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The Cauchy problem
for nonlinear wave equations
“in the homogeneous Sobolev space

M.Nakamura* and T.Ozawa

Department of Mathematics
Hokkaido University
Sapporo 060, Japan

Abstract

We consider the Cauchy problem for nonlinear wave equations in the
homogeneous Sobolev space H* (R"), wheren > 2and0< pu<n /2 using

the generalized Strichartz estimates given by J.Ginibre and G.Velo [10].

1 Introduction
We study the Cauchy problem for nonlinear wave equations of the form
Ou— Au = fu) (1.1)

in the homogeneous Sobolev space H #(R") withn > 2and 0 < g < n/2, where
A denotes the Laplacian in R™ and the typical form of f(u) is the single power
interaction Alu[P~lu with A € R and 1 < P < 00. As usually done, with data
u(0) = ¢, 8,u(0) = ¢ we regard (1.1) as the following integral equation.

u(t) = B(u(t) = K(H)¢ + K(t)p + /0 K(t-1)f(u(r)dr,  .(12)

where K(t) = costv/—A, K(t) = (sintv-A)/V=A.

There are many papers on the Cauchy problem for (1.1) and large time be-
havior of global solutions, see [2, 4, 5, 7-15, 17-23]. Recently, in [15] Lindblad
and Sogge studied (1.1) in the Sobolev space with minimal regularity assump-
tions on the data. One of the key ingredients in [15] is generalized Strichartz
estimates on the free wave equation. Those estimates are described exclusively
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in terms of the homogeneous Sobolev space, and accordingly, the associated
estimates on the nonlinear term are required to take a form in the framework
of the homogeneous Sobolev spaces. Unfortunately, however, when it comes to
the Leibniz rule for fractional derivatives, it sometimes happens that additional
regularity assumptions on f would be necessary more than one needed.

Meanwhile, we have recently found that the problem could be efficiently
dealt in the framework of the homogeneous Besov spaces [16], see also 3, 7).
Moreover, the Strichartz estimate are now available in the fully extended version,
especially in the homogeneous Besov setting [10].

The purpose of this paper is to reexamine the results of [15] on the Cauchy
problem for (1.1) in the homogeneous Sobolev spaces by means of a number
of sharp estimates described in terms of the homogeneous Besov spaces. As a
result of the homogeneous Besov technique, we have refined and generalized the
previous results in some directions. To state our theorem, we make a series of
definitions.

Definition 1.1 For s > —1 and P 2 1, we define a class of functions G(s,p) in

C(C, C) as following. We say f ¢ G(s,p) if f satisfies either of the following
conditions

1. For some nonnegative integers a,bwithp =a+b, f(z) = C, + Caz2b,
where Cy and C, are constants and C1 is disregarded if s < 0.

2. [s]+1<p, feCl+(C,C). f(0)=... = FLEFD(0) = 0, where £(0) = 0
may be disregarded if s > 0 or p satisfies [s] +2 < p. Moreover, f satisfies
the estimates for all z,w € C

If([31+1)(2) - f([SJ+1)(w)|

< CUAP™EI72 - flp=lel=2)[2 — | i [s] 42 <,
= Clz — w|p-lsl-1 if [s]+1<p<[s]+2,
| ‘ (1.3)
where [s] denotes the largest integer less than or equal to s, but [0] = -1.

We call s the first index of G(s, p).
Definition 1.2 Let ¢ > 0. Let £, be

Qe={(1/91/r) | 0<1/g,1/r <1/2, €<1/r<1/2-2/((n - Lg),
(1/a,1/7) € Be(1/2,1/2 - 1/(n - 1))},

where B¢(1/2,1/2 - 1/(n - 1)) denotes an open ball with radius ¢ and center at
(1/2,1/2-1/(n=1)). Let 0< p < n/2. Let Q. , be

‘Qe,p = {(I/Q7 1/T’p)|(1/Q7 1/7') € Qe,o <p<p,0< 1/q < n/2 iy —ne}.



Definition 1.3 For any —00 < a < 0 < b < o0, we define an interval J =

[2, 5)NR with length |a —b| and for R > 0 a function space X¢(I, R) with metric
d by

X(I,R) = {venu/ei/mpen., LI, BE) |

max u; LI(T, B,’.’ < R},
(1/9,1/r,p) € u I ( i }

d(u,v) [l - v; LI(T, Bf)“

max
1/q:1/rp)eQe,,

In our theorem below, ||(4,%)||, denotes max(||¢; H||, ||v; HE1)), o de-
notes the lower root of the quadratic equation

F(z)=2® - (n? - 3)/(2n - 2))z+(n® +n+4)/(4n - 4) =0. (1.4)

It follows that min(1,a) = 1 for n < 6 and (n+1)/(2n-2)<a<lforn>7.
Finally, 8(u) is given by

_n+n+4-2n-3)y
) = e -

It follows that #(a) = a, B((n —4)/2) = 1 and that B(g) is a strictly increasing
function in .

Theorem 1.1 Letn > 2, 0 < p < n/2 and 2/(n—2u) <p-1. Letn,fp
satisfy any of the following conditions. -

(A1) n=2, f € G(0,p) and
2+ 1)/n+4p)/(n+1-4p) for 0<p<1/4,
p=1<4 4/(n+1-4y) for 1/4<pu<1/2,
4/(n - 2p) for 1/2 < p <n/2.
(A2) n>3,0<u< min(1l,a), f € G(0,p) and
P=1 < B(n+1)+2(n—1)u)/(n? +n - dnp)
for 0<p<(n=-3)/(2n-2),
P=1 < 4/(n+1-4u) for p=(n-3)/(2n-2),
1<l HYn+1-ap) for (n-3)/2n-2) < p< 1/2,
P23 4/(n - 2p) for 1/2 < p < min(1,a).
(43) n27, a<p<(n-4)/2, feGu-B(x)p) and
pP=1<4/(n-2p). ‘ ,
(A4) n >3, max(l,(n - 4)/2)<pu<n/2, feG(u- 1,p) and
p—1<4/(n-2p).
Let € > 0 be sufficiently small. Then for any data (¢,9) € H¥ x HH! there
ezists a unique local solution of (1.2) in Xe(I, R) with |I| > 0 sufficiently small
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and R sufficiently large. Moreover if p — 1 = 4/(n — 2) and (&, )|l is
sufficiently small, there ezists a unique global solution in Xe((—o0,00), R) with
R sufficiently small.

On the solutions given by above, we have the following results:

(1) (u,8yu) is continuous in time with respect to the norm H# x H+-1,

(2) The solution u depends on the data (@, %) continuously. Namely let v be
the solution of (1.2) with data (¢o,%0) such that |[(¢ — ¢o,% — o )||x tends to
zero, then d(u,v) — 0 forp ¢ J, v — u in D'(R™1) forp € J , where D'(R"HY)
denotes the space of distribution and J denotes an interval defined only for (A3)
ZZZ)(M) as J = ([p = B + 1, [ = B(w)] + 2) for (A3), T = ([u], [u] + 1) for

(3) Letp—1=4/(n—2p). There ezists a pair (4, v in H* x H#-1 such
that

lu(t) = K ()¢t — K(£)bs; HE| > 0 as t — oco.

(4) Let p—1=4/(n - 2pu). Let v > 0 be sufficiently small. Then for any
data (¢—,v_) which satisfies ”(gzﬁ_,':p_)",J < 7, there ezists a global solution u
and a pair (¢4, ¢+ ) in H¥ x H¥"! such that

lu(t) = K(t)px — K()pps; HE| =0 as t— %co.

Moreover if p ¢ J, then the map (¢_,¢_) = (d4,%) is continuous in HH x
H#-1,

Remark 1. By dilation argument, it is natural to call p = 1 + 4/(n — 2u)
the critical exponent for the well-posedness of the Cauchy problem for (1.2) in
H# x H#=1, On the other hand, H.Lindblad and C.D.Sogge ({14, 15]) showed
the ill-posedness in the following three cases: (a) p > 1+4/(n + 1 — 4u) with
n=2and 1/4 < p <1/2. (b)p > 1+4/(n+1-4u) with n > 3 and
(n=3)/(2n-2)<p<1/2. (c)p=2withn=3and pu=0.

Remark 2. We use the homogeneous Besov space for the linear and nonlinear
estimates for (1.2), by which it becomes easy to deal with the fractional deriva-
tive of nonlinear term (see Propositions 2.1 and 2.2). For the definition of the
homogeneous Besov space and its properties, we refer to [1, 8, 10, 24]. Our
results for the local and global solvability of (1.2) in the homogeneous Sobolev
space H* with 3/2 < pp < n/2 and the corresponding results on scattering are
new.

2 Estimates for nonlinear terms

Proposition 2.1 Let s > 0,1 < p and f € G(s,p). Let 1 £ < 0,2< g <
00,2<r< oo withl/t=(p-1)/qg+1/r. Then

[1£(w); Bl < Cliw; BylIP~*|lw; B, (2:5)
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1) ~ £(o); B2 |
< Cmax(llu; By, [lo; B>~ {lu — v; B

+C max({lu; Bl llo; Bl lfu — v; BY|| max((u; B, llv; B2)

+C max(||u; By, llvs BNl — w5 BY 1P~ max(||u; B2, lv; B2,
where the second and third terms on the right hand side of the last inequality
are disregarded for p < 2 and p ¢ ([s] + 1, [s] + 2) respectively.

Proof) We have already shown the first inequality in (16]. The second
inequality would be proved analogously and we omit the proof. m]

For the proof of the next proposition, we describe fundamental relations
between 1/q and 1/r with (1/g,1/r) € UcsoQe.

Lemma 2.1 Let p,p € R. Let 1/q,1/r satisfy p = p — n(1/2 - 1/r) - 1/q.
If p,q satisfy any of the following conditions, then the above 1/q,1/r satisfy
(1/¢,1/7) € Ues0Qe.
(Yn=20<1/g<n/2-(p—p)foru~1<p<p—-3/40<1/qg<
(n =)k~ p)/(n+1) for p~ 3/4<p < p.
(8)n>30<1/g<1/2forp=p—(n-1)/20< 1/g < 1/2 for
p=(n=1)/2 < p < p—(n+1)/(2n-2),0 < 1/q < 1/2 for p = p—(n+1)/(2n—2),
0<1/g<(n=1)(p=p)/(n+1) for u~(n+1)/(2n~2) < p < p.

Proposition 2.2 Let n,u,p, f satisfy any of the assumptions in Theorem 1.1.
Let —po be the first index of G. Then for sufficiently small € > 0, there exists a
pair (1/90,1/ro) € Qe with p =1 (pg +n(1/2 — 1/7) - 1/g0) and two triplets
(1/gi,1/74,pi) € Qe y i = 1,2, such that

[1£(w); L9 (2, B2 < CUI lfwll? ™ el (2:6)

17 (w) = £(o); L%(1, BZ™)|
< ClIY max(|fulls, ol )P~ - ol
+CI17 max([lully, [[oll )*~||w — vll; max(|[ull2, o]l2)
+C1I17 max(|lul|1, [loll)I#0|u ~ o)l 7212 max(fjuly, [lv]]2),
where [|-||; = || L%(I, B2)| and o = 2— (p— 1)(n~2u)/2 and the constant C'is

independent of I. On the right hand side of the last inequality, the second and
third terms are disregarded for p < 2 and p ¢ ([ po] + 1, [—po] + 2) respectively.

Proof) Let 1/r* = 1/r1—p;/nand 1/r** = 1/ra—(po+p2)/n. Ifp; >0, 0<
—po < p2, 0<1/r* < 1/2, 0 < 1/r™ < 1/2, 1/rh = (p— 1)/r* + 1/r** and



g=1/g0,~(p —1)/q1 — 1/g2 > 0, then by Proposition 2.1 and the embeddings
Bf ¢ BY., Bf? C B2 and the Holder inequality in time, we obtain the
required inequality, where we use the embedding L? ¢ Bg with 1 < ¢ < 2 for
pPo = 0.

By a simple calculation, we see that the above assumptions are satisfied by
a pair (1/go,1/r0) € Q¢ and pg with 1 — p = pq +n(1/2-1/re) —1/qo and two
triplets (1/qi,1/7i,pi) € Qe ,, i = 1,2, which satisfy the following conditions.

L p120, 0<—py < pa. (2.7)
2. 1lgi<n/2—p, i=1,2 (2.8)
8. Va+le=(1l/ga)=@E-1)(n/2-p-1/q)-1. (2.9)
4. 0=2-(p-1)(n-2u)/2>0. (2.10)

We show the existence of the above triplets (1/gi,1/7i,p:), @ = 0,1,2 using
Lemma 2.1. We make some comments here. By the condition 3, we must assume
p<n/2and p-1>2/(n—2u). By 4, we must assume p—~1 < 4/(n - 2u), but
this is required for the well-posedness of (1.2) in HH.

In the following, we consider the case n = 4 only since the proofs for the case
n = 2,3 are analogous. We make a classification on 4. The problem is reduced
to the existence of the required 1/¢;, i = 1,2.

Case 1. 0<u<(n-3)/(2n-2)

Let p; =0, 1 =0,1,2. Let 0 < 1/go < 1/2,0<1/¢; < (n=Dp/(n+1), i=
1,2. Then by Lemma 2.1, we have (1/go,1/r0) € Qe and (1/qi,1/ri,p:) €
Qe 1 = 1,2, for sufficiently small ¢ > 0. Now 1/gi, ©=0,1,2, must satisfy
(2.9), but the existence of such 1 /a4, 1=0,1,2, is guaranteed if p satisfies

2/(n=2p)<p-1<B(n+1)+2(n—-)p)/(n® +n- dnp). (2.11)

Case 2. u=(n-3)(2n -2)
In Case 1, with 1/g0 < 1/2 replaced with 1/g0 < 1/2, we conclude the
existence of the required 1/¢;, i = 0,1, 2, if p satisfies

2/(n—2p) <p-1<4/(n+1-4p). (2.12)

In the following cases, the argument after setting p;, 1/q;, i = 0,1,2, is
similar to that of Case 1, so that we omit it and write the assumption on p only.

Case3. (n—-3)/(2n—-2)<p<(n+1)/(2n-2)

Let pi =0,9=0,1,2. Let 0 < 1/g0 < (n = 1)(1 - p)/(n + 1), 0<1/g; <
(n=1Dp/(n+1), i=12for p < (n+1)/(2n-2), 0 < 1/¢: < 1/2, i = 1,2,
for 4 = (n +1)/(2n — 2). The required assumption on p is

-y sp-rg{ i) Hachn gy



Case 4. (n+1)/(2n - 2) < p < min(1,a)

Let pi =0, i =0,1,2. Let 0 < 1/go < (n = 1)1 - p)/(n +1), 0 < 1/g; <
1/2, i = 1,2. The assumption on p is 2/(n — 2u) Sp~1<4/(n-2p).

We refer to the constant o which depends on the spatial dimension. By the
condition (2.9), we must assume at least £(1/2) < (n — Dl -p)/(n+1)+1/2,
which is equivalent to

P=1SQ@n-D(1-w/n+)+3)/(n-1-24).  (214)

To enlarge the right hand side than 4/(n — 2u), p must satisfy F(u) > 0. But
this is guaranteed if 1 < o since a is the lower root of F(z)=0.

Case 5. n2>7, a<p<(n-4)/2 '

Let —po = p1 = p = p~f(p). Let 0 < 1/go < (n—1)(1=B(w))/(n+1), 0 <
1/¢; £1/2, i =1,2. The assumption on p is 2/(n—2u)<p-1<4/(n-2p).

We refer to #(x) which depends on the spatial dimension and u. By the
condition (2.9), we must assume at least

P=1S(An—1)(1- W)/ (n+1)+3)/(n-1-24),  (215)

but the right hand side is equal to 4/(n — 2u) by the definition of ().

Case 6. max(1,(n—4)/2) < p <n/2

Let —po =p1 =pp =p—1 Let1/gp =0, 0 < 1/¢; £1/2, i = 1,2, and
1/gi < n/2—p, i = 1,2. The assumption onpis2/(n-2p) < p-1< 4/(n-2p).
a

3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section.
Proof of Theorem 1.1) First of all, we recall the following inequalities by

Proposition 3.1 in [10].
1K ($)5 (1, BE)]| < Cllgs B, (3.16)
(& (&)9; LT, BR)|| < Cllws; B4, (3.17)

t
I [ K= mhiryam Lo, B < Ol 291, By, (3.9
0

for any u,p,po € Rand (1/4,1/r),(1/g0,1/70) € Q¢ with p = p+n(1/2-1/r) -

1/g=1~(po+n(1/2—1/ry) — 1/qy), where C is a constant independent of I.
Let n,pu,p, f satisfy any of the assumptions in Theorem 1.1. Let ¢, 1/g;,

1/7i, piy i = 0,1,2, be those in Proposition 2.2. By the above inequalities and

Proposition 2.2, we have

12 (u); L9(Z, BE)||

Cll(@, )l + Cllf(w); Lo (1, BLP)| (3.19)

Cll(E ¥l + CIII7 s L7 (1, BE)P~ s L9(1, BE2))|

IA

IA
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for any (1/g,1/r,p) € Q. ., where C is independent of I. Therefore we obtain

18(w); LI, B)|| < C|(8, %)l + C)I|° RP, (3.20)

max
(1/9.1/rp)EQ,,

for any u € X(I, R). Similarly we have
d(2(u), 2(v)) < CI|"RP~ d(u, v) + ClI|" RE-Po M g u, v)P=l=pol=1 (397

for any u,v € X(I, R), where C is independent of I and the second term on
the right hand side of (3.21) is disregarded for p ¢ J. If p ¢ J, then the unique
solution of (1.2) is given by the standard contraction argument on (Xe(I, R), d)
with R sufficiently large and |I| > 0 sufficiently small for the local solution, with
R and |[(¢, ¥)|| suficiently small for the global solution. If p € J, then we have
only to consider the case (n +1)/(2n — 2) < u < n/2. Let |I| and R satisfy

Cli(@,¥)llu +CIII°R? < R, CHI"RP~! <1, (3.22)

and let |(¢,¥)||, be sufficiently small for o = 0. Let ug = 0 and uipy = (u;)
for ¢ = 1,2,.-.. Then there is a subsequence {u;, }x C {u;}; and u € X(I,R)
such that u;, converges to u in the distribution sense as k& — co. On the
other hand, let (n - 3)/(2n ~ 2) < po < (n 4+ 1)/(2n — 2) and let A > 0 and
A(X) = {(t,z) e R™! | |z| < A—t]}, then we have for sufficiently small € > 0,

gt Uigz = Bip1; LILT(A(A
(1/9.1/r0) €% st = wiss (A

< C|II°RrP! max wirr — ug LILT (A 3.93
S MR s, e Al (3.23)

Indeed, let w and w) satisfy (67 — A)w = h, w(0) = 8w(0) = 0 and (62 -
A)wy = hxa(ry, wa(0) = d,wy(0) = 0, then w = wy, on A(X), where x5y is
a characteristic function on A()). By this fact and (3.18) and the argument as
described in the proof of Proposition 2.2, we obtain the above inequality.

By (3.23), we conclude that {u;} converges to some v strongly in LILT(A(N))
for any (1/g,1/7,0) € Q 4, so that u = vx on A(A). Therefore we have for any
A>0

x ®(u) — u; LIL7(A(M
(l/q,l}?,O)en,_“o ” (u) —u (A( M

—_ . i —u LILT
e B, N8() = @) + uses — w LIL(AM)]

< CHI°RP™'  max u = ui; LYLT(A(X
B d (1/9,1/7,0)€Q, 44 l (A

— 0 as i— o0,

by which we conclude that u = ®(u) a.e (t,z) € I x R", namely u = ®(u) in
(Xe(I, R), d).



The uniqueness of the solution also follows from (3.23).

. (1) The continuity of the solution (u, Osu) in time with respect to the H# x
H#~1.norm follows from the Lebesgue convergence theorem. The proof is stan-
dard and we omit it.

(2) For the continuous dependence on the initial data of its solution, we
consider the case p € J only since for p ¢ J the last term of (3.21) is disregarded,
so that we can use the standard argument [3]. By (3.23), we have

max U~ v; Lirr A(X
(1/9,1/70)€Q¢, g I el

< Gill(¢ = b0, ¥ — o)l + CJI|7 RP lfu = v; LIL"(A ()],

max
(1/9,1/7,0)€9Q 44

where C) is a constant dependent on A, but not on I. So that we conclude
v — uin N(1/g,1/r,0)€Re,y LIL™(A(X)) as (¢o,%0) tends to (¢,%), by which we
conclude that v converges to u in D/(R™*1), as required.

(3) Let (¢+,94) be

br=o+ [ K-nia)in, =0+ [ kCnsaear
Then we have
lu®) - K(6)s ~ K (0 |
[ &G = ) satra o)
Cllw; L ((t, 00), B[P~ [lu; L% ((t, 00), BE2)|,

IA

IA

where we have used a similar result to (3.18) and Proposition 2.2, and we can
take 1/¢;, 1 =1,2, for 1/¢; # co since p— 1 = 4/(n — 2p). Therefore we have

lu(t) = K(t)p1 — K(t)pp; B — 0 as t — co.
(4) For (¢_,9_) € HH x He=1 let &_ be an operator defined by

t

()= K@Oo-+KWv-+ [ K@-ofar, (320

—~00

Similarly to &, we have
max &_(u); LI, BR)|| < Cl{(¢—,¥_)||. + CRP, 3.25
@/l B o, N12- () LI BYI| < Cll(4- - ) (3.25)

d(®-(u), 2-(v)) < CRP"1d(u, v) + C{I|° RI-P M+ 1d(u, y)P=[-rel-1 (3,96

for any u,v € X.(I, R), where the second term on the right hand side of (3.26)
is disregarded for p ¢ J. Therefore for p ¢ J we have the unique fixed point of



®_ in X(I, R) by a contraction argument with l(¢=,%-)llx and R sufficiently
small. We show that for p € J we also have a fixed point of ®_ in X.(I, R)
with [|(¢—,%_)||, and R sufficiently small in the following. We may assume
(n+1)/(2n-2) < p < n/2. Let (n— 3)/(2n-2) < po < (n+1)/(2n — 2). Let
Ry > 0. Let X.(I,R, Ry) and dy be

X(I,R,R = X (I, s LYI, LN < ,
CRE) = GeX@R)| | mex  |wIN0LD) < Ro)
do(u,v) = lu —v; LI(Z, L7},

max
(l/qu/ryo)enz,uu
for any u,v € X (I, R, Ry). Then similarly to (3.25) and (3.26), we have

] A r p—1 ~
/01, 18- LU L) € Cllgos ¥l + CRP B, (327

K >7 P
/e, 1B L LB < Cll6- vl +CR?, (328)

do(®-(u),®_(v)) < CRP dy(u,v). (3.29)

So that if (¢_,9_) € H#o x H#o-1 and if l(¢-,%-)|lx and R are sufficiently
small and R, sufficiently large, then ®_ becomes a contraction map on X((I, R, Ry)
with the metric dy. Therefore we obtain the unique fixed point of ®_. Let
l(#-,%-)|lu be sufficiently small. Let {(#i,%4:)}2, be a sequence such that
(Gi,¥i) = ($-,%-) in H* x H#~! a5 — 0o and (¢i, i) € HHo x HHo—1, Then
by the above argument, there exists u; € X (I, R, Ry) which satisfies

t

wi = K(8)¢; + K ()0 + / K(t - 7)f(ui(r))dr, (3.30)

for i sufficiently large. We can take a subsequence of {u;} which converges to

some u in the distribution sense. This u is the required fixed point of &_ in

X(I,R). For details, we refer to the discussion before Lemma 7.1 and itself in

[15]. The result [ju(t) — K(t)¢_ — K(t)y_; H*|| - 0 as t — —co0 now follows

similarly to the proof of (3).

Next we show that the scattering map (¢_,¥_) — (P+,94) is continuous

in the neighborhood at the origin in H* x H#~1 for p ¢ J. By the proof of (3)
and (4), we have the following relation between (¢~ %-) and (¢4,%4) as

by =0+ /_ " K(=n)f(u(r)dr, v = + /_ " K(=r)f(a(r)dr, (3.31)

where u is the solution of u = ®_(u). Let ((_,%_), 4, (é+,%+)) be another
triplet. It suffices to show that

e+ = b9 =D)lu >0 as (6= — Gy —F )y — 0.  (3.32)

10



Similarly to the proof of (3.21), we have

6+ = 6+ Bl < ll6- — ¢; H*|| + CRPVd(u, 3), (3.33)
and ‘ . _
A, @) S Cl$- ~ o ~ Bo)llu+ CRPd(w, 7). (3.34)
Since CRP™! < 1, we conclude that ||¢, ~¢.; H¥|| — O as ||(¢_—¢_, Ye=9)||u
tends to zero. For |4y — oy; H“‘lll, the proof is analogous. a
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