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INVARIANT SUBSPACE THEOREMS FOR SUBDIAGONAL
ALGEBRAS

TAKAHIKO NAKAZI AND YASUO WATATANI

ABSTRACT. We investigate a certain class of invariant subspaces of subdiagonal
algebras which contains the both cases of (extended) weak-*Dirichle algebras and
analytic crossed products. We show a version of the Beurling-Lax-Halmos theorem.

1. INTRODUCTION

Classical Beurling-Lax theorem on invariant subspaces of H? in the unit disc (with
an easy geometric proof due to Halmos) has several applications and has been ex-
tended in many directions. The aim of the paper is to provide another version of
Beurling- Lax-Halmos theorem for general subdiagonal algebras.

Srinivasan and Wang [12] introduced weak-*Dirichlet algebras as an abstract
function theory. It is known that any simply invariant subspace 9 has the form
9 = gH? for |g| = 1 a.e. Most of important theorems for weak-*Dirichlet algebras
are generalized to extended weak-*Dirichlet algebras by the first-named author in [9]
and [10]. On the other hand Arveson [1] introduced the notion of subdiagonal algeras
to unify several aspects of non-selfadjoint operator algebras. Subdiagonal algebras
are regarded as the noncommutative analogue of weak-*Dirichlet algebras.

After the study of Kawamura-Tomiyama [5] and Loeble-Muhly [6] on subdiagonal
algebras determined by flows on von Neumann algebras, McAsey-Muhly-Saito [7],
[8] concentrated the case of analytic crossed products to attack the invariant space
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problem. They finally showed that if the action is trivial on the center,then the
Berling-Lax-Halmos theorem is valid. Furthermore they proved a strong converse:
If a (strong) form of the Berling-Lax-Halmos theorem is valid, then it must be an
analitic crossed product. Solel [11] compaired two invariant subspaces. But their
study excludes certain commutative cases of (extended) weak-*Dirichlet algebras.
In this paper we investigate invariant subspaces for géneral subdiagonal algebras to
include both analytic crossed products and (extended) weak-*Dirichlet algebras. To
avoid the storng converse mentioned above due to McAsey-Muhly-Saito, we introduce
an invariant subspace of 2-type I, which is a generalization of both a simply invariant
subspace in a weak-*Dirichlet algebra and a pure invariant subspace in an analytic
crossed product. We show a version of Beurling-Lax-Halmos theorem for invariant
subspaces of 2A-type I. The notion of YA-type I is not so restrictive because we also

have a decomposition theorem into a part of 2-type I in Theorem 10.

2. DECOMPOSITION

Let B be a finite von Neumann algebra with a (faithful normal normalized) trace
7. We recall the definition of a subdiagonal algebra by Arveson [1]. Let & be a o-
weakly closed unital subalgebra of B, and let ® be a faithful and normal conditional
expectation frbm B onto D = AN A* such that 7(®(z)) = 7(z) for £ € B. Then
2 is called a maximal subdiagonal algebra of B with respect to @ if the following

conditions are satisfied:
(1) A + A* is o-weakly dense in B.
(2) ®(zy) = B(z)®(y) for z,y € A

(3) 2 is maximal among those subalgebras of B satisfying (1) and (2).
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By a result [2] of Exel, a o-weakly closed finite subdiagonal algebra is automatically
maximal. So we may omit the condition (3) in our setting.

If B is abelian and B = L*(X, ), then a subdiagonal algebra %A is an exactly
extended weak-*Dirichlet algebra introduced by the first named author in [10].

Let m (resp. p) be a left (resp. right) multiplication of B on L*(B,7) defined by
w(b)np(z) = n(bz) and p(b)y(z) = n(xd) for b,z € B

where § : B — L?*(B,7) is the cannonical emmbedding. We sometimes omit the

symbol 7 and 7. The closure of 2 in L*(B,7) is denoted by H? = n(2) and the
closure of %, = {a € A|®(a) = 0} is denoted by HZ = 5(Ap). A closed subspace M
of L*(B,7) is (left) A-invariant if x(A)M C M, A-reducing if A and A*-invariant,
A-pure if 9 contains no non-trivial 2A- reducing subspace, A-full if the smallest A-

reducing subspace containig M is L*(B, 7).

Definition. Let 9 be an A-invariant subspace of L?(B,7). Then 9 is called
simply invariant if [7(Ao)M], G M. Let § = M © [r(Ao)M],. Then M is called
of ™A-type I if [x(B)S];, = [x(B)M],. Let M" = [x(B)M]; © M. Then IM" is an
A*-invariant subspace. If M" is of A*-type I, then M is called of A-type II. And A
is called of A-type ITT if M = [w(Ao)M], and M" = [ (AF)M"],.

Example. In the above situation, H? is of 2A-type I. Many H? are of A-type I
. For instance, if H is A-full (in particular, if D C A32;), then H? is of 2A-type I1.

Definition. Let W be a subspace of L*(B, 7). Then W is called left-wandering if
W and 7()W are orthogonal. In particular a vector ¢ € L?(B,7) is left wandering
in the sense of [1] if and only if the one dimensional subspace [{] spanned by ¢ is

left-wandering in the above sense. If 2 is the analytic crossed product in B = D x, Z
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as in [MMS], then W is left-wandering in our sense if and only if W is left-wandering
in the sense of [MMS] or [So], i.e., LyW and LW are orthogonal when n # m,
where Ls is the unitary in B = D %, Z implimenting the automorphism «a as in [7]

and [11]. A left-vlla.ndering subspace W is complete if L*(B,7) = [x(B)W]..

Lemma 1. Let 9 be an A-invariant subspace of L*(B,7). Let S = M & [7(Ao)M],
and K = Mo [x(A)S],. Then we have the following:

(1) S is a left-wandering subspace. |

(2) [x(B)S]; and K are orthogonal.

(3) The projection p of L*(B,) onto S is in (D).

Proof. (1) Since § C M, it is trivial that SLm(2)S.
(2)Since K and [7(2)S], are orthogonal and 2Af + 2l is o-weakly dense in B, it is
enough to show K and #(2g)S are orthogonal. For any k € K,a € fpand s € S,

(kfr(a*)s) = (x(a)k]s) = 0
since w(a)k € 7(Ao)K C n(Uo)M.
(3)Forde D,s€ S, a € and m € M,
(r(d)slx(a)m) = (slx(d"a)m) = 0
Sincé M is D-invariant, S is D-invariant. [0

Definition. In the above setting, we shall call that S = 9 © [x(Ao)MN], is the

wandering subspace of 9.

Lemma 2. Let 9 be an A-invariant subspace of L*(B, 7). Let S = M © [x(Ao) M,
be the wandering subspace of M. Then the following conditions are equivalent:

(1) M is A-type I ( v.e., [x(B)M], = [x(B)S]; )



Proof. (2)=-(1): Suppose that 9t = [r(A)S],. Then
[x(B)9], = [x(B)x(A)S]; = [x(B)S].

(1)=(2): Suppose that 9 is A-type I and M # [7(A)S];. Then K = MS[n(A)S], #
0. By Lemma 1, K and [r(B)S]; are orthogonal. Thus [7(B)K]. and [n(B)S], are

also orthogonal. Therefore
[x(B)M]; © [x(B)S]2 D [r(B)K]2 # 0
Thus [x(B)IM]; # [x(B)S]; . This is a contradiction. [J

Corollary 3. Let M be an A-invariant subspace of L*(B, 7). If M is A-type I and

non-zero, then IM is simply invariant.

Proof. On the contrary suppose that 91 is not simply invariant. Then the wandering
subspace S of 9 is zero. Then by Lemma 2, M = [#(A)S]; = 0. This is a

contradiction. J

Proposition 4. Let D be a finite von Neumann algebra with a trace 7 and o an
automorphism on D with roa =17. Let B = D X, Z be the crossed product with the
canonically extended trace T and U = D x,Z, be the analytic crossed product. Let M
be an A-invariant subspace of L*(B,T). Let Ls be the unitary in B which impliments
a. Then the following conditions are equivalent:

(1) M is pure.

(2) QnxoLs™M = {0} .

(3) I is A-type I .
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Proof. It is shown in [7] that (1) and (2) are equivalent. Let S = 9 © [7(Ao)M] =
M © LsM be the wandering subspace of MM . Then we have that

M = Np>oLs"M S Y, ®Ls™S

n=0

Therefore Nn>oLs"M = {0} if and only if M = 377 ®Ls"S if and only if MM =

n=0

[(2A)S]: . By Lemma 2, 9 = [7(A)S]; is equivalent to that M is A-type I . O

Proposition 5. Let 2 be a weak-*Dirichlet algebra of L= (X, p) and M an A-invariant
subspace of L*(X,p). Then the following conditions are equivalent:

(1) 9 is simply invariant. |

(2) 9 is of A-type I and non-zero.

(3) There exzists a unimodular function ¢ € L™(X, p) such that
M = qH?

Proof. Tt is clear that (3) implies (2). Corollary 3 shows that (2) imples (1). It is a

classical result that (1) imples (3). O

Lemma 6. Let W be a left-wandering subspace of L*(B,7) . Let Wi and W, be
the subspaces of W. Suppose that Wy and W, are orthogonal and W, is D-invariant.
then ©(B)W: and w(B)W, are orthogonal.

Proof. For d € D,z,y € Ao, &1 € Wi,& € W, we have

(m(z* + d +y)&alé2) = (alm(2)(§)2) + (v(d)6alé2) + (w(y)éaléz) = O

Since Qlo"; + D + 2, is o-weakly dense in B

(m(b)éa|é2) = 0 for be B,& € Wh,6 €W,



Therefore for by,b, € B

(m(b1)a]m(ba)€a) = (w(ba™b1)&1]é2) = 0

Thus 7(B)W; and n(B)W, are orthogonal. []

Proposition 7. Let M be an U-invariant subspace of L*(B,7) . Let S = MO
[7(Ao)M]2 and K = M [x(A)S]2 . Let p1 (resp. pan) be the projection of L*(B,T)
onto [r(B)S] (resp. M) . Then we have the following:

1) pipmm = pmp1 and p1 € w(B)

1(IM) = [x(A)S]

) (1—p)M=K

2

5) p1IN is an U-invariant subspace and of A-type I .

(1)
@) p
(3)
(4) M=p M (1 —p)M
(5)
(6)

6) (1 — p1)M = K is an A-invarant subspace such that K = [1(Uo) K],

Proof. Put C = [r(B)S], © [x(™)S]: . Then we have [r(B)S], = C @ [x(2)S5]; and
M=K & [x(A)S]: . Since K and C C [r(B)S], are orhogonal by Lemma 1, we

have

pipm = popr, i = [r(A)Shand (1 -p)M = K
Furthermore 9% = pyM & (1 — p1 )M . Tt is clear that p; M = [7(A)S], is A-invariant
and p, isin w(B)’ . Fora € 2

7K =7(a)(l—p1)M=(1-p)7(a)MC (1 —p1) M=K

Thus K is 2-invariant. In particular [7(%)K], C K . Since M = [7(A)S, @ K =
S @ [1(Ug)M]; and [x(A)S], DO S, we have K C [7(p)DM]; . Since K = (1 — py)M,
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we have (1 —p;)K = (1 —p1)9 . Therefore

K=(1-p)M=(1-p)K C(1—p1)[r(Uo)D;

C [(1 = pr)w(Ag)My = [ (Ao)(1 — p1)M]; = [ (o) K2
Thus [7(2)K]; = K . Finally we shall show that p,0 is of 2-type I . Since
n M = [7(A)S5]z = [S]: & [7(Aoe)S]2 (. SLim(Ao)ST2)
and
[7(2Ao)p1 M)z = [x(Ao)7(A)S]2 = [7(Ao)S]2

We have S~ = pyM S [7(Ao)p1M]; = S . Therefore [x(A)S™~]; = [7#(A)S] = p N .
This shows that p;0N is of A-type I by Lemma 2. 0O

Lemma 8. Let £ be an A-invariant subspace of L*(B,7) and F a B-invariant sub-
space of L2(B,r) . Let e (resp. f) be the projection of L*(B,) onto € (resp. F).
If ef = fe , then the following hold: |

(1) If [1(Ao)E)z = &, then [r(U)ENF)a=ENF .

(2) If € is of A-type I, then ENF is also of U-type I .

(3) ENF = f€ and (EN F) © [(r(Ao))(E N F)]z = (€ © [7(Ao)E2) -
Proof. Since ef = fe, E=(ENF)d (ENFt)and ENF = f€ . By assumption £

is U-inavariant and F is ™A-reducing. Therefore we have
(o)l = [t (A)(ENF) @ [a(A)(ENF )2

[T ENF)2 CENF and [r(2A)(ENFH Cc ENFL

Thus we have

£ 6 [r(o)El, = (ENF) © [1(Ao)(E N F)La) & (ENF*) © [r(Uo) (€N FF)]a)



Hence we have

[x(A)(€ © [7(Ao)€]2)]5
= [r(AW((ENF) & [x(%)(€ N F))]2 & (r(A)((E N F*) © [7(Ao)(€ 0 FH)]2))

By these consideration we have the fo]lQWing:
(1): ¥ [7(Ao)E]2 = €, then [7(A)(ENF).=ENF .

(2): Suppose that € is A-type I, then by Lemma 2 we have
€ = [r(A)(E€ © [r(A0)El2)]2

Therefore
ENF =[x(A)(ENF) O [x(%)(€ N F)l2)l-
This shows that £ N F is also ™A-type I .
(3): It is easily observed. O

Proposition 9. Let 2 be an extended weak-*Dirichlet algebra of B = L®(X, p) and
M an A-invariant subspace of L*(X, ). Then the following conditions are equivalent:

(1) 90 is of type I in the sense of [10], i.e., for every nonzero projection xg € D
with xgIM # 0

XM 2 x5 (Ao)M,

(2) 9 is nonzero and of A-type I in the sense of this paper.

(3) There exist a unimodular function ¢ € B = L*(X, 1) and a nonzero projection
xg € D such that

M = xpqH?

Proof. (3)=(2): Since gH? is of A-type I, M = xgqH? is also of A-type I by applying
the above Lemma 8 for § = xgL*(X,p) . Since xg € xgH?, M = qxgH? # 0.
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(2)=(1): Let 9 be of A-type I. Then for every non-zero projection xg € D with
xzM # 0, xgM is of A-type I by the above Lemma 8. Hence xgIMN is simply

invariatnt by Corollary 3. Thus
xeM 2 [7(Ao)xeIM2 = x5 (Ao) M2
(1)=-(3):This is shown in [10]. O

The following Theorem 8 is a generalization of a decomposition theorem of an

invariant subspace for (extended) weak-*Dirichlet algebras studied in [9], [10].

Theorem 10. Let B be a finite von Neumann algebra with a finite trace T and A o
mazimal subdiagonal algebra. Let 9 be an U-invariant subspace of L*(B,T) and pm
the projection of L*(B,T) onto M . Then there esist projections p1,ps,ps € 7(B)’
with p1 + p2 + ps = 1 and p;pm = pmp; for i =1,2,3 such that

(1) M=pM P p, M psM
(2) p1IM is an W-invariant subspace of A-type I .
(3) p:IMN is an A-invariant subspace of A-type IT .
(4) psIM is an A-invariant subspace of A-type 111 .
(5)

5) psIM contains no nonzero invariant subspace B of A-type I of the form W = gMN

~ for some projection g € w(B)' with p;mg = gpm-

Proof. Let S = M O [x(Uo)M]; and K = M S [7(A)S]; . Let p; be the projection
of L*(B,7) onto [x(B)S]; . Then p; € n(B), pipm = pmp1 and pyM = [7(A)S],

is an 2-invariant subspace of A-type I by Proposition 7. Let

N = [x(B)M), © ([r(B)5]: & K)
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Since K = (1 — p;)M, [7(A)S]; = p1M and M = p, M & (1 — p;)9M by Proposition

7, we have
N=(1-p)x(B)M]2) © K = (1 - p1)([x(B)M]. © M)

Then N is A*-invariant because [r(B)M], is B-invariant and [r(B)S]; & K is A-
invariant by Proposition 7. Let T = 9 © [7(Ao")MN]; and L =N & [#(A*)T]; . See

Figure 1.

Figure 1 -

We shall show that three subspaces L, [v(B)T; and [x(B)S]. are orthogonal each
other. Applying Lemma 1 to 91 and 2* instead of 9 and 2, we have that [x(B)T],
and L are orthogonal. Since M and [x(B)S], are orthogonal and L C 9, L and

[w(B)S], are orthogonal. For z € S,t € T,z € B and y € B, we have

(w(z)s|w(y)t) = (7 (y"z)s]t) = 0

because w(y*z)s € [7(B)S]s, t € T C N, [x(B)S] and T are orthogonal. Thus
[7(B)S]2 and [x(B)T], are orthogonal.
Letp, (resp. pym) be the projection of L*(B,7) onto [r(B)T]s (resp. ). Then

applying Proposition 7 to 91 and 2* instead of 9 and A, we have that p, € =(B)’,
P2 = pmp2, PN = [n(AT)T)2 = [n(B)T] NN,

(1 = p)N = L, [x(A*)T), is an A*-invariant subspace of A*-type I, and L is an
A*-invariant subspace such that L = [x(2A5)L},. Put C = [x(B)S]2 © [x(A)S]z. Let
pc (resp. r) be the projection of L?(B,7) onto C (resp. [r(B)M],). Since

[r(B)M); = [r(B)SL, ® K ®N=CoA)S,eaKeN=CeMaoN
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we have r = pc + pm + pm . Since [x(B)T), C [x(B)M],, p,r = Tps = p,. Because
[#(B)S)2 and [x(B)T}; are are orthogonal and C' C [n(B)S];, C and [W(B)T]z are
orthogonal and pcp; = pspec = 0. Therefore p, commutes with psp = 7 — po — par.

Thus

PN =M N [x(B)T].

Since M = [7(A)S], ® K and that [x(B)S], (D [x(2)S].) and [r(B)T]; are orthog-
onal, we have p,M C K. It is clear that p,91 = M N [x(B)T), is an ™U-invariant
subspace. We shall show that ps90 is of A-type II. Put M, = p,M C [x(B)T]. and
My = [x(B)M,] © M,. We have

P2 = par = p2(Pc + Pm + Pm) = p2pm + P2pm
Therefore [7(B)T)s = My & [x(A*)T)z. Thus [x(B)M,]z C [7(B)T].. Then

m;\ = [W(B)Mz]z o Dﬁz = [W(B)mtz]g N ﬂﬁj'

= [7(B)Malz N ([7(B)T]2 NIMy) = [r(B)Ma] O [x (A7) T,

Thus
My = [x(B)Ma]2 N [x(A7)T],
and
[7(B)D,]; = M & My C M, @ [(A") T,

Recall that [x(2*)T], is of A*-type I. The projection of L*(B,7) onto [x(A*)T],
is popm. Let § = [7(B)M,]; and f be the projection of L*(B,7) onto §. Then
(p2pm)f = F(papm). Applying Lemma 8, we have that M3 = [7(2A*)T]; N [x(B)M]

is A*-type I.
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Finally put p3 = I — p; — p;. Then p; € n(B)" and pspgm = pmps. Put My =
psM =M N ps L2(B, 7). Then

M3 = MN (I N (M) =M [x(A)S]F NI = K NNy

Since M, C K, we have. M3 = K © M,. Let px be the projection of L*(B,7) onto
K. Then px = ps + pspom. Let § = [x(B)M], © [x(B)T]; and f’ be the projection
of L%(B, 1) onto §'. Let £ be the projection of L?(B,7) onto L. Then by Figure 1 we

have
m(B) > f =r—py=p1+ps+pspo+£—ps =p1+pspm +£

prf = f'Px = pspan and Mz = K NF'. Since K = [x(Ao) K], by Proposition 7, we

have

M3 = [W(Q[o)mt3]2

by Lemma 8. Let MM} = [x(B)Ms] © Ms. Let F = [7(B)Ms); and f* be the
projection of L?(B,) onto §°. Recall that L = N © [x(A*)T); and L = [x(A3)L],.
We have that [7(B)IM;]; C M3 L, because [7(B)M], = [x(B)S|®&M:®(n(B)T]:HL.
Thus

M) = [7(B)Ms]; ©Ms = LN [x(B)Ms]y = LNF
Since f* € 7(B)' and f'£ = £f’, we have
My = [(A3) 3],

by Lemma 8. Thus we have shown that 913 = ps91 is of ™U-type [11.
Let 20 be an invariant subspace of p,IN of A-type I of the form U = g for some

projection g € w(B)" with psrg = gpm. Let & be the range of g. By Lemma 8,
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LV =gM=IMNS and
B © [r(Ao)V]z: = g(M © [r(™Ao)M]2) = g5
Since g0t C I and gr(2) T C 7(2Ao)gM C 7(Ae)I , we have g§ C S. Therefore
T = [r(A)gSlz C [r(A)S]: = ;M
Hence B Cp;MNpMand B=0. O

Example. Let D be a finite von Neumann algebra with a trace 7 and a an
automorphism on D with 7o a = 7. Let B = D X, Z be the crossed product with
the canonically extended trace 7 and & = D X, Z, be the analytic crossed product.
Let 91 be an A-invariant subspace of L?(B, 7). Let Ls be the unitary in B which

impliments a. Then we have that

M = Nusols™MS > SLs"S

n=0

(oo}

Using the notation of the above decomposition theorem, we have that p; M = 3272 ®Ls"S,
P2 = 0 and psM = N,50Ls™S. |

Example. Let D be a type II; factor and a : Z* — AutD an outer action. Let
B = D x4 Z? be the crossed product. Fix an irrational positive number 6 and cosider

the positive cones
Py = {(m,n) € Z*;6m +n 2 0}.

Let )\, be the unitary B which impliments a, for g € Z*. Let 2 be the o-weak closure
of the set of all finite sums Y, cp, Z,A,, where z, € D and z, = 0 except for finitely
many g € Py. Let 9 = H2. Then H? is of A-type I1. Since the wandering subspace
S =0, we have py0 = 0, p.0 = HZ and p;9 = 0.
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Example. We can also construct several examples such that none of p;,9(: =
1,2, 3) are zero in the decomposition of the above Theorem 10. For example consider
the direct sum of the subdiagonal algebras and invariant subspaces of the just above
two examples. Helson-Lowdenslanger [4] give an -invariant subspace of ™A-type I1]

which is not A-reducing.

3. INVARIANT SUBSPACES

Loebl-Muhly [6] and Kawamura -Tomiyama [5] investigate maximal subdiagonal
algebras determined by flows in von Neumann algebras. Later the study on invariant
subspaces is focussed on analytié crossed product A = D x, Z, and Mcasey, Muhly
and Saito [7] determined when a version of the Beurling-Lax-Halmos theorem (ab-
breviated the BLH theorm) is valid for 2 = D X, Z,.. But their situation excludes
certain commutative cases as in [10], [12].

The aim of the section is to unify the both cases of analytic crossed products and
(extended) weak-*Dirichlet algebras.

The following Lemma 11 is a generalization of Lemma 4.2.2. in Arveson [1] on

wandering vectors and is a key lemma to prove our main theorem.

Lemma 11. Fori=1,2, let K; be a D-invariant subspace of L*(B, ) and g; be the
projection of L*(B,T) onto K;. Assume that K; and K, are left wandering. Suppose
that there ezists a partial isometry w € w(D)' such that w*w = ¢ and ww* = ¢s.
Then there ezists a partial isometry v € w(B)' satisfying the following:

(1) v*v is the projection onto [w(B)K;], and vv* is a projection onto [w(B)K,),.

(2) vr(b)¢ = w(b)wl for all ¢ € K1 and b€ B

(3) v([r(A) K1) = [x(A) K], '
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Furthermore there ezists a unitary u € w(B)’ such that uf = v for £ € [w(B)K;)s.
Proof. First we shall show that

(1) (r(b)é1}é2) = (m(b)wésiwé)  for b€ B,&, 6 € Ky

Since A5+ D42, is o-weakly dense in B, it is enough to consider three cases (i) b € D,
(ii) b € Ao, and (iil) b € A3.
(i) Suppose that b € D. Since (b)Ky C K1, w € n(D)' and w is a partial isometry

whose support is K;, we have

(r(D)wéi|wéz) = (wr(b)éiwéz) = (m(b)é1]é2)-

(ii) Suppose that b € ;. Since K; and K, are left wondering, K; and 7 () K; are
orthogonal for i = 1,2. We have {1,§; € K; and wéi,wé; € K,. Therefore

(m(b)&alé2) = (m(b)wérwés)

(iii) Suppose that b € 2. Since K; and 7(2o)K; are orthogonal, 7(2A3) K and K; are
orthogonal for ¢ = 1,2. Therefore

(r(B)a62) = 0 = (n(BYuwts k)

Thus we have proved ().
For b; € B and §; € K, (t=1,2,..,n), using (), we have

n

IS w B2 = 3 3 (r(b)eln(b:)Es) = 3 3w (B5b0)éilEs)

=1 i=1 j=1 i=1j=1

kY n

= EZ b* wélleJ) = | Z w€z||2

i=1 j=1
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Therefore there exists a partial isometry v € L(L?(B), ) such that
vr(b)¢ = w(b)wé for beB,{€kK,

and vp =0 for 7 € [r(B)Ki]y. Thus (1) and (2) are proved.

We shall show that v € n(B)'. Take z € B. For b € B,{ € K,

vr()n(B)E = vr(zb)é = n(zbywt = n(2)n(Bwt = n(x)om(b)E
For b € B, 5 € [n(B)K:]7, we have w(b)y € [x(B)K,]y. Terefore
vr(z)n = 0 = 7(z)vn
Thus vr(z) = w(z)v for any = € B, that is, v € 7(B)’. Since wK; = K, we have
ol () K2 = [r(2AwEil: = [n(2)Kal:

! can be

Furthermore, since 7(B)’ is also a finite von Neumann algebra, v € w(B)
extended to a unitary u in w(B)’

a

The following Lemma 12 is an extension of Theorem 3.2 in (7.

Lemma 12. Let M amd 9, be U-invariant subspace of A-type I. Let S; = IM; ©
[7(20)9:]2 be the left wandering subspaces of M; and p; € w(D)' be the projections of
L*(B,1) onto S; fori=1,2. If py X p, in (D), then there exists a partial isometry
v € ©(B)’ such that vy = M,.

Proof. Since p, < p,, there exists a partial isometry w € 7(D)’ such that ww* = p,

and w*w < p;. Put pf = w*w € n(D)’ and let S] be the range of pj. Then

7(D)S; = n(D)pyS1 = pyn(D)S, C pyS1 = 81
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Since 7(Ap)S; C 7(™Uo)S1, S; C Sy and 7(Ap)S; is orthogonal to S;, we have
that m(24o)S] and 5] are orthogonal. Thus S is also D-invariant and left-wandering.
By Lemma 11, there exists a partial isometry v € w(B)’ such that v([x()S1);) =
[7(2)S3])z. Furthermore the support of v is [r(B)S]]; and the range of v is [x(B)S2]; .
Let $? = $165) . then S? is also a D-invariant and left-wandering. Therefore 7(B)S]
and 7(B)S? are orthogonal by Lemma 6 . Thus [x(B)S:], = [#(B)S;]: & [v(B)S;] .
Hence
v[(m(2)51)]z = v[x(A)51]x
Since 9, and M, are of A-type I,
VI = v[r(A)S1]: = v[n(A) Sz = [7(A) Sl = M,
0

Lemma 13. Let M be an A-invariant subspace and v € w(B)' a partial isometry
such that M = uH? Then the following are equivalent:
(1) 2t is full.

(2) u is a unitary.
Proof. (1) = (2): Suppose that 9 is full. Then
wI*(B) = ulx(B)H), = [x(Bu’]; = [x(B)], = L*(B)

Hence u is a co-isometry in «(B)’. Since 7(B)’ is finite, v is in fact a unitary.

(2) = (1): Suppose that u is a unitary. Then
[7(B)M); = [x(B)uH"]; = [ur(B)H")s = u[x(B)H"); = uL?(B) = L*(B)
Thus M is full O

We have a version of the Beurling-Lax-Halmos theorem for subdiagonal algebras.
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Theorem 14. Let B be a finite von Neumann algebra with a tmce 7, D a von Neu-
mann subalgebra of B and ® : B — D a (faithful normal) conditional ezpectation
with 7o ® = 7. Let A be a mazimal subdiagonal algebras with respect to ®. Suppose
that the center Z(B) of B contains the center Z(D) of D. Let MM be a U-invariant
subspace of L*(B,7) and of A-type I. Then there exists a partial isometry v € n(B)’
such that

M = vH?

Proof. Let S = M © [x(Up)MN]; be the left wandering subspace of 9. Recall that
L*(D) is the left wandering subspace of H2. Let ep (resp. es) be the projection of
L?*(B) onto L*(D) (resp. S). Then ep and es are in «(D)’. By the comparability

theorem, there exists a projection ¢ € Z(D) such that
n(g)ep X 7w(q)es and  7(1—q)es X 7w(1l—g)ep

By the assumption, we have ¢ € Z(D) C Z(B). Since 9 and H? is of A-type
I, w(@)MM = M N (x(q)L*(B)) and w(q)H?* = H? N (v(q)L*(B)) are Y-invariant
subspaces of 2A-type I by Lemma 8. And the projection of L?*(B) onto the left
wandering subspace of w(q)9N (resp. w(q)H?) is w(q)es (resp. m(q)ep) by Lemma
8. Since 7(q)ep < w(q)es in w(D)', there exists a partial isometry v, € 7(B) such
that w(q)H 2_ = v;7(g)9 by Lemma 12. Similarly there exists a partial isometry
vy € w(B)' such that (1 — ¢)9M = vyw(1 — g)H?. We shall show that v;7(q) is a

co-isometry on w(g)L?*(B). In fact

v (q)(n(q)L*(B)) D [vam(q)m(B)M]2 = [m(B)v17(q)M];

= [x(q)x(B)H?*]; = n(q)L*(B)
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Thus v,7(q) is a co-isometry in a finite von Neumann algebra n(g)7(B)’, so that

v;7(g) is a unitary on 7 (q)L?(B). Therefore (vim(q))(n(g)9) = n(¢)H? implies that
(q)M = n(g)vin(9)H* = m(g)vi H’
We also have (1 — ¢)9 = n(1 — q)v. H?. Let
v =7(g)v] + 7(1 — g)vz
Then v is a partial isometry in w(B)’ and we have
M=n(q)M&7(1 — ¢)M =n(g)v}H* ® 7(1 - q)v, H* = vH’
(|
Remark. The above proof itselfis a generalization of that of Halmos [3] and McAsey,
Mubhly and Saito [7].

Corollary 15. (McAsey, Muhly and Saito {7]). Let D be a finite von Neumann
algebra with a finite trace T and a an automorphism of D with T oo = 7. Let
B = D x4 Z be the crossd product and A = D X4 Z4 the analytic crossed product.
Suppose that a fizes the center Z(D) of D elementwise. Then every pure invariant

subspace M of L*(B) has the form vH? for some partial isometry v € w(B)'.

Proof. The condition that a fixes Z(D) elementwise is equivalent to that Z (D) C
Z(B). Proposition 4 shows that 9 is pure if and only if 2 is A-type I. Therefore

we can apply Theorem 13. O

Remark. The assumption that Z(D) C Z(B) in Theorein 13 is necessary. For
example let B = M,(C) be the algebra of 2 by 2 matrices and D the algebra of diag-

onal matrices. Then the set 2 of upper triangular matrices is a maximal subdiagonal
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algebra. We note that Z(D) = D ¢ Z(B) = C. Let 9 = L*(B). Then OM is of

2-type I. But there exist no partial isometry v € m(B)’ such that 9t = vH?, because

dim 9 = 4 and dim vH? < dim H? = 3.

B N

10.
11.

12.

81
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