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Markov marginal problems and their applications to Markov optimal control

Toshio Mikami
Department of Matherﬁatics
Hokkaido University
Sapporo 060
JAPAN

email;mikami@math.sci.hokudai.ac.jp

ABSTRACT. - In this paper we discuss a class of Markov marginal problems (MMP).
- By MMP, we mean the problem to construct a Markov process with given (marginal)
constraints on the path space. As an application we consider Markov optimal control

problems.

Key words; Markov marginal problem, Markov optimal control, copula, covariance kernel

1. Introduction.

Let M and X be a topological space, and {¢1:}:em be a family of Borel probability measures
on (X,B(X)). As a classical marginal problem, the following is known.

(MP). Find a probability measure Q on (X™, B(XM)) such that

Q(f e XM|f(t) e dzx) = pe(dx) for all t € M. (1.1).

Let P(X) denote the space of Borel probability measures on (X, B(X)), equipped
with the weak topology, and let C(M, X) denote the space of continuous functions from
M to X, equipped with the topology of uniform convergence. With respect to MP, the

following is known (see [2, Theorem 2.1] and also [1]).

Theorem 1.1. Let M and X be compact metric spaces and let X be connected and
locally connected. Suppose that p : M +— P(X) is continuous and that supp(u:) = X for
allt € M. Then there exists Q € P(C(M, X)) such that

Q(f € C(M, X)|f(t) € dz) = p(dz) for all ¢ € M. (1.2).
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Instead of giving the topological structure to M and X, giving the order structure to
them, similar problem has been considered in [10, 14, 15] (see also the references therein).

In this paper we consider the case M is an interval on R, such as [0, 1] and [0, c0),
and we would like to construct a Markov process with given constraints.

As a typical problem in this direction, one can mention Nelson’s stochastic quantiza-
tion. Let us briefly introduce the problem. Let v(t,z) (t > 0, z € R?) be the solution of
the following Schrodmger equation:

(—1)20y(t, 2) /0t = —Lab(t,2)/2 + V(@)(t,z) (¢ > 0,z € RY),
/ (0, 2)Pdz =1,
Rd

for some function V(-) : R? — R. Here we put A, = Y0, 8%/0x2.
One of basic problems in Nelson’s stochastic quantization (see {22}, [23]) is to construct

a Markov process {X (¢)}:>0 on a probability space (2, B, P) such that

(1.3).

P(X(t) € dz) = |y(t,z)|?dx for all t > 0. (1.4).

From (1. 3), for any infinitely differentiable function f : Rd ~ R with a compact support
the followmg holds: for t > 0,

d [ f@a)Pdsl/dt= [ (0524 <bt,zi9), Vo1 @) St a)Pds, (1.5)
where we put

e 50) = { FET=HEDVD +IMT D02 V0D 20

Here we put V. = (8/0z;)%_;, and < -,- > denotes the inner product in R%. As an answer

to the above problem, the following is known (see [6] and also [7, 21, 30]).

Theorem 1.2. Suppose that the following condition holds: for allt > 0,

1
/ ds / 1b(s, 23 9) P b (s, @) Pd < oo.
0 R4
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Then there exists a Markov process {X (¢)}:>0 such that (1.4) holds and that

dX (£) = b(t, X (t); ¥)dt + AW () (¢ > 0), (L.7).

where {W(t)}:>0 is a d-dimensional Wiener process (see [16, 28]).

When A is replaced, in (1.5), by sz=1 a(t,z)¥0?/8z;0z; for a symmetric, uni-
formly positive definite d x d-matrix (a(t,z)”)¢,_;, the problem was considered in [18,
24].

As we discussed in [17], this problem is related to Markov optimal control problem.
Let us briefly introduce it.

Let (2, B, P) be a probability space and {B:}:>0 be a right continuous, increasing
family of sub o- fields of B, and let {W (¢)}¢>0 denote a d-dimensional (B:)-Wiener process
on (2, B, P), and {0(t,2)};:>0,zere be a Borel measurable d x d-matrix, and {u(t)}:>0 be a
(B:)-progressively measurable vector in R%. Consider a semimartingale {X*(t)}:>0 which

satisfies the follows: for t > 0,

dX™(t) = u(t)dt + o (t, X“(£))dW (t). (L.8).

For Borel measurable functions L(t,z;u) : [0,00) x R? x R? — R and ®(z) : R® — R,
study the following problem (Markov optimal control problem).
(MOCP). For T > 0, consider if the following is true:

T
inf / B[L(t, X*(); u@®)]dt + &(X*(T)); {u(®) }sep.11} ).

T
—inf( | BIL X0 u(t)lds + B(X(T)su(e) = be, X*()
0 _
for some b(t, z)((t,z) € [0,T] x R%)}.
About Markov optimal control, we refer the reader to [11]. With respect to this problem,
the following is known from Theorem 1.2, by Jensen’s inequality (see [17]). |

Theorem 1.3. Suppose that o is an identity matrix or d = 1 and that L(t,x;-) is convex

for all (t,z) € [0,T] x R®. Then the following holds:
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T : T
inf{ /0 E[L(t, X™(); u(t))|dt + B(X*(T)); /0 Effu()2ldt < oo} (1.10).

T T
= inf{/o E[L(t, X™(t); b(t, X*(t)))]dt + Q(X"(T));/O Eflu(t)[*)dt < oo,
u(t) = b(t, X*(t)) for some b(t, z)((t,z) € [0, T] x R%)},

provided that lL.h.s. is finite.

Remark 1.1. As a similar problem to MOCP, one can mention the Monge problem that
is still open (see [8, 13, 25, 29] and references therein). In a simple case, it can be stated
. as follows. Let di, do € N. For a measurable function ¢ : R x R% s R and Borel

probability measures Q; and Q; on R% and R%, respectively, study if the following holds:

inf{ c(z, y)u(dedy); p(dzRP) = Q1 (dz), p(R* dy) = Q2(dy)} (1.11).

R41 x Rd2

- inf{/Rd o(z, $(2))Q1(dx); ¢ : R* > R satisfies Qs (dy) = (Q1)% (dy)}.

Minimizing ¢ in (1.11) is called Monge function. _

In this paper we give a new approach to MOCP, by studying the marginal problem that
we call Markov marginal problem (MMP). Roughly speaking, our approach is as follows:
for (X*(t),u(t))sepo,r) in (1.8), find b(t, z)((t,z) € [0, T] x R?) for which the following has

a weak solution

X(t) = X*(0) + /0 tb(s,X(s))ds+ /0 t o(s, X(s))dW(s), (¢ € [0,T)), (1.12).

and

P((X“(t),u(t)) € dz) = P((X(¢),b(t, X(t))) € dz) for a.e. ¢ € [0, T]. (1.13).

If this can be done for the minimizing X*, then (1.9) is true. This MMP is a different

kinds of marginal problem from Theorem 1.1 in that we construct “Markov process”. The
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problem in Nelson’s stochastic quantization can be cbnsi_dered as MMP. In séction 2, we
give a partial answer to the above problem and give the application to MOCP in section
3. The reader will notice that our approach was inspired by the idea of covariance kernels
on central limit theorems (see Remark 2.2 and [3-5, 20]) and that we used the relation

between 2-copulas and t-norm (see Remark 2.3 and [26, 27]).

2. Marginal problems.

In this section we state and prove theorems on Markov marginal problems (MMP) intro-

duced in section 1. From now on, we fix T > 0.

The following result is known (see [19, Theorem 2.1]) and will be used in the proof of

Theorem 2.2.

Theorem 2.1. For any family of distribution functions {Fy(-)}scpp,r] on R?® for which
Fy(-) is continuous for 0 < t < T, there exists a R%-valued Markov process {X (t)}o<t<T

on a probability space (Q, B, P) such that

P(X(t) € dz) = dFy(z) forall0<t<T. 2.1).

Put Py(X) = {u € P(X);supp(u) = X}. The next theorem can be proved from
Theorem 2.1.

Theorem 2.2. Suppose that X is a connected and locally connected compact metric
space, and that yu; € Po(X) for allt € [0,T]. Then there exists a measurable g, : R — X
(t € [0,T)) such that

P(@,(W(t+1)) € dz) = us(dz) for allt € [0,T], (2.2).

where {W(t)}:+>0 is a one-dimensional Wiener process on a probability space (2, B, P).

The next theorem played a crucial in {2, Theorem 2.2] and will be used in the proof

of Theorem 2.2.



- Theorem 2.3. Suppose that X is a connected and locally connected compact metric
space. Then there exists a continuous function @ : Py(X) — Py([0,1]) and a continuous

function ¢ : [0,1] — X such that

@m)*" =u for all p € Po(X). (2.3).
Let us prove Theorem 2.2.
(Proof of Theorem 2.2). Put for z € R and ¢ € [0, T,
Fig(z) = PW(t+1) < z),

Fa(x) = ¢(pe) ((— o0, 7)),
where @ is a function stated in Theorem 2.3. For a distribution function F on R, put

(2.4).

sup{z € R; F(z) < u} for u € (0,1],

-1 —
F=(w) = {sup{a: € R;F(z) =0} foru=0. (2:5).
If the set where the supremum is taken is empty, then we put the sup = —oc.
In the same way as in [19],
P(Fy2(Fuo(W(t+ 1)) € do) = G(us)(dz) forall0<t<T. (2.6).
In fact, for z € R and ¢ € [0, 7],
P(Fyy (FiLe(W(t+1))) £ 2) = P(Fa(W(t + 1)) < F2.(2)) = Fae(2), 2.7).

since Fy (W (t+ 1)) is uniformly distributed on [0, 1}, and since for a distribution function
F on R and u € (0,1],

Flu)<z if u<F(z). (2.8).

From Theorem 2.3 and (2.6), putting @,(z) = @(Fs, 2(F1+(z))) (z € R, t € [0,T)), one
get |

P(@,(W(t+1)) €dzr) = 3(ue)?  (dz) = pe(dz) forall0<t< T, (2.9).
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| which completes the proof.
Q.E.D.

To give theorems on MMP discussed below Remark 1.1, let us give the assumption
which will be used later.
(A.1). d=1. o(t,z) : [0,T] X R — R is bounded and is continuous in z, uniformly in .
There exists v > 0 such that |

o(t,z) > v/?

for all (t,z) € [0,T] x R. X, is a (Bo)-adapted random variable on (£2, B, P) such that
P(|X,] < ) = 1.

(A.2). (1.8) has a solution such that X*(0) = X,.

(A.3).

E /0 u@ld] < oo, P /0 " (o) < o0) = 1.

(A.4).

limsup P(|X,| > r)r? < .
T—00

Remark 2.1. Under (A.1), (1.8) has a unique weak solution X° which is strong Markov if
u = 0 (see [28]). Under (A.1)-(A.3), there exist a jointly measurable u/(t,z) : [0,T] x
C([0,T; R) ~ R for which 4'(t,-) is B(C([0,t]; R))+-measurable for t € [0,T], and
o[X™“(s);0 < s < t]-adapted Wiener process W (t) such that for t € [0, 7],

X"(t) = Xo+ /Ot u' (s, X*)ds + /t a(s, X“(s))dW (s). (2.10).
0

Moreover P(X™)7" is absolutely continuous with respect to PX") ™" (see [16, section 7.6]), -
and P(X°(t) € dz) is absolutely continuous with respect to dz for t € (0,T] (see [28)).
Let us state a technical result which can be obtained exactly in the same way as in

[12, p. 371, Theorem 3.1].



Theorem 2.4. Suppose that (A.1) holds and that B(t,v) : [0,T] x R — R is bounded,
measurable, and globally Lipschitz continuous in v, uniformly in t € [0,T]. Then the

following integral equation has a unique solution; for (t,z) € [0,T] x R,

v(t,z) = Elexp( /0 t a(s,X°(s)) " B(s, v(s, X°(s)))dW (s) (2.11).

- _/t a(s,X°(s)) "> B(s, v(s, X°(5)))*ds/2); X°(¥) < ],

where X0 is a weak solution to (1.8) with u(t) = 0 and with X°(0) = X,.
Let X2 be the solution of the following: for ¢ € [0, 7],

XB(t) = X, + / " B(s, (s, XB(s)))ds + / o5, XB)AW (),  (2.19)
0 0

which has a unique weak solution under the assumption in Theorem 2.4 (see [28]). Then

the following result can be obtained and be considered as MMP.

Theorem 2.5. Under the same assumption as in Theorem 2.4, for v(t,x) constructed in

Theorem 2.4, (2.12) has a unique weak solution, and the following holds:

P(XB(t) < z) =v(t,2) (2.13).

for (¢,z) € [0,T] x R. In particular, for any ¢ € C°(R; R),

d(/R o(z)v(t,dz))/dt (2.14).
= / (2710 (t, )2 0% p(x)/0x® + B(t,v(t,x))0¢(x)/dx)v(t,dx), dt— a.e. on (0,T).
R

(Proof of Theorem 2.5). The first part of the theorem can be easily proved by Cameron-
Martin-Maruyama-Girsanov formula (see [16, 28]). The second part is an easy consequence
of the Ito formula.

Q.E. D.

In Theorem 2.5, we fixed a diffusion coefficient. If we allow that it can be changed,

then we get the following result.



Theorem 2.6. Suppose that (A.1)-(A.2) and (A.4) hold, and that {|u(t)|}o<st<T is domi-
nated by a positive constant Cy, > 0 a.s.. Then there exist measurable a™(-,-) : [0,T]| xR —

[v,00) and b™(-,-) : [0, T} x R — R such that the following has a weak solution: fort € [0, T]

dX™(t) = b™(t, X™(t))dt + a™(t, X™(t))/2dW (¢) (2.15).
(n > 1), and the following holds:

Jim POC@) € do) = POX®) € da) (< (0,T)),

(2.16).
Jim P(5"(t, X"(t)) € do) = P(u(t) € da) (¢ (0,7)),

- weakly.
Let us prove Theorem 2.6 with the aid of lemmas given later.

(Proof of Theorem 2.6). Forn > 1, ¢ € [0,T] and z € R, put

Fy(z) = P(X*(t) < 2), (z)=Cn(l+ (n2)’)™*/%, C= (/ (1 +2?) 73/ dz) ",
R |

Ty '
Fe= [ ([ e@ana, £6@= [ o@-nhe.
: (2.17).
Then the following holds (see Lemma 2.7): for n > 1 and z € R,

dfy(z) /0t = 2710%(a™(¢, ) f7*(2)) /0% - B(b™(t, x) f(x)) /Ox dt—a.e. on (0,T), (2.18).

where we put for n > 1, x € R and ¢t € [0, 7],

Gi(x) ='P(u(t) <z), blt,z)=G;'(1- F(z)) (see (2.5) for notation),
b(t,) = [ bt ) — W) F )/ 72 @),

&b, 7) = /R o(t,1)’ ¢z — ) Fildy)/ F7 (@),
b(t, z) = Eu@)|X*(t) = 2], 5°(t,z) = /R B(t, y)c" (= — ) Fu(dy)/ £ (@),

" (6,3) = 8", D)+ O27 @ [ T () - B ) )

—00

(2.19).



From the assumption, one can show that there exists a unique strong solution to (2.15)
with P(X™(0) € dz) = F§(dz), and that P(X"(t) € dz) = F{*(dz) (0 <t < T), and that
(2.16) holds for a™ and b™ defined in (2.19). To prove the uniqueness and the existence
part, one only has to show that the following holds (see [28]):

a*(t,z)>2v (0Lt<T,xz € R), (2.20).

sup (|0a™(t,x)/0x| + |Ob™(t, ) /Ox|+|a™ (%, 0)| + b7 (2,0)]) < 00,  (2.21).
0<t<T,z€R

since

/mwww<w
R ;

(2.20)-(2.21) and (2.16) will be proved in Lemmas 2.8-2.9 and in Lemmas 2.10-2.11
which will be given later.

Q.E. D.

Remark 2.2. In (2.18), we determined a™ (¢, ) from a given function b" (¢, x) to derive PDE
for f*(x). This idea is that of covariance kernel (see [3-5, 20]). Let us introduce it. Let f
be a probability density function on R such that [, yf(y)dy = p and [,(y — ) f(y)dy =

0% < 0o. The following function is called a covariance kernel or w-function of b

a@»z[fm—yﬁ@mww%un (2.22).

on the set {y € R: f(y) > 0}. One can see that for any ¢ € C§°(R: R),
/ w(@)26(x) /022 + 02 (i — )0 (z) /0] (x)dz = 0. (2.23).
R

In the rest part of this section, we prove (2.16), (2.18) and (2.20)-(2.21) as Lemmas
2.7-2.11.
Let us first prove (2.18).
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Lemma 2.7. Under the assumption in Theorem 2.6, forn > 1 and = € R,

8f(z)/0t = 2710% (a™(t, z) 1 (2)) / Oz - B(b™(t, x) f7(x)) /Ox dt—a.e. on (0,T). (2.24).

(Proof). We only have to prove that the following holds: for n > 1 and z € R,

Of7(z)/0t = 2718 (@ (¢, 2) i (x)) /0x% — B(B™(t, 2) f*(x))/dz dt — a.e. on (0, T).
(2.25).
This is true, since f{*(z) = E[c"(z — X*(t))] and since, by the Ito formula

OE[c™(x — X “@)]/0t
= E[27 1o (t, X*(t))20*c™(z — X*(t))/0z% — u(t)dc™(x — X*(t))/0x]
= E[27 o (t, X“())20*c™(x — X™“(t))/8z2 — b(t, X“(£))Oc™(x — X*(¢))/Ox]
= [ 7 ot45 e @ - /05" - Kt,1)06 & ~ )/ O2IFi(dy)
R
= 27197 / a(t,y)*c"(z — y) Fy(dy)] /82 — 8] / b(t, y)c"(z — y) Fy(dy)]/dx.
R R
Q. E. D.
We proceed to the proof of (2.20).

Lemma 2.8. Under the assumption in Theorem 2.6, for z € R and t € (0,7,

| b -Felread 2o (2.26).
(Proof). For x € R and t € (0,77,

| w) -5 ey = [ [ bte.2) =5t 2ty - Fi(as) 2:2)
= [, b2 w)diF@)
R —00
= [y [ ) -5, 2)FE),
R —00

11



and

[ bR = BIGT @ - R O): X0 <a),

- (2.28).
/ b(t, z) Fy(dz) = E[E[u(t)| X*®)); X*(t) < ] = E[u(t); X*(t) < .
For any distribution function ® on R? such that [p, |y|®(drdy) < oo,
oo 0
[ ety = [ T80 - s nldi- [ @y (29)
(—o0,z]xR 0 —00

This and (2.27)-(2.28) together with the following completes the proof: for any distribution
function ® on R?,

®(z,y) = maz(®(z, ) + &(00,y) — 1,0) (z,y € R) (2.30).

(see [26, 27]). In fact, from (2.8),

P(X*(t) <z,b(t,X“(t)) <y) (2.31).
= P(X¥(t) < 2,G; (1 - F(X¥(t))) < y)

= P(1 - Gi(y) < F(X"(#)) < Fi(3)) |

= maz(Fy(z) + Go(y) — 1,0) < P(X*(t) S z,u(t) < y)  (from (2.30)).

Here we used the fact that F;(X™“(t)) is uniformly distributed on [0, 1] for ¢ € (0, 7).
Q. E. D.

Remark 2.3. (2.31) implies that our approach is effective only in case d = 1. In fact, for
any distribution function ®(zy,---,,z4) on R4, there exists a distribution function Cp on
[0, 1]¢ which is uniquely determined on Rah,ge(Fl) x «-- Range(Fy) (see [26, 27]) such that
the following holds: for (z;)%, € R¢,

12



min(Fl(xl)’ te aFd(xd)) 2 @(1:'1, Tty 7$d) = CQ(FI(J"I)’ "ty >Fd($d)) (232)
> maz(Fi(z1) + -+ Fag(zq) +d — 1,0).

Here we denote by F;(x) the value of ® when zx = oo (k # i) and z; = z. t-norm
W(uy,---,ug) = maz(uy+---+ua+d—1,0) is a distribution function on [0,1]¢ iff d = 2.
Let us prove (2.21) which will also be used in the proof of Lemma 2.10.

Lemma 2.9. Under the assumption in Theorem 2.6, for any n > 1, there exists C,, > 0
" such that '

sup (|0a™(t,x)/0x| + |0b"(t,z)/0z| + |a™(t,0)| + [6"(t,0)]) < C,. (2.33).
0<t<T,z€R

(Proof). We only have to show that the following holds:

|0c™(x)/0z| < (3/2)nc™(x), (2.34).

sup  fr(z) (1 +|z)) 73 < o0, (2.35).
0<t<T,zeR
sup |07 (x)/0z|(1 + |z[)* < oo, (2.36).
0<i<T,ze€R
sup {sup F{*(z)(1 + |z|)* + sup(l — F*(x))(1 + |2])?} < oo. (2.37).
0<tLT z<0 >0

This is true, since

0a™(t,x)/0x = /R o(t,y)*(Oc™(x — y)/0x) Fy(dy)/ f7*(z) — a™ (¢, z)[0f (x) /0x]/ 7 (z)
+ Lo, (126" (¢, z) — b" (¢, 2))], |
ob"(t,z)/0x = /R b(t,y)(0c™(z — y)/0x) Fy(dy)/ i (x) — b™ (¢, 2)[0f7 (x) /0] / fi (),

and since
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b (¢, z)| + [b"(t,2)| < sup R{Ib(s,y)l+|5(s,y)l}s 2C,,

0<s<T,y€e

la”(t,2)| < sup  |o(s,9)[* + 1(o,1)(t)4Cy min(F{(z), 1 — F*(x))/ f7 ().
<sLT,yeR

Here we used the fact that u(t) and G; (1 — Fi(X*(t))) has the same probability law for
t € (0,T)] and that

/R (B"(t, 2) = b"(t, 2)) /7' (z)dw = Elu(t) - G;*(1 = F(X*(¢)))] =0

(see (2.27)-(2.28) and (2.31)).

(2.34) can be easily shown as follows:

dc™(z)/0z = c"(z)(3/2)n(—2nz)/[1 + n®z?]. (2.38).

(2.35) can be shown as follows: for r > 0,

@) = / nC(1 +n3(z — y)?)~%/2F,(dy) (2.39).
R

> / nC(1 + 2n2(2 + %)) "3 F,(dy) > nCP(X*®)| < r)(1 + 2n2(z? + r?))~*/2,
lyl<r '

and

P(X*@t)| =) | (2.40).
< P(IX*(0)| 2 7/3) + P(I/O u(s)ds| > r/3) + P(I/o o(s, X*(s))dW (s)| = r/3)
< P(X¥(0)] > r/3) + (3tCu/r)* +3t*  sup i lo (s, 9)|*(3/7)*

0<s<T,ye
by Chebychev’s inequality.

Next we prove (2.36). For z € R,
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|63 (x)/0x| < /R (3/2)n*C2nz - y|/(1 + n*(z — y)*)*/*Fy(dy) < (3/2nC.  (2.41).

For z for which |z| > 2,

|63 (x)/ Oz (2.42).
<( / + / )(3/2)n*C2njz — y|/(1 + n*(z — y)*)*/* Fy(dy)
je—yi<lzl/2 * Jls—yl2]al/2

< (3/2n*CP(X"(t)] > |z1/2) + (3/2)n*Clal/(1 + (121/2)*)*/2,

- since 2r/(1 4+ 1r2)5/2 is decreasing on [1,00). This together with (2.40) completes the proof
from (A.4). ‘
(2.37) can be proved from (2.36). In fact

Frz) = /_ s /_ Y Ofr())0z)dz =1+ / ~ dy / T 0fr(2)/02)dzs,  (2.43)

since

mlir_nc’<> E(z) =0, | llim fi(x)=0.
Q. E. D.

Next we prove the first part of (2.16).

Lemma 2.10. Under the assumption of Theorem 2.6, forn > 1,t € [0,T] and z € R,

P(X™(t) < z) = F}*(x). (2.44).

(Proof). Fix n > 1 and put, for k > 1,¢ € [0,T] and z € R,

T

(@) = k/@m) P exp(—K2a?/2), G*(z) = / W)y,
—o0 (2.45).
h(a) = PX"() S2) - FP(0), h(69) = [ GHo— p)huldy). »
R
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Then one can show that the following holds: for k¥ > 1 and ¢ € [0, T]

/!u(t,x)|2dx5 lim / [uk(t,z)|*dz =0, (2.46).
R k—oo R

which completes the proof.

Since by Lemma 2.9 and (2.36),

sup {E[X"(@®)]] + / W17 () dy} < oo, (2.47).
0<t<T R

letting r — oo and then k — oo in (2.48) below, we get (2.46), again from Lemma 2.9: for
- >0, by (2.18) and the Ito formula,

_: lu*(t, 2)|?dx (2.48).
< ([ oll [ (6,906 (@ ~ w)ba(a)uto, i
+ [ ds [ Colus/Hlg 0 + v/~ 1)l dh )/l g’ (s s s
+2 [ ds [ Gl /Mg u0)ldh 02/ dy s d) exp(eCE ).

(2.48) is true, since
(e, ) 2de
- [as [ " [ 17 (5,5)(dg* (@ — )/ da) = 87 (5,3)9 & — ke () (s, )
0 -7 R
- / ds| / 2710™(s,9)g" (@ — y)ha(dy)u(s, 7).,
0 R
- / ds / { / 214" (s, 4)g*(z — y)he (dy) }ou (s, ) /02 dz
0 —_7 R
_ " nle o Nokfm _ k
/0 ds / 1 /R B (5, )0 (& — y)ha (dy) Y (5, 2)d

by the integration by parts; and
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- [as [ ([ 275,00+ @ — )ha(d)HOu (5, ) Oslde

0 -7 JR ‘
- / ds / " 91an(s, 2)|0uk(s, z) /O Pda

0 —_r
" —-1lr.n _ a7 k _ k

+ / as [ K /R 2-1a™(s, ) — a"(5, Y)]g"( — y)ha(dy)}1Ou* (5, 7) /Bl de

< —(u/2)/ ds/r |ouk (s, x)/0z|*dx
0 —r )
+ / ds / " /R 271 a™(s, ) — a™(s, y1)]g" (= — y2)ha(dyn) H /R 6" (& — yo)ha(dy2) }do,

and for s € [0,%] and y1, y2 € R,

/R 6™ (s, 2) — ™ (5, 91)|g" (& — 1) (@ — y2)dz < Chn /R lys /Kl (W) g® (51 + ys/k — y2)dys,

by the mean value theorem, from Lemma 2.9; and

- [ as [ /R B (5,4)9" (@ — y)ha(dy) Ju* (5, 2)dz
=— /t ds /T b™(s, z)[0u* (s, x)/Bx]uk (s, x)dx
0 —_
" n BN k(.. _ k
+ / ds / 1 /R b (5, 2) — b7(s,9)]9* (@ — W) ha(dy) Ju¥ (s, z)de
< / ds / (/2104 (5, 2) /03] + 1/ (@)[B"(s, 2 (s, 2) Plde
0 -r

* /0 ds /Rz Culz — ylg"(z — y)|dhs(y)/dy|dzdy,

by the mean value theorem, from Lemma 2.9.

Finally we prove the second part of (2.16).
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Lemma 2.11. Under the assumption of Theorem 2.6, for t € (0,T] and the continuity
point x of Gy(-),

P (t,X"(t)) < z) = Gi(z) asn — oo. (2.49).

(Proof). For t € (0,T], § > 0 and the continuity point z of G;(),

P(GiM(1 - F(X"(t) - 8)) + 20,0 fr(X™®) " <2) (250,
< P("(t, X" (%)) < 2)
< P(G7 (1 - Fi(X™ () +6)) - 20,06 (X" ()" < 2).

This is true, since for z € R,

bt + §) ™z — y)Foldy)/ F2 (@) < / b(t, )" (= — y) Fu(dy)/ £ (@)
[x—y|<s jz—yl<é
<bt,z—6) [ (z—y)Fudy)/fFz)
[z—y|<é

(notice that b(t,-) is nonincreasing), and since

/l 26 (@ — y)F(dy)/ f7'(z) < nC(L +n?8) 732 {7 (z) < C(n?6%) ™/ f7(a).

Let us show that the probability in both ends of (2.50) converge to Gi(z) as n — oo

and then 6 — 0. The left end can be considered as follows:

P(G7'(1 - F(X™(t) — 8)) + 2C.C(n?6%) 1 fr(X™(8) ! < z) (2.51).
> P(GyH(1 = Fi(X™(t) — 6)) < z - 6) — P(2C,C(n?8) ' [ (X™()) ™! > 6),

and
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PG (1 - Fy(X™(t) — 6)) < z— 6) (2.52).
= P(1 — Fy(X"™(t) — 6) < Gi(z — 8)) (see (2.8))

— P(1 = Gy(z — §) < Fy(X*(t) —6)) asn — oo (by Lemma 2.10)

= P(1 - Gy(z) < (X (1)) = Golx) s 6 — 0.

Take k > 1 and let n > k. Then by Lemma 2.10,

P(2C,C(n263)"1 2 (X™(t))"! > 6) (2.53).
= P2C.5 / (0™ + (X™(t) — 9)%) "2 Fu(dy)) ™ > 1)
R

< P2C.573( / (k™2 + (X™(8) — 5)2)~/2F,(dy)) " > 1)
R

— P(2C,6%( / (™2 + (X*(t) —9)*)*/*Fy(dy)) ' 2 1) asn—o0
R

— P(2Cu6—3(/ |X“(@) —y|"*F(dy))"'>1)=0 ask — oo,
R

since P(X“(t) € dx) is absolutely continuous with respect to dz for all t € (0,T] (see
Lemma 2.12 given below).
The right end of (2.50) can be shown to converge to G¢(z), as n — oo and then § — 0,

in the same way as above.

Q. E. D.
Let us prove the last equality of (2.53).
Lemma 2.12. Suppose that (A.1)-(A.3) hold. Then fort € (0,T],
P( / X% (t) — y|~3Fy(dy) < 00) = 0. (2.54).
R
(Proof). Put
Si={z €R; fi(zx) = ,lin})(Ft(a: + h) — F(z))/h > 0}. (2.55).
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Then we only have to show that for z € S;,

/R |z — y| 2 Fy(dy) = oo, (2.56).

since for ¢t € (0, 7]

P(X*(t) € 5,) =1.

This is true, since P(X™(t) € dz) is absolutely continuous with respect to dzx for ¢t € (0,7
- (see Remark 2.1).

Let us prove (2.56). For z € S; and § > 0,

/ |z — y| ™3 Fi(dy) (2.57).
R

> / |z — y| "3 Fy(dy)
|z—y|<é

> 673 (Fy(z+6) — Fy(z —6)) o0 as§—0.

Q. E. D.
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3. Applications to Markov optimal control problems.

In this section we consider the applications of Markov marginal problems discussed in
section 2 to Markov optimal control problems.

Let k1(t,z), k2(t,z) : [0,T] x R? — R and K;(x), K2(z) : R* — R be bounded from
below and continuous. For a R%-valued stochastic process {X ()} o<e<T on a probability

space ({2, B, P), put

Ff(z)=P(X'(t) <z'(i=1,---,d)) (z=(z)L, € RY),

T 3.1).
B0 =B([ kit X(O)ds + Ky (XO) + Ka(X (D)L
. For the solution to (1.8), put
T
Jo(X®) = E] /0 ka(t, u()dt + K1 (X*(0))],
T (3.2).
J3(X¥) = E[/O [k1(8, X™(2) + ka(t, u(®))]dt + K1(X*(0)) + K2(X*(T))].
The following theorem can be found in [19].
Theorem 3.1.
inf{J, (X); FX(-) is continuous for ¢ € [0, T} . (3.3).

= inf{J;(X); F{* () is continuous for ¢ € [0, T], {X (¢)}o<t<r is @ Markov process }

provided that the left hand side is finite.

The following theorem can be proved from Theorem 2.5 and will be proved later.

Theorem 3.2. Suppose that (A.1)-(A.2) hold. Then for any € > 0, there exist bounded
measurable b*(-,-) : [0,T] x R — R and a unique weak solution to the following : for
t € [0,T]
t t '
Xe(t) = X, + / b (s, X* (s))ds + / o (s, X (5))dW (s) (3.4).
0 0
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such that the following holds: for ¢ € (0, T

ggr%) P(b(t, X°(t)) € dz) = P(u(t) € dz) weakly. (3.5).

As an application of Theorem 3.2, the following can be proved easily and the proof is

omitted.

Corollary 3.8. Suppose that (A.1) holds. Then the following holds:

inf{J2(X™); (A.2) holds for u(t)} (3.6).
= inf{J2(X™); (A.2) holds for u(t) = b(t, X (t)) for some b(t,z)},

provided that the left hand side is finite.

The following theorem can be proved from Theorem 2.6 and will be proved later.
Theorem 3.4. Suppose that (A.1)-(A.4) hold. Then for any € > 0 and n > 1, there exist
bounded, measurable b5"(-,-) : [0,T] x R — R, and measurable @™(-,-) : [0,T] x R

[v,00) such that there exists a unique strong solution to the following: for t € [0, T]

Xs’"(t) = X*="(0) + /Ot I;E’”(s, X’E’"(s))ds + /Ot a*" (s, Xs’”(s))lﬂdW(s), (3.7).

and such that the following holds: for t € (0, T

lim lim P(X®™(t) € dz) = P(X*(t) € dz) (0 <t < T) weakly,

e—0n—0

lim lim P(B™(t, X*(8)) € dz) = P(u(t) € dz) (0 < ¢ < T) weakly.

e—0n—0

(3.8).

When we clarify the dependence of X* on o, we write X*°. As an application of

Theorem 3.4, the following can be proved easily and the proof is omitted.

Corollary 3.5. Suppose that (A.1) and (A.4) hold. Then the following holds:

inf{J3(X™7); (A.2)-(A.3) hold for u(t)} (3.9).
= inf{Jg(X“""); (A.2)-(A.3) hold for u(t) = b(t, ) il (t)) for some b(t,x), 0’ (t,z)? > v},
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provided that the left hand side is finite.
Let us prove Theorem 3.2 first.
(Proof of Theorem 3.2.) For any € > 0, put

G () if Gy(~1/€) < u < Gy(1/e), (3.10).

max(G; H(Gi(—1/g)), —1/e) if u < Gy(~1/¢),
Gpe(u) =
Gy Y(G:(1/¢)) if u > Ge(1/€)

(see (2.5) for the notation of G;'). For ¢ € C°(R; [0, 00)) which is not identically zero,
put

Be(t,) = /R o((u— )/€)G5 M) dy/Ce, (3.11).

where we put C; = € [, ¢(y)dy. Then for € > 0, B*(t,u) is bounded and globally Lipschitz

continuous in u, uniformly in ¢ € [0, T, since

|G o (w)] < 1/e.

Let v*(¢, z) be the solution to (2.11) with B = B*. Then the following has a unique weak
solution from Theorem 2.5: for ¢ € [0, T ’

Xe(t) =X+ /Ot B*(s,v°(s, X*(s)))ds + /Ot o(s, X%(s))dW (s), (3.12).

and letting € — 0, for ¢ € (0,7 and the continuity point z of Gy,

P(BE(t,u(t, X°(2))) < 7) — Ge(). (3.13).

Let us show that (3.13) is true to complete the proof. Take r > 0 so that supp(p) C
[-r,7]. For z € R,

P(GL(v5(t, X°(t) + 7¢) < 7) < P(BS(t,v°(t, X°(t)) < 2) (3.14).
| < P(GIH(v (6, X°() —re) < z),

since G ! is nondecreasing,
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| Suppose that Gi(z) € (0,1]. Then for suﬁ"lciehtly small €, G¢(—-1/e) < Gi(z) <
Gi(1/¢), and |

P(B®(t,v°(t, X*(t))) < z) > P(Gr:(v*(t, X°(t)) +re) <x) (from (3.14)) (3.15).
> P(Gyo (v°(t, X*(t) + re) < Gy (Ge(z))) (since G; ' (Gi(z)) < z)

> P(G7l(v*(t, X°(t)) + r€) < G52 (Gu(z))) (see (3.10))

> P(ve(t, X5(t)) + re < Gi(x)) = Gi(z) — re = Gu(),

~as € — 0, since G;; is nondecreasing (see (3.10)) and since v*(¢, X*(t)) is uniformly
distributed on [0, 1] for ¢ € (0,77 (see (2.13) ).

Suppose that G¢(z) € [0,1). Then for sufficiently small e, Gi(—1/¢) < Gi(z) <
Gi(1/€). Suppose also that G¢(z) = G¢(z—). Then from (3.14),

P(B*(t,9°(t, X*(t))) < ) < P(Gy: (v°(t, X°(t)) — 7e) < ) (3.16).
< P(ve(t, X5 (1)) — re < Gi(x)) = Gi(x) + re — Gi(z),

as € — 0, in the same way as in (3.15). Here we used the follows: if u > G¢(z), then

“1(y) = { G2 (W) > if Gy(1/e) > u> Gy(a),
Gie ) = {G{l(gt(l > ez G, (8.17).

"Q.E.D.

Finally we prove Theorem 3.4.

(Proof of Theorem 3.4). For € > 0, let {X™*(t)}o<i<T satisfy the following; for ¢ € [0, T,

X" () =X, + /Ot min(max(u'(s, X“*), —=1/¢), 1/€)ds + /: o(s, X™“%(s))dW (s). (3.18).

The existence and uniqueness of solution to (3.18) can be easily shown by Cameron-Martin-

Maruyama-Girsanov formula (see Remark 2.1 and [16]).
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From Theorem 2.6, there exist measurable a*™(-,-) : [0, T] x R + [v, 00) and &5 (-, ) :

[0,T] x R +— R such that the following holds: for ¢ € [0,T],

t t
o) = Xen©) + [ B, Xem@)ds + [ @ X)W (),  (3.19)
0 o

and

P(X®™(t) € dz) —» P(X™5(t) € dz) — P(X*(t) e dz) (0<t<T),(3.20).
P(*™(t, X*"™(t)) € dz) — P(min(max(u/(t, X**), —1/€),1/€) € dz)
— P(u(t) edz) (0<t<T), (3.21).

weakly as n — oo and then € — 0.

Q. E. D.

4. Discussion.

Our approach to MOCP is, roughly speaking, as follows. For X* in (1.8), find nonlinear
PDE: '

8v(t7 a:)/@t = 2—16(¢2(ta , ’U(', ')1 6v(-, )/8:8’ e )B’U(t, m)/ax)/ax
- (I)l(ta L, ’U(', ')7 Bv(-, )/aw, T )av(t’x)/am ((t,'ill) € (07 T) x R)’ (41)
v(0,z) = P(X*(0) <z) z€R

such that the following SDE has a weak solution:

dX(t) = @2(t, X (1), (-,"), Bu(-, ) /O, --)/2dW () (42,
+®1(t, X (), 0(,), B0(-, ) /z, - )dt (¢ > 0),

and that
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PUX*() u(e) € d) (4.3).
= P((X(t), ®1(t, X (t),v(:, "), 0v(,-)/Ox,---)) € dz) (t > 0).

If this can be done for the minimizing X* in (1.9), then MOCP can be solved com-
pletely.
In Theorems 3.2 and 3.4, we put heuristically,

®y = o?(t,z) and ®; = G;(v(t,2)), (4.4).

| where Gi(z) = P(u(t) < x); and

& =Gy (1~ v(t,2)),
8y = o(t,x)* + 10,1 (t)2[0v(¢, x)/ax]_lf [GF (1 — v(t,)) — b(t, y)][0v(t,y)/By]dy
- (4.5).
where b(t,y) = Eu(t)|X“(t) = y], respectively.
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