[F^\times - \{1\}]/C_{m-1}(F))
\]

by \(\beta_m([x]) = x \otimes [x] \). Set \(A_m(F) = \text{Ker} \beta_m \) and

\[
C_m(F) = \left\{ \sum_i n_i [x_i] \in A_m(F) ; \sum_i n_i P_m(x_i^\sigma) = 0 \text{ for any } \sigma \in \Sigma_F \right\}.
\]

The quotient group \(B_m(F) = A_m(F)/C_m(F) \) is called \(m \)-th Bloch group of \(F \).

Zagier Conjecture ([9]). For \(m \geq 2 \), the rational algebraic \(K \)-theory \(K_{2m-1}(F)_\mathbb{Q} \) is isomorphic to \(B_m(F) \), and the composite

\[
B_m(F) \cong K_{2m-1}(F)_\mathbb{Q} \xrightarrow{\rho} (X_F \otimes \mathbb{R}(m-1))^\tau = \text{id}
\]

is written as

\[
\sum_i n_i [x_i] \mapsto \left((-1)^{\alpha_m} \sum_i n_i P_m(x_i^\sigma) \right)_{\sigma \in \Sigma_F},
\]

where \(\alpha_m \) is 0 or 1 according as \(m \) is odd or even.

2. The Complex of Exact Hermitian Cubes

Let \(< -1, 0, 1 >^n \) be the ordered set consisting of three elements and \(< -1, 0, 1 >^n \) its \(n \)-th power. For a small exact category \(\mathfrak{A} \) with a fixed zero object 0, a functor \(\mathcal{F} : < -1, 0, 1 >^n \rightarrow \mathfrak{A} \) is called an \(n \)-cube of \(\mathfrak{A} \). Let \(\mathcal{F}_{\alpha_1, \ldots, \alpha_n} \) denote the image of an object \((\alpha_1, \ldots, \alpha_n)\) of \(< -1, 0, 1 >^n \). For integers \(1 \leq i \leq n \) and \(-1 \leq j \leq 1 \), an \((n-1)\)-cube \(\partial_i \mathcal{F} \) is defined by \((\partial_i \mathcal{F})_{\alpha_1, \ldots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \ldots, \alpha_n} = \mathcal{F}_{\alpha_1, \ldots, \alpha_{i-1}, j, \alpha_i, \alpha_{i+1}, \ldots, \alpha_n} \). It is called a face of \(\mathcal{F} \). For
an object α of $<-1,0,1>^{n-1}$ and an integer $1 \leq i \leq n$, a 1-cube $\partial^i_\alpha F$ called an edge of F is defined by

$$F_{\alpha_1,\ldots,\alpha_{i-1},-1,\alpha_i,\ldots,\alpha_{n-1}} \to F_{\alpha_1,\ldots,\alpha_{i-1},0,\alpha_i,\ldots,\alpha_{n-1}} \to F_{\alpha_1,\ldots,\alpha_{i-1},1,\alpha_i,\ldots,\alpha_{n-1}}.$$

An n-cube F is said to be exact if all edges of F are short exact sequences.

Let $C_n A$ denote the set of all exact n-cubes of A. If F is an exact n-cube, then any face $\partial^j_i F$ is also exact. Hence ∂^j_i induces a map

$$\partial^j_i : C_n A \to C_{n-1} A.$$

Let F be an exact n-cube of A. For an integer $1 \leq i \leq n+1$, let $s^1_i F$ be an exact $(n+1)$-cube such that its edge $\partial^i_s(s^1_i F)$ is $F_\alpha \overset{id}{\to} F_\alpha \to 0$. Similarly, let $s^{-1}_i F$ be an exact $(n+1)$-cube such that $\partial^i_s(s^{-1}_i F)$ is $0 \to F_\alpha \overset{id}{\to} F_\alpha$. An exact cube written as $s^1_i F$ is said to be degenerate.

Let $QC_n A$ be the free Q-module generated by $C_n A$ and $D_n \subset QC_n A$ the submodule generated by all degenerate exact n-cubes. Let $\tilde{Q}C_n A = QC_n A/D_n$ and

$$\partial = \sum_{i=1}^n \sum_{j=-1}^1 (-1)^{i+j+1} \partial^j_i : \tilde{Q}C_n A \to \tilde{Q}C_{n-1} A.$$

Then $\tilde{Q}C_n A = (\tilde{Q}C_n A, \partial)$ becomes a homological complex.

Theorem 2.1 ([6]). The homology of $(\tilde{Q}C_n A, \partial)$ is isomorphic to the rational algebraic K-theory of A:

$$H_n(\tilde{Q}C_n A, \partial) \simeq K_n(A)_{Q}.$$

This isomorphism preserves products on the both sides if A is equipped with a strictly associative tensor product.

3. The higher Bott-Chern forms

Let M be a compact complex algebraic manifold, namely, the analytic space consisting of all \mathbb{C}-valued points of a smooth proper algebraic variety over \mathbb{C}. Let $\mathcal{E}^p_{\mathbb{R}}(M)$ be the space of real smooth differential forms of degree p on M and $\mathcal{E}_{\mathbb{R}}^p(M) = \mathcal{E}^p_{\mathbb{R}}(M) \otimes_{\mathbb{R}} \mathbb{C}$. Let $\mathcal{E}^{p,q}(M)$ be the space of complex differential forms of type (p,q) on M. Set

$$\mathcal{D}^n(M,p) = \begin{cases}
\mathcal{E}^{p-1}_{\mathbb{R}}(M)(p-1) \cap \bigoplus_{p'+q'=n-1} \mathcal{E}^{p'+q'}(M), & n < 2p, \\
\mathcal{E}^{2p}_{\mathbb{R}}(M)(p) \cap \mathcal{E}^{p,p}(M) \cap \text{Ker } d, & n = 2p, \\
0, & n > 2p.
\end{cases}$$
and define a differential \(d_D : \mathcal{D}^n(M, p) \to \mathcal{D}^{n+1}(M, p) \) by
\[
d_D(\omega) = \begin{cases}
-\pi(d\omega), & n < 2p - 1, \\
-2\partial\bar{\partial}\omega, & n = 2p - 1, \\
0, & n > 2p - 1,
\end{cases}
\]
where \(\pi : \mathcal{E}^n(M) \to \mathcal{D}^n(M, p) \) is the canonical projection. Then it is shown in [3, Thm.2.6] that \((\mathcal{D}^*(M, p), d_D)\) becomes a complex of \(\mathbb{R}\)-vector spaces computing the real Deligne cohomology, that is, for \(n \leq 2p \) we have
\[
H^n(\mathcal{D}^*(M, p), d_D) \simeq H^n_\mathbb{R}(M, \mathbb{R}(p)).
\]

By a hermitian vector bundle \(\mathcal{E} = (E, h) \) on \(M \) we mean an algebraic vector bundle \(E \) on \(M \) with a smooth hermitian metric \(h \). Let \(K_\mathcal{E} \) denote the curvature form of the unique connection on \(\mathcal{E} \) that is compatible with both the metric and the complex structure. The Chern form of \(\mathcal{E} \) is defined as
\[
\text{ch}_0(\mathcal{E}) = \text{Tr}(\exp(-K_\mathcal{E})) \in \oplus_p \mathcal{D}^{2p}(M, p).
\]

An exact hermitian \(n \)-cube on \(M \) is an exact \(n \)-cube made of hermitian vector bundles on \(M \). Let \(\mathcal{F} = \{ \mathcal{E}_\alpha \} \) be an exact hermitian \(n \)-cube on \(M \). We call \(\mathcal{F} \) an emi-\(n \)-cube if the metric on any \(\mathcal{E}_\alpha \) with \(\alpha_i = 1 \) coincides with the metric induced from \(\mathcal{E}_{\alpha_1, \cdots, \alpha_{i-1}, 0, \alpha_{i+1}, \cdots, \alpha_n} \) by the surjection \(\mathcal{E}_{\alpha_1, \cdots, \alpha_{i-1}, 0, \alpha_{i+1}, \cdots, \alpha_n} \to \mathcal{E}_{\alpha_i} \).

For an emi-1-cube \(\mathcal{E} : \mathcal{E}_{-1} \to \mathcal{E}_0 \to \mathcal{E}_1 \), a canonical way of constructing a hermitian vector bundle \(\text{tr}_1 \mathcal{E} \) on \(M \times \mathbb{P}^1 \) connecting \(\mathcal{E}_0 \) with \(\mathcal{E}_{-1} \oplus \mathcal{E}_1 \) is given in [4]. If \((x : y) \) denotes the homogeneous coordinate of \(\mathbb{P}^1 \) and \(z = x/y \), then \(\text{tr}_1 \mathcal{E} \) fulfills the conditions \((\text{tr}_1 \mathcal{E})|_{z=0} \simeq \mathcal{E}_0 \) and \((\text{tr}_1 \mathcal{E})|_{z=\infty} \simeq \mathcal{E}_{-1} \oplus \mathcal{E}_1 \). For an emi-\(n \)-cube \(\mathcal{F} \), let \(\text{tr}_1(\mathcal{F}) \) be an emi-(\(n-1 \))-cube on \(M \times \mathbb{P}^1 \) defined by \(\text{tr}_1(\mathcal{F})_\alpha = \text{tr}_1(\partial_{n-1}\mathcal{F}) \) for any object \(\alpha \) of \(\sim -1, 0, 1 >^{-1} \), and \(\text{tr}_n(\mathcal{F}) \) a hermitian vector bundle on \(M \times (\mathbb{P}^1)^n \) given by taking \(\text{tr}_1 \mathcal{n} \) times.

Let \(\pi_i : (\mathbb{P}^1)^n \to \mathbb{P}^1 \) be the \(i \)-th projection and \(z_i = \pi_i^* z \). Let \(\mathfrak{S}_n \) be the symmetric group of \(n \)-letters. For an integer \(1 \leq i \leq n \), a differential form with logarithmic poles \(S^i_n \) on \((\mathbb{P}^1)^n \) is defined as
\[
S^i_n = \sum_{\sigma \in \mathfrak{S}_n} (1)^{\sigma} \log |z_\sigma(1)|^2 \frac{dz_\sigma(2)}{z_\sigma(2)} \wedge \cdots \wedge \frac{dz_\sigma(i)}{z_\sigma(i)} \wedge \frac{d\bar{z}_\sigma(i+1)}{\bar{z}_\sigma(i+1)} \wedge \cdots \wedge \frac{d\bar{z}_\sigma(n)}{\bar{z}_\sigma(n)},
\]
and \(T_n \) is defined as
\[
T_n = \frac{(-1)^n}{2n!} \sum_{i=1}^{n} (-1)^i S^i_n.
\]
Let us define the Bott-Chern form of an emi-\(n \)-cube \(\mathcal{F} \) as
\[
\text{ch}_n(\mathcal{F}) = \frac{1}{(2\pi \sqrt{-1})^n} \int_{(\mathbb{P}^1)^n} \text{ch}_0(\text{tr}_n(\mathcal{F})) \wedge T_n \in \oplus_p \mathcal{D}^{2p-n}(M, p).
\]
A process to make an emi-n-cube λF from an arbitrary exact hermitian n-cube F has been given in [4]. By virtue of this process, we can extend the definition of the Bott-Chern form to an arbitrary exact hermitian n-cube.

Definition 3.1. The Bott-Chern form of an exact hermitian n-cube F is an element of $\bigoplus_p D^{2p-n}(M, p)$ defined as

$$
\operatorname{ch}_n(F) = \frac{1}{(2\pi i)^n} \int_{(p1)^n} \operatorname{ch}_0(\operatorname{tr}_n(\lambda F)) \wedge T_n.
$$

Theorem 3.2 ([4]). Let $\hat{\mathcal{P}}(M)$ denote the category of hermitian vector bundles on M and let $\hat{\mathcal{Q}}\hat{\mathcal{C}}_\ast(M) = \hat{\mathcal{Q}}C_\ast\hat{\mathcal{P}}(M)$. Then the higher Bott-Chern forms induce a homomorphism of complexes

$$
\operatorname{ch} : \hat{\mathcal{Q}}\hat{\mathcal{C}}_\ast(M) \to \bigoplus_p D^\ast(M, p)[2p].
$$

Moreover, the following map

$$
K_n(M)_Q \simeq H_n(\hat{\mathcal{Q}}\hat{\mathcal{C}}_\ast(M)) \operatorname{ch} \bigoplus_p H^{2p-n}(M, \mathbb{R}(p))
$$

agrees with the higher Chern character with values in the real Deligne cohomology.

Let X be a smooth proper variety defined over \mathbb{Q}. By a hermitian vector bundle $E = (E, h)$ on X, we mean a vector bundle E on X with an ι-invariant smooth hermitian metric h on the holomorphic vector bundle $E(\mathbb{C})$. In the same way as above, one can consider an exact hermitian n-cube F on X and define its Bott-Chern form $\operatorname{ch}_n(F)$. Let $\hat{\mathcal{Q}}\hat{\mathcal{C}}_\ast(X)$ denote the complex of exact hermitian cubes on X. Then we have an isomorphism preserving products

$$
K_\ast(X)_Q \simeq H_\ast(\hat{\mathcal{Q}}\hat{\mathcal{C}}_\ast(X))
$$

and the Bott-Chern forms leads to the regulator map for X:

$$
K_n(X)_Q \xrightarrow{\operatorname{ch}} \bigoplus_p H^{2p-n}(X(\mathbb{C}), \mathbb{R}(p)) := \bigoplus_p H^{2p-n}(X(\mathbb{C}), \mathbb{R}(p))^{\tau = \text{id}}
$$

4. The main theorem

We introduce a new real analytic function on $\mathbb{P}^1_\mathbb{C} - \{0, 1, \infty\}$ coming from the polylogarithm function. Let

$$
I_m(z) = \sum_{j=0}^{m-1} \frac{(-\log |z|)^j}{j!} Li_{m-j}(z),
$$
and
\[L_m(z) = R_m \left(\sum_{0 \leq 2r < m} \frac{(-1)^r}{2^r r!} \frac{(\log |z|)^{2r}}{(2m-3)(2m-5) \cdots (2m-2r-1)} I_{m-2r}(z) \right). \]

When \(m \leq 3 \), \(L_m(z) \) is equal to \(P_m(z) \), but is not so when \(m \geq 4 \). However, for \(\sum_i n_i [x_i] \in A_m(F) \), we have
\[\sum_i n_i L_m(x_i^r) = \sum_i n_i P_m(x_i^r). \]

The function \(L_m(z) \) satisfies the following differential equation, which is obtained by a direct calculation.

Theorem 4.1. [8, Thm.5.4] If \(m \geq 2 \), then
\[(-1)^m dL_m(z) = Im \left(\frac{dz}{z} \right) L_{m-1}(z) - \frac{\sqrt{-1}}{2m-3} \log |z| (\overline{\partial L_{m-1}(z)} - \partial L_{m-1}(z)). \]

Let \(X = \mathbb{P}^1 - \{0, 1, \infty\} \) over \(\mathbb{Q} \) and let \(z \) be the absolute coordinate of \(X \). Hence we can write \(X = \text{Spec} \mathbb{Q}[z, 1/z, 1/(1-z)] \). We want to apply the theory of Bott-Chern forms to \(X \). But since \(X \) is not proper over \(\mathbb{Q} \), we can not apply directly the results mentioned in the preceding section.

For an exact hermitian \(n \)-cube \(F \) on \(X \), one can define \(ch_n(F) \) as a differential form on \(X(\mathbb{C}) \) by the same integral expression. Moreover, for \(n \geq 2 \), we have \(dch_n(F) = -ch_{n-1}(\partial F) \). Hence when \(n \geq 2 \), \(ch_n(F) \) induces a map from the rational \(K \)-theory of \(X \) to the de Rham cohomology of \(X(\mathbb{C}) \).

For \(f \in \mathcal{O}_X^\infty \), let \(\langle f \rangle \) be an exact hermitian 1-cube on \(X \) given as
\[0 \to \mathcal{O}_X \xrightarrow{f} \hat{\mathcal{O}}_X. \]

Proposition 4.2. [8, Prop.6.1] There exists an element \(h_n(z) \in \hat{\mathcal{O}}C_{2n-1}(X) \) for each \(n \geq 1 \) satisfying the following conditions:

1. \(h_1(z) = \langle z \rangle. \)
2. \(\partial h_n(z) = \sum_{i=1}^{n-1} h_i(z) \otimes h_{n-i}(z). \)
3. \(ch_{2n-1}(h_n(z)) = 0 \) for \(n \geq 2 \).

Theorem 4.3. [8, Thm.6.2] For each \(m \geq 1 \), there exists \(L_m(z) \in \hat{\mathcal{O}}C_{2m-1}(X) \) satisfying the following conditions:

1. \(L_1(z) = -2(1 - z). \)
2. \(\partial L_m(z) = \sum_{i=1}^{m-1} 2^i h_i(z) \otimes L_{m-i}(z) \) for \(m \geq 2 \).
3. If \(ch_{2m-1}(L_m(z))^{(0)} \) denotes the part of degree 0 of \(ch_{2m-1}(L_m(z)) \), then
\[ch_{2m-1}(L_m(z))^{(0)} = (\sqrt{-1})^m L_m(z), \]
where α_m is 0 or 1 according as m is odd or even.

Outline of the proof: We will prove the theorem by induction on m. Assume that $L_1(z), \ldots, L_{m-1}(z)$ exist. By the product formula for Bott-Chern forms [7, Prop. 4.2],

$$
\text{ch}_{2m-2} \left(\sum_{i=1}^{m-1} 2^i h_i(z) \otimes L_{m-i}(z) \right) \\
= \left(\frac{-1}{\sqrt{-1}} \right)^{\alpha_m} \left(\text{Im} \left(\frac{dz}{z} \right) L_{m-1}(z) - \frac{1}{2m-3} \log |z| (\partial L_{m-1}(z) - \partial L_{m-1}(z)) \right) \\
= \left(\frac{-1}{\sqrt{-1}} \right)^{\alpha_m} dL_m(z).
$$

It can be shown that the map

$$
\text{ch}_{2m-2} : K_{2m-2}(X)_{\mathbb{Q}} \to H^1_{dR}(X(\mathbb{C}), \mathbb{R}(m-1)) = \text{id}
$$

is injective. Hence there exists $L_m(z) \in \hat{Q}\hat{C}_{2m-1}(X)$ satisfying the equation (2). Then

$$
d\text{ch}_{2m-1}(L_m(z))^{(0)} = -\text{ch}_{2m-2}(\partial L_m(z)) = \left(\frac{-1}{\sqrt{-1}} \right)^{\alpha_m} dL_m(z),
$$

therefore

$$
\text{ch}_{2m-1}(L_m(z))^{(0)} = \left(\frac{-1}{\sqrt{-1}} \right)^{\alpha_m} L_m(z) + a_m
$$

for some constant a_m. We can eliminate this constant term by using the Borel’s theorem for the regulator map of \mathbb{Q} [2].

Theorem 4.4. [8, Thm. 7.2, Thm. 7.5] There exists a homomorphism

$$
\mathcal{P}_m : \mathcal{A}_m(F) \to \hat{\mathbb{Q}}\hat{C}_{2m-1}(F)
$$

satisfying the following conditions:

1. $\text{ch}_{2m-1}(\mathcal{P}_m(\xi)) = 0$ for any $\xi \in \mathcal{A}_m(F)$.
2. $\partial(L_m(\xi) + \mathcal{P}_m(\xi)) = 0$ for any $\xi \in \mathcal{A}_m(F)$.

By virtue of the above theorems, one can define a map

$$
\mathcal{B}_m(F) = \mathcal{A}_m(F)/\mathcal{C}_m(F) \to K_{2m-1}(F)_{\mathbb{Q}}
$$

by $[\xi] \mapsto L_m(\xi) + \mathcal{P}_m(\xi)$. It is easy to see that the composite of this map with the regulator satisfies the condition of the Zagier conjecture.

References

Graduate School of Mathematics, Kyushu University 33, Fukuoka, 812-8581, Japan

E-mail address: yutakeda@math.kyushu-u.ac.jp