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On Pinching of Curves Moved by Surface
Diffusion |

YosHIKAZU GIGA *and Kazuo ITO 1
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Abstract

We give a rigorous proof for formation of pinching' of evolving curves moved by
surface diffusion.

Keywords: pinching, surface diffusion, evolving curves, unique local existence.

1 Introduction

We study motion by surface diffusion which was first derived by Mullins [8].
Let T'; C R? be a closed evolving curve depending on time ¢ with initial data [;|;—9 =
['o. The governing equation for evolving curves by surface diffusion is of the form

V = —Kg,. (1)

Here V' denotes the outward normal velocity and x denotes the outward curvature; s
denotes the arclength parameter of I';. There are several derivations of this equation
other than Mullins [8]. See for example Cahn and Taylor [2] and Cahn, Elliott and
Novick-Cohen [3]. In the latter paper, (1) is obtained as some formal limit of Cahn-
Hilliard equations. A typical feature of I'; moved by (1) is that the area enclosed by I'; is
preserved. Related equations to (1) are well explained in Elliott and Garcke [4] and Cahn
and Taylor [2]. For physical background of these equations, see [2], [4] and references
cited there. ‘

In [4] local existence of solution for (1) was proved without uniqueness as well as
for other equations. They proved that if initial data is close to a circle, then I'; exists
globally in time and it converges to a circle with the same area enclosed by I'g as ¢ tends to

*Partially supported by NISSAN SCIENCE FOUNDATION and The Japan Ministry of Education,
Science, Sports and Culture through Grant No. 08874005.

tPartially supported by The Japan Ministry of Education, Science, Sports and Culture through Grant
No. 08740082. AMS subject classification: 35K99, 80A22. .



infinity. They also conjectured that ', moved by (1) may cease to be embedded for some

embedded smooth initial data. In this paper we give a rigorous proof to their conjecture.
Let us explain our idea. We consider a smooth closed embedded curve Iy which is

symmetric with respect to z-axis and y-axis. We assume that 'y is of the form

FO = {(23, y);y = :E'U'O(m)},
where ug(z) is even and ug(x) takes the only local minimum at z = 0. If T'; is represented
by y = u(t,z), then (1) becomes a fourth order equation of u(t,z). If we linearize (1)
around u = 0, we obtain
Ut = —Ugpprs.

If we consider the Cauchy problem for this equation with ug(z) > 0 and ug(z) = =* + 6
for small § > 0 near z = 0, then u(¢,0) would be negative in a short time. In other
words, the comparison principle does not hold. It is easy to guess this phenomenon
since u(t,z) = z* — 4!t + & solves u; = —Uypy,. In this paper we shall rigorously prove
that for a good choice of ug(x), u(t,0) becomes negative in short time during the period
that solution I';: y = u(t,r) of (1) exists as immersed curves. Since I'; is represented
by y = u(t,z), and symmetric with respect to y = 0, this means that I'; ceases to be
embedded in short time even if Iy is embedded. This is a rough idea of our proof. For
this purpose we shall review unique local existence theorem for immersed curves with
estimates of existence time interval as well as of solutions. Of course there are several
versions of unique existence theorems which apply in this setting e.g. by Lunardi [7] but
we presented a simple version with the aid of the classical Lax-Milgram type abstract
existence theorem due to J. L. Lions [5] (see e.g. [6], [9]) which just needs Hilbert spaces.
Since we proved the uniqueness of solutions as well as higher derivative estimate near
¢ = 0, our unique local existence theorem is not included in Elliott and Garcke [4] which
is based on the method of X. Chen [1].

Our paper is organized as follows. In Section 2, we introduce a parametrized equatlon
for (1). After showing a unique local existence theorem for this equation, we rigorously
prove formation of|pinching ' of evolving curves moved by surface diffusion. In Section
3, we briefly prove the unique local existence theorem in a general framework of the
parametrized equation for (1).

2 Pintching of evolving closed curves

2.1 Parametrization

We summarize here a parametrization of (1) by following Elliott and Garcke [4],
Let M° be a. fixed reference immersed closed curve with arclength 2L. For T =
R/(2LZ), let

X% T M,
1+ X°(n)

be an arclength parametrization of M°. Then, 7%(n) = X?(n) is the unit tangent vector
of M? and the Frenet formula gives -

79(n) = £’ (n)n’(n),
ng(n) = —£°(m)™°(n),



where n%(n) is the unit normal vector and x%(n) is the curvature of M° with the sign
convention that the curvature of a circle is negative.
Let I'; C R? be a closed curve moved by surface diffusion law with respect to time
{ > 0 starting from initial closed curve I'y. For small 7 > 0 we expect that [; is
parametrized by
X: [O,T) xT — Ft,
@&m) = X(tn),

X (t,n) = X°(n) + d(t,n)n’(n)

with some d(t,7) defined on [0,7) x T. If Iy is embedded and I'; is close to [y, then
d(t,n) is the distance function from M?. By this parametrization, (1) is equivalent to

1— dxk°
J

1 1
dy = “jan(jan’f),

where J = |X;| = 0s/0n is the Jacobian and k(t,7) is the curvature of I'; in the direction
of n°. Their explicit forms are

J= J(’?, Qp, al)l(ao,al)z(d,d,,) = (dg + (1 - dK’O)z)l/z’

1

Thus, the equation (1) for d(¢,7) with initial data ;g = [g is of the form:

dy + J 4 dyny + Pdyy + Q@ =0, 0 <t < T, n € T, @)
d(Oan) = dO(n), n € T,

where P and @ are polynomials with arguments (1 — k%)™, J=1, &%, 3, &0, «3.., d, d,
and dyy,.

2.2 Local existence

We state here a result of the unique local existence of smooth solutions of (2). To do this,
we first treat a general framework.
We consider the equation:

Uy -+ a(x, U, um)uz:z:xm + b(:L’, U, Uz, uzm)umma: + c(l',uauz;u:cz) =0, (3)
’U,(O,iL') = ’U()(iL‘),

fort >0 and z € T = R/(wZ) with w > 0. For (3), we assume:
(a) The function a(z, ag, ;) is positive.

(b) Let M > 0 be given. The functions a(z, ag, 1), b(z, g, a1, as) and c(z, ag, a1, az)
are smooth in their all arguments but restricted for |ag| < 2uM and w-periodic in
z, where p = p(T) > 0 denotes a number in Sobolev inequality:

[fllzeeemy < pll fllnery  for f € HY(T). (4)



Theorem 1 (Local existence for (3)). Let M > 0. Assume (a)-(b). Then, for any
ug € HYT) with |lugllgacry < M, there is a Ty(M) > 0 such that there exists a unique
solution u(t, z) of (3) satisfying

u € L*(0, To(M); H(T)), w € L*(0,To(M); HX(T)), (5)

lulliaso(®) <2M  for t € [0, To(M)] ©)

Corollary 2 Let m > 4 be integers and let N € (0, M]. Then, for any uo € H™(T) with

lluollam(y < N, there is a Ty(N) > 0 such that there erists a unique solution u(t,z) of
(8) satisfying

u € L*0, Ti(N); H™*(T)), w, € L*(0, Ty(N); H™ (T)), (7)

lellamem)(t) < 2N for t € [0, TH(N)]. (8)

An outline of Theorem 1 is given in Section 3. From Theorem 1 and Corollary 2, we
obtain

Theorem 3 (Local existence for (2)). Let w and & be as
w = ZL, 460“&'0”1,«:('1‘) S 1. (9)
(1) Let M € (0,60/p) where p is in (4). Then, for any dy € H(T) with ||do| gy < M,
there is a To(M) > 0, which is nonincreasing in M, such that there exists a unique solution
d(t,n) of (2) satisfying
d € L*(0,To(M); HY(T)), d; € L*(0, Ty(M); HX(T)), (10)
ldlleraemy(8) < 2M  for t € [0, To(M)]. (11)
(1) Let m > 4 be integers and N € (0,80/p). Then, for anydy € H™(T) with ||do||zrm(t) <
N, there is a Ty(N) > 0, which is nonincreasing in N, such that there ezists a unique
solution d(t,n) of (2) satisfying
d € L*(0, Ty(N); H™*(T)), d: € L*(0,Ty(N); H™*(T)), (12)
ldllzm(ry(t) < 2N for t € [0, Ty (N)]. (13)

Remark 1. Our local existence theorem in particular implies that for any immersed
smooth curve Ty, there exists a unique local-in-time solution of (1) by taking Iy as a
reference curve M° with dy = 0.

Remark 2. It is easy to see from the above construction manner of solutions that
solution curves ['; are uniquely determined by ['y not depending on parametrizations.

Remark 3. Since our main conceren in this paper is pintching, we do not pursue
regularity property like higher regularity away from ¢ = 0.

Proof of Theorem 8 admitting Theorem 1 and Corollary 2. It suffices to prove (b).
For |ag| < 2uM, J(n, ap, 1)~ has no singularities: in fact, it follows from (9) that

o} + (1 — agr®(m))? > (1 — 2uM ||| Lo )2
1
2 (1= 26|l (m)* 2 ()%

Similarly, we can show that P and @ have no singularities on the place where we are
concerned. This gives (b). Applying Theorem 1 to (2), we obtain (i). The proof of (ii) is
essentially the same with M replaced by N, so we omit the proof of (ii). O
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2.3 Pinching of evolving closed curves

We show that there is an evolving closed curve which ceases to be embedded in finite
time, even if initial curve is embedded.
To do this, we take a special reference curve M immersed in R2. This is parametrized
by
X%n) = (X{(n), X3(m)) forneT=R/(2LZ)

satisfying :
[ X%(n) = X%(—n), 0<n<lL,
XO(’?) = (7”0), 0< n < L/4,
} (XD)(m) >0, 0<n<L/2,
X2(L/2+n)=XP(L/2-n), 0<np<L/2,
X2(n) >0, L/A<n<L)/2,
| X2(L/2+n) =—-XJ(L/2-7), 0<n<L/2

where 7 is an arclength parameter. We define two sets of functions in T and in (0,T") X T
depending on positive parameters N, € and T

Do(Ne) = {do € HY(T);do(—1) = do(n) = do(L —n), do(n) >0 (Vn€T),
ldolizoery < N, do(0) <, —3d5(0)° + 5" (0) > 0,
do(n) attains its global minimum at n = 0},

Dr(N) = {d e L*0,T; H*(T));d; € L*(0, T; H(T)),
ldll oy (t) < 2N (t € [0,T])}

Note that closed curves I'y parametrized by X(0,7) = X%7) + do(n)n’(n) with dy €
Dy(N, €) are embedded in R?. Then, our main result is stated as follows.

Theorem 4 ( Pinching of evolving closed curves). For any N € (0,60/u), there is an
g0 > 0; for any € € (0,ep), there are dy € Dy(N,¢), to € (0,T1(N)) (where Ti(N)
is in Theorem 3 (i) and t1(> to) such that for initial embedded closed curve 'y with
parametrization

Lo = {X(0,n7) = X°(n) + do(n)n°(n); n € T},

the solution curvé I'; with parametrization
={X(t,n) = X°(n) +d(t,n)n°(m);n € T}, t € [0, Ty(N)],

where d € Dry(wy(N) is the unique solution of (2) established in Theorem 3 (ii), ceases to
be embedded for at least ty < t < min(¢;, T1(N)).

Proof. Take ady = d, € Dy(N, do( ))). For this dy, Theorem 3 (ii) implies that there are
Ti(N) > 0 and a unique solution d € Dry(ny)(N) of (2) with initial data dy(n). Then,
there is a K(N) > 0 such that

| — 8,04d(t,0) + 30,(92d(t,0))°| < K(N) for te [o, Ty(N)).

Put
~(4)

o(do) = —3dy (0% + dy (0) > 0.
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Take €g > 0 as :
o(dy)? — 4eoK(N) > 0,

o (do) — y/o(do)? — 1eK(N) _

2K(N) < Ti(N).
Then, it holds
o(do)® — 4eK(N) > 0,
o) T <) (149)
for 0 < ¢ < gy. Take 0 as
ma{0, d0(0) - 29 3 0) - ¢} < 8 < do(0)
’ 4K (N)’ e

Put do(n) = do(n) — 0. Then, it is easy to check that dy € Dy(N,€). Thus, it follows from
Theorem 3 (ii) that there exists a unique solution d € Dy (n)(N) of (2) with initial data
do(n). It follows from the uniqueness that

do(—n) = do(n) = do(L — 1)
implies
d(¢,—n) = d(t,n) = d(t, L — 7). (15)
Furthermore, B
o = o(dp) = o(dyp),
| — 3t83d(t, 0) + 3<9t(3,";d(t, 0))}| < K(N) fort € [0, Ty(N)).

Then, from (14),
g — /02 —4eK(N
to = ( ) < Tl(N)

- 2K(N)
for 0 < € < g¢. Finally, from the first equality of (15),

d(t,0) = do(0) + /Oth(T,O)dT

do(0) + [ (~d%d(r,0) + 3(82d(r,0))dr
= do(0)—ot+ [ t [ (~0,9%d(5,0) + 36,(83(s, 0)*)dsdr
< e—-oat+ K(N)&,

which and the second equality of (15) imply
d(t,0) =d(t,L) <0 for ty <t < min(t;, T1(N)),

where
_ 0+ 4/0% —4eK(N)
h= 2K(N) '
This shows that [y ceases to be embedded for ¢y < ¢ < min(¢;,73(N)). This completes
the proof. a



3 Outline of the proof of the local existence theorem

In this section, we show an outline of the proof of Theorem 1 briefly. The proof of
Corollary 2 is similar, so is omitted. Throughout this section, unless otherwise claimed,
we denote by C and C; (j = 1,2, - - -) universal positive constants whose numerical values
may be different in each occasion.

Outline of the proof of Theorem 1. Step 1. We begin by solving a linear equation for
unknown function w(t, z):

{ w; + a(x, Uo, uOm)wmzmm = Avmzzm + f, (ta (L') € (O, T) x T, (16)

w(0,z) = up(x), z €T,
where v(t, x) is any given function with
v € L*(0,T; HY(T)), v, € L*(0,T; H*(T))
and A and f are defined by
A = a(z, ug, ugz) — a(z,v,v,),

f = —b(Z', v, Vg, va:z)vm - C(.’II,’U, U.’mv.’tx)'

We shall construct a mapping ® : v — w by solving the equation (16).

Lemma 5 (Unique ezistence for (16)). For any uy € H*(T), there exists a unique
solution w(z,t) of (16) with

w € L2(0,T; HY(T)), w, € L*(0,T; H*(T)).

Proof. We apply the classical Lax-Milgram type abstract existence theorem due to J. L.
Lions [5] (see e.g. [6], Theorem 10.3 in [9]) to (16). To do this, it suffices to check the
coercivity: Let M > 0. For ¢ € H*(T) with ||¢|| gacr) < M, there are positive constants
co(M) and Ag(M) such that

(a(, @, P)Uasa, WHa(m) = co(M)|taz i ery — Mo(M)||ullbacr) (17)
for u € HS(T).

We prove (17). Take ¢ € H*(T) and estimate (GUggqz, U)ge(T), Where we set d(z) =
a(z, p(x), pz(x)). We only estimate its leading term since the estimate for lower order
terms is easy. It follows from (a) that there is a constant a; > 0 depending on ||¢||w1.e(T)
such that @(z) > ay for z € T. Then,

[ 02 @) do = [ G(@thsaee)B d

= /1‘ a05udlu dx + .[r B2a0tudlu dx

+2 /I‘ 0,a0ublu dx

> a1]|0%ul|Z2er) — ea||85ulZzer) — Ce(llollzaem) lullfecry,
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where we have used the Young inequality:
Ve > 0,3C, > 0;]ab| < elaf? + C.|b]?
and the interpolation inequality:
103ullzzemy < CllERull iy 82wl -
After taking ¢ sufficiently small, we get (17). O
Step 2. For T' > 0 and R > 0, we define two sets of functions on (0,7 x T:
Zp = {u € L*(0,T; HY(T));u, € L*(0, T; HX(T)), u(0,2) = uo(2)},
B(T,R) = {u € Z}; |ullz < R},
where

llullza = llullL20,7:me () + lluell 20,7 2(T)-
By Step 1, the mapping
®: Z7 — Z4,
v — w=%(v)
is well-defined. We shall show:

Claim: Let M > 0. For any ug € H*(T) with [|ug|| H4T) < M, there are constants
To(M), Ro(M) > 0 and (M) € (0,1) such that

v € By = w = ®(v) € By, (18)
o1~ wallzg, ., < Oy — vallzs , for vs € By, (19)

where By = B(To(M), Ry(M)) and w; = ®(v;), i = 1, 2.

If (18) and (19) are verfied, then the Banach fixed point theorem implies that there
exists a unique u € By such that u is the fixed point of ® restricted on Bj,. This shows
that v is the desired solution of (3) on [0, To(M)].

It remains to prove the Claim. Here, we only verify (18), since (19) can be shown in
a similar way. Let T'> 0 and R > 0 be parameters determined later. Let v € B(T, R).
Taking the H*(T)-inner product of (16) and w and integrating it from 0 to T, we have

1 1 T
5“10(71)”%14('1') - 5““0”%14(1') +/0 (a(',ﬂo,%z)aiu%w)m(l‘)dt

T T
= /0 (ABLv, w) gaerydt + /0 (f, w)ga(rdt
=I+11.

From the coercivity (17),

T
(M) el 1sm50my = 20 (M) [ Nwllacry (8%

T
< /0 (a(-, uo, 'U'Om)af:wa w)H4(T)dt'

8



Estimate of I. We only estimate the leading term of I:
i _
/0 /I‘ B2 (AdM) - Hwdzdt

_ /O 8 /T 82(Ad) - Bwdzdt

< 162(A85v) || Lao,rraery 108w | 2o, raemyy = T 88w\ 20,7221y
< C(6, “’L‘0“H4(T))I12 + 500(““0“114('1‘))||3gw“%2(o,T;L2(T)),

where 6 > 0 is a sufficiently small parameter determined later. We only estimate of the
leading term of I;:

14850 20,122y < 1Al zoe 015000 (1) 188 || 20,7, 22Ty
< C|All L o.1:m2 (1) 1080 | 120, 7 22Ty),

1 Allzee 0,5 (1)) < C(|luollwriee (xys [[0]] oo 0w (1)) [t — V|| Lo 0,15 2¢T) -
Observe that

' t
(4o — )z || Loo(o,rs22(T)) = Sup || / OrVe (T, -)dT]| L2(T)
tefo,1] JO ‘

T
S/O 18722 (7, Ml z2¢rydT < CTY||vegs || 20,1, 12¢TY)-

Since the other terms are controlled more easily, from the above observations, we arrive
at the following conclusion: there is a C; > 0; for 6, T, M, R > 0 and ¢ = 0, 1, there are
C¥(6,T, M, R) > 0 such that

I < CP(T,M,R)
T
+C§1)(6,T,M,R)/0 lwliZacr) (8)dt + Creo(M) lweal 2o pimmacryy  (20)

CE6,T,M,R) -0 asT —0 (6, M, R: fixed),

C}i) is nondecreasing in T'.

Estimate of 11. The following fact is fundamental.

(21)

Lemma 6 Put
F('U) = f(z"vavmvzmvxm)-

Then, F' is a mapping
F: Z# — L*0,T; H(T))

satisfying:
(F1) for any T >0 and R > 0, there is a C(T, R) > 0 such that
IE @)z msmemy) < C(T, |lvllz) forv e 27,

and C(T,R) — 0 as T — 0 for fired R,



(F2) there holds
[1#(v2) = F(v1)llz2orsm2cmy) < C(T, vill za + llvall zs ) [z — vi [l 23
Jor v1, vy € Z3.

Proof. We verify (F1). Here, we only estimate the term having the highest derivative:
1Ty = [|b(:, v, vz, V22) 0| a2 01y) -
Observe that

sup{[b(z, &); |2| < 2L, || < ||vlLorwaecry}

“b(‘aU,Uz,vzz)“Lw(O,T;Lw(T)) <
< sup{{b(z,a)l; || < 2L, |o| < Cllv||=@r;mecTy) }-

On the other hand,

2
1020l 20 mzaery < ClIOMWI oo 1080l oyl 220m)

IA

C"34”||L°°(0TL2(T)) /4”66'UI|L2(0TL2(T))
We now arrive at
”i. < CT3/4sup{|b(:c,a)|; lz| <2L,|a| < C””“zﬁ" ||’UHZ§£-

Estimating the lower derivative terms, we thus prove (F1). The proof of (F2) can be done
in a similar way. a

We turn to the estimate of the leading term of 71. We set
gt,z) = f(z,v(t,2), -, Veue (¢, T)).
From Lemma 6 (F1), it follows that

A ’ /1‘ Oag0swdzdt = /0 ’ [r 02 g0lwdzdt

< 10291 20,r;12¢) 105w | Lo, 722 (T
< C(T, HU“z;,)||3gw||L2(o,T;L2(T))

< C(6,T, M, R) + bco(M)|| 85wl 320,112y

with small parameter § > 0. Thus, estimating the lower derivative terms, we arrive at
the following conclusion: there is a Cy > 0; for §, T, M, R > 0 and i = 0, 1, there are
C¥(6,T, M, R) > 0 such that

11 < ¢96,T,M,R)
+CP 6T, M,R) [ ol (et + Cobeo(M) el rmaerys  (22)

CE(6,T,M,R) -0 as T — 0 (5, M, Rifixed),

0) (23)
C}7 is nondecreasing in 7T

10



Put
Ci(8,T,M,R) = CO(5,T,M,R) + C(5,T,M,R), i=0,1.

From (20) and (22), we find
Il (T1){Zsxy + 2co(M)weslEa0, 13,4y
< M2+ 2C(6,T, M, R) + 206(M) + 36, T, M, R) [ ao(0) gyt
+2Cs6co( M) |[wez || 220,138y

for 0 <T1 < T, where C3 = C; + C;. Taking é as 2C36 = 1 and applying the Gronwall
lemma, we get

(@) |2y < (M2 + 2080 (T, M, R)))2Po(M+CH(TM AT
for 0 < T1 < T. Consequently,
llw(T) [3ramy + co(M)|[waz 132,141y
< M2 +209(T, M, R)
+2(Mo(M) + CSH(T, M, R))T(M? + 2C(T, M, R))eXXMD+CIHTMET (94

Then, utilyzing (21) and (23), one can take R = Ry(M) > 0 and Tp(M) > 0 sufficiently
small such that

the R.H.S. of (24) < min(4M?, Ilgco(M)Ro(Mf), (25)

and also 1
llwll 20,781 (1)) < ZRO(M ) (26)
for 0 < T < To(M). Similarly, using (16), we may conclude
1

lwellz2ommaery < 5Ro(M)  for 0 < T < To(M). (27)
Combining (25)-(27), we have proved (18). (In the proof of (19), we use (F2) instead of
(F1).) The proof of Theorem 1 is complete. O
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