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1. Introduction. In the present article, as a continuation of [14], it is given Arnol’d-
Mather type characterisation of Lagrange stability for a class of singular Lagrange va-
rietles, open Whitney umbrellas, via the transversality in isotropic jet spaces. Also the
determinacy of isotropic map-germs by jets under Lagrange equivalence is considered.
We give an example of Lagrange stable isotropic map-germ of corank one in itself and of
corank two after the Lagrange projection. Lastly we mention open questions.

Let X be an n-dimensional manifold, and (M,w) a 2n-dimensional symplectic man-
ifold with a symplectic form w, (n > 1). A C*® mapping f : X — M is called isotropic
if f*w = 0. Then f is a Lagrange immersion off the singular locus Ef)={z e X |
f is not immersive at z}.

The main object we are studing is a special class of singularities of isotropic mappings,
namely, the open Whitney umbrellas, which are first recognised by Arnol’d, Givental’ and
Zakalyukin [6] [7]. ,

We are mainly interested in the case M = T*Y, the cotangent bundle over an n-
manifold Y, endowed with the symplectic form w = dfy, the exterior differential of the
Liouville 1-form 6y on T*Y. Consider the canonical Lagrange projection 7 : T*Y — Y.
Then singularities of Lagrange projections of Lagrange submanifolds are called Lagrange
singlarities. The study of Lagrange singularities is reduced by Hérmander and Arnol’d
to the theory of deformations of functions by means of generating families of Morse type.
Based on this reduction, Lagrange singularities are studied extensively. See [1][26][4].

An open Whitney umbrella is obtained as a component of a singular Lagrangian
variety induced by a non-Morse generating family. For this direction, see [15][27]. In this
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2 G. ISHIKAWA

paper we study singularities of Lagrangian projections of open Whitney umbrellas, from
the view point of Thom-Mather’s theory of differentiable mapping.

After Thom’s work, Mather, in the series of papers [18], gives the theory on C* stable
mappings. Restricting ourselves to local C* theory, we recall the following results due
to Mather on C*° map-germs f : (R®,0) — (R?,0): (A) Infinitesimal characterisation
of stable map-germs. (B) Determinacy: If f is stable then f is (p + 1)-determined. (C)
Classification by R-algebras of stable map-germs. Construction of a stable germ of given
algebra type. (D) Characterization of stablity by transversality. (E) Determination of
“nice range” where stable maps are generic.

Then we are naturally led to the question: Are there analogies to Thom-Mather’s
theory, for Lagrange stable projections of open Whitney umbrellas ¢

A germ of submersion n' : (M,yp) — (Y, 20) is called a Lagrange projection if all
fibers of 7’ are Lagrange submanifolds, in other word, if any pairs of components of 7’
are Poisson commutative.

Consider a pair (f, ) (resp. (f',7')) of map-germs f : (X,z0) — (M,yo) (resp.
(X, 25) — (M',y)) and a Lagrange projection 7 : (M,yo) — (Y, 2) (resp. 7' :
(M',y5) — (Y’,25)). Then (f,7) and (f’, ') are called Lagrange equivalent if there exist
a diffeomorphism-germ o : (X, 20) — (X', 23), a symplectomorphism-germ 7 : (M, yo) —
(M',y;) and a diffeomorphism-germ 7 : (Y, z0) — (Y, 2}) such that 70 f = f’ o ¢ and
that Tor =7’ o 1.

In [14], we show the equivalence of the “homotopical” Lagrange stability and the
infinitesimal Lagrange stablity. An isotropic map-germ f : (X,z9) — (T*Y,yo) is homo-
topically Lagrange stable with respect to the standard Lagrange projection « : T*Y — Y,
if any 1-parameter isotropic deformations f; of f are trivialised under Lagrange equiva-
lence, namely, if the pair (f;, 7) and (f, 7) are Lagrange equivalent by families (o3, 7¢, T1).

Infinitesimally Lagrange stability is defined naturally in [14]. See also §3.

In this paper we define the Lagrange stability as follows: Roughly speaking, an
isotropic map-germ f : (X,z9) — (T*Y,y0) is Lagrange stable if, by any sufficiently
small isotropic perturbations, the Lagrange equivalence class of f;, is not removed.
To formulate accurately, denote by C7°(X,M) the space of C*™ isotropic mappings
from X to M, endowed with the Whitney C'® topology. Then an isotropic map-germ
f (X, 20) — (T*Y, yo) is Lagrange stable if, for any isotropic representative f : U — T*Y
of f, there exists a neighborhood W in C{°(X, M) such that, for any f’ € W, the original
pair of germs (f, 7) is Lagrange equivalent to (fa/cg ,m) for some zf, € U (cf. [4] page 325).

To characterise the Lagrange stability by by means of transversality, we recall the
isotropic jet spaces [13]. Denote by J7(X, M) the set of r-jets of isotropic map-germs
(X ,z0) — (M, yo) of corank at most one:

JI(X, M) = {j"f(zo) | f: (X, 20) = (M, yo) isotropic, corank, f < 1}.

Then Jf(X, M) is a submanifold of the ordinary jet space J7(X, M) ([13]). Moreover,
for 2 = j"f(zo) € J;(X, M), r-jets of map-germs which are Lagrange equivalent to
f (X, 20) — (M,yo) form a submanifold of J7(X, M).

If f: X — M is an isotropic mapping of corank at most one, then the image of the
r-jet section j7f : X — J"(X, M) is contained in J7(X, M). Then we regard j"f as a
mapping to J7 (X, M).

For a manifold-germ (X, o), we denote by Ex ;, the R-algebra consisting of C*
function-germs (X, z9) — R, and by mx ,, the unique maximal ideal of Ex 5, If the
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base point zp is clear in the context, we abbreviate Ex s, and mx 5, to Ex and mx
respectively. :
Now set
ro = inf{r € N | f*Ep.y Nmi? C f*mit3}.
Then, by Artin-Ree’s type theorem, rq is a finite positive integer, determined by n and
k, the type of the open Whitney umbrella. Actually r; depends only on the right-left
equivalent class of f.

The purpose of this paper is to show the following result, which is an analogue to the
points (A) and (D):

THEOREM 1.1. Let dimX = dimY = n and f : (X,20) — (T*Y, f(z0)) an open
Whitney umbrella. Then the following conditions are equivalent to each other for r > ry:

(s) f is Lagrange stable.

(hs) f is homotopically Lagrange stable.

(is) f is infinilesimally Lagrange stable.

(a) f*Ep«y is generated by 1,p10 f,...,pn o f as Ey-module via (7o f)*.

(&) f*Ep«y /(7o f)*my f*Epsy is generated by 1,p1o f,...,pp o f over R.

(a) f*Epey [{(mof)*my f* Epey + f* Epey Nmi}?} is generated by 1,p1of,...,pnof
over R.

(tr) The jet extension j"f : (X,z0) — JJ(X,T*Y) is transversal to the Lagrange
equivalence class of j" f(zg).

For the notation, see [14] and §2, §3.

In the case f is a Lagrange immersion, the condition (a’) is equivalent to that a
generationg family of f is R,-versal [4]. In this case we see rg = n + 1.

CoroLLARY 1.2. (Arnol’d, Tsukada) A Lagrange immersion-germ is Lagrange stable
if and only if its generating family is Ry -versal.

This is clearly formulated in [4], while the explicit proof is ommited, as far as the
author knows: T. Tsukada has given an explicit proof in his unpublished work [23].
In the proof by Tsukada, the perturbations of Lagrange immersions and those of their
generating families are studied explicitly, to show the equivalence of Lagrange stability
and stability of the generating families as unfoldings of functions. In our proof, Lagrange
stability are directly described, in the natural way, by the transversality in the space of
isotropic jets.

To establish the description, we need the determinacy result for isotropic map-germs.
On the ordinary theory of determinacy of map-germs, refer to the excellent survey [24].
Here we treat its isotropic counterpart.

An isotropic map-germ f : (X, zo) — (T*Y, yo) is called Lagrange r-determined if, for
any Lagrange projection 7’ : (T™Y, yo) — Y with j7#'(yo) = j"#(y0), two pairs (f, ') and
(f,m) are Lagrange equivalent. An isotropic map-germ f : (X,zo) — (T*Y,yo) is called
strictly Lagrange r-determined if, for any isotropic map-germ f : (X, zo) — (T*Y, y0)
with j" f'(zo) = j" f(20), (f',7) and (f, 7) are Lagrange equivalent.

We easily see that, if f is strictly Lagrange r-determined, then f is Lagrange r-
determined. In the case f is a Lagrange immersion, these two notions coincide.
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For the point (B), we show the following result, which seems to be a special case of a
theorem due to Givental’ ([7}, Cor.1, “sufficient jet theorem”):

THEOREM 1.3. Let dimX = dimY = n. If an open Whitney umbrella f : (X, ) —
(T*Y,yo) is infinitesimally Lagrange stable, then f is Lagrange (n + 1)-determined and
f 1is strictly Lagrange ry-determined.

Since no explicit proof is given in [7], we give a proof to assure ourselves.
For analogies to the points (C) and (E), see §6.

In the next section we recall the objects, open Whitney umbrellas. Theorem 1.3 is
proved in §3, recalling the notion of infinitesimal Lagrange stability. In §4, we describe
the transversality in the isotropic jet space, as the infinitesimal Lagrange stability up to
finite order. Theorem 1.1 is proved in 5.

For an isotropic map-germ f : (X, z9) — (T™Y,yo), the carank of 7o f : (X, 20) —
(Y, 7(yo)) at zg is called L-corank of f. The classification of Lagrange stable open Whitney
umbrella with L-corank < 1 is given explicitely [27], [12]. In §6, we give an example
f : (R%0) — (T*RS5,0) of Lagrange stable open Whitney umbrella with L-corank 2.
Such example seems to have never been given in any literature so far.

The author would like to thank I.A. Bogaevski, S. Izumiya, S. Janeczko and V. M.
Zakakyukin for valuable comment and helpful encouragement.

2. Open Whitney Umbrellas. We recall the definition in [14].
The local model of an open Whitney umbrella f = fn 5 : (R"®,0) — (T*R"0) of type

E,(0<k< [%]) is concretely given by g1 o f = 1,...,qn_10f = Tn_1,

A
mof = Ty T st (5 ),
zk

prof= xkk—’,‘ + ot Zape1an (=0 0),

and
“r 9(v,u)
;= —dr,, 1<i<n—-1,

pl 0 0(zz;xn) n _ _

where 36 Y:%)_ is the Jacobian.
miya:n

Remark that f, ; is isotropic, that is, frpw = 0, where w = Yor i dp; Adg; is the
standard symplectic form on T*R". Moreover, f, ; is a Lagange immesion if and only if
k =0, and, if k # 0, then the singular locus of f, x is given by {3% = ?an = 0} and,
therefore, of codimension two.

In general a C*° map-germ f : (X, z0) — (M, yo) is called an open Whitney umbrella
of type k if f is symplectically equivalent to f, y, namely, if there exist a diffecomorphism-
germ o : (X,z9) — (R",0) and a symplectomorphism-germ 7 : (M,yo) — (T*R",0)
such that 7o f = f, o 0.

Thus Lagrange immersions are naturally generalised to open Whitney umbrellas: In
[14], we introduce the notion of symplectic stability and characterise open Whitney um-
brellas as symplectically stable isotropic map-germs of corank at most one.
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In [14] Prop. 4.1, it is proved that, if f : (X,z0) — (T*Y,yo) is an open Whitney
umbrella, then the ramification module

Ry ={ecEx |dec(dprof),....,d(pno f),d(g10f),...,d(gn o ) Ex}
is equal to the image f*Epsy of the pull-back f* : Ep.y — Ex. Moreover we see the
following (cf. [11]), which is needed later:

LEMMA 2.1. Let f = fn @ (R*,0) — (T*R",0) be the local model of the open
Whitney umbrella of type k, and denote by m(Ry) the unique mazimal ideal of Ry. Then
L1y Zpa1,u,0,p; 0 f,(1 <4 < 2k —1) form a basis of the “Zariski tangent space”
m(Ry)/m(Rs)? 2 f*mpey [ f*mZ.y over R.

We call an isotropic map-germ f : (X, zo) — (T*Y,y0) symplectically r-determined if
any isotropic map-germ f’ with j” f'(zo) = j" f(=o) is symplectically equivalent to f.
Clearly a Lagrange immersion is symplectically 1-determined. Similarly we have

LEMMA 2.2. Let f : (X,z0) — (M, y0) be an open Whitney umbrella of type k, 0 <
k < [%] Then f is symplectically (k + 1)-determined. In particular, an open Whitney
umbrella is symplectically n-determined.

Proof. By [10], the condition that f is an open Whitney umbrella of type k is
described by the transversality of k-jet extension of (some components of) f. Therefore
the condition depends only on its (k4 1)-jet at the base point. This implies the result. =

3. Determinacy. The following is a fundamental fact we need (cf. [7]):

LeMMA 3.1. Let r > 0, and 7' : (T*R",0) — (R",0) a Lagrange projection with
J'7'(0) = j"m(0), for the standard projection m : T*R™ — R™. Then there ezists a
symplectic diffeomorphism 7 (T*R™,0) — (T*R",0) such that ' = wo 1 and j77(0) =
JTid(0).

Proof. The result for the case » = 0is just Darboux theorem for Lagrange projections
([4], Theorem 18.4). The proof for arbitrary r follows from that for r = 0. =

Therefore we see

LEMMA 3.2. Letr>1 and f: (X,z0) — (T*Y,y0) an isotropic map-germ. Then the
followings are equivalent to each other:

(1) For any symplectic diffeomorphism 7 : (T*Y,y0) — (T*Y,yo) with j"7(yo) =
J"id(yo), 7o f is Lagrange equivalent to f with respect to .

(2) For any Lagrange projection 7' : (T*Y,yo) — Y with 57 7'(yo) = 577 (vo), (f,7')
is Lagrange equivalent to (f, 7).

We recall that the infinitesimal Lagrange stability of f is written as
VIf =tf(Vx)+wf(VLpsy).
We denote by VI; the set of infinitesimal isotropic deformations of f. Remark that
the symplectic structure on 7Y induces the isomorphism, therefore a diffeomorphism
T(T*Y) = T*(T*Y). Besides, T*(T*Y') has the natural symplectic structure w = dfr.y,
where 07+y is the Liouville 1-form on T*(T™Y"). Therefore we have naturally a symplectic
structure @ = dfr.y on T(T™Y), via the above isomorphism. Then an infinitesimal
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deformation v : (X, z0) — T(T*Y) of f is called isotropic, if the pull-back 2-form v*@ = 0.
Vx means the set of germs of vector fields £ : (X, zg) — T'X along the identity. Moreover
we denote by V Lp+y the set of infinitesimal Lagrange diffeomorphisms, namely, the set
of germs of Hamiltonian vector fields 5 : (T*Y, o) — T(T*Y') with affine Hamiltonian of
type ao(q) + ai(g)p: + -+ + an(q)pn. Then we set tf(¢) = fu.€ and wf(n) = no f, for
EEVX)UEVLTtY. N

If v € VIy, then d(v*fp+y) = v*@ = 0. Then there exists a function-germ e € Ex =
{(X,20) — R} such that de = v*f7.y. We call e a generating function of v. Then

Ry = {e € Ex | e is a generating function for some v € V.L;}

is a sub R-algebra of Ex containing f*Ep+v.

Notice that'VIf has an Epsy-module structure and V L7sy has an Ey-module struc-
ture [14]. In particular, for h € Ep.y and v € VI;, the Ep+y-multiplication is defined
by

hxv=hof-v—e-Xpof,
where - is the pointwise multiplication, e is the generating function of v with e(zo) = 0,
and X}, is the germ of Hamiltonian vector field with Hamiltonian h so that ix,w = —dh.

Set M = T*Y. Since f is an open Whitney umbrella, we see Ry = f*Ej. Remark
that Ry is an Epr-module via f* and an Ey-module via (7o f)*. Then my Ry = m(Ry) =
f*(mar).

LEMMA 3.3. Let f : (X,z0) — (T*Y,y0) be an infinitesimally Lagrange stable open
Whitney umbrella. Then we have

(1) mif'R; C my Ry.

(2) If 7' : (T*Y,y0) — Y is a Lagrange projection with j™n'(yo) = j"7(yo), then f is
infinitesimally Lagrange stable also with respect to «'.

(3) m?d'f, VI; C tf(mxvx) + ’wf(myVLTty).

Proof. (1) Suppose f is infinitesimally Lagrange stable, that is, VI; = tf(Vx) +
wf(VLrsy). Set Qy = f*Ep.y/my f*Er~y = Rj/myR;. Then Q; is generated by
L,piof,...,pnof over R by the equivalence of (is) and (a) ([14] Theorem 1.2). Therefore
dimp @ < n+ 1. Then considering the sequence of Ejs-modules:

Qs D muQs DmyQ; D -+ DdDmitQy,
we see that m”M"'le = 0 and that m”M"'lRf C my Ry, using Nakayama’s lemma.

(2) Take a symplectic diffeomorphism 7 as in Lemma 3.1 such that 7/ = 7o 7. Set
g=r71of. Then Ry = Ry, g 09 — ¢; ofEm'J(,I"'lRf and pjog—pjof € m”M"'lRf. Then
by (1), my R, = my Ry, with respect to . Thus the condition (a) is satisfied also for
g. Thus g is Lagrange stable with respect to 7, and therefore f is Lagrange stable with
respect to 7',

(3) Take v € mjf2VI;. Then v has a generating function e € m73Rs. By (1), we
see mif° Ry C mym(Ry)?. Therefore we have

e= (Z ai(9)bi(p,q)) o f,

for some a; € my and affine functions b; € mp+y with respect to m-fibers satisfying
biof € m(Rs)?, 1 <i<n Seth=37:_ ab; and consider the Hamiltonian vector
filed X3 with the Hamiltonian h on T*Y. Then X, € myV Lp«y, and v — wf(X}) has
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the generating function 0. Therefore, by [14] Lemma 4.3, there exists £ € Vx such that
v—wf(Xp) =tf(€). We show £(0) = 0.

If f is an immersion, then it is clear. Assume f is an open Whitney umbrella of
type k£ > 1 and assume £(0) # 0. Then, with respect to the symplectic coordinates of
normal forms for open Whitney umbrellas (§2), the coeffiecient of -6— o f of both side
of v — wf(Xy) = tf(£) should be of order one. On the other hand we see that, by

Lemma 2.1, ?TL (0) # 0 with respect to the coordinates of normal forms. Therefore the

coeffiecient of 36_ o f should be of order > 2. This leads a contradiction, and we see

((())) = 0. Thus v = tf(§) + wf(Xy) with § € mxVx, X, € myV Lpsy, and this proves
3). m

Let s be a positive integer. Consider the space Sp,(n) of germs of symplectic diffeo-
morphisms (7*R"”,0) — (T*R",0) with identity s-jets. We need the following result on
“connectivity” of Sp,(n).

PROPOSITION 3.4. Lets > 1. Then, for any pair 7o, 7y € Sp,(n), there exists a smooth
famaly 7,0 <t <1, connecting 7y and 7.

Proof. Consider the graphs I'g,T'; of 75, 4 respectively in T*R” x T*R”, which are
Lagrange submanifolds with respect to the symplectic form 7jw — 75w. Take a Lagrange
projection I : T*R™ x T*R"” — R™ x R™ such that Iy, and therefore I'y, is mapped
diffeomorphically. Then we can take generating functions eg, e; of I'g, I'; with respect to
IT such that j5+1ey(0,0) = j*+1e;(0,0). Then set e; = (1 —t)eg +tey. Then the family of
Lagrange submanifolds I'; generated by e, corresponds to a family 7 € Sp,(n) connecting
pand 7. =

We denote by I} the set of isotropic map-germs f' : (X, z0) — (M, yo) with j° f'(20) =
J° f (o). To show the sirict Lagrange determinacy we need the following:

ProrosITION 3.5. Let s > k+ 1. Let f : (X,z0) — (M,yo) be an open Whiiney
umbrella of type k, 0 < k < {%], dimX =n= %dimM. Then, for any pair fo, f1 € I},
there exists a 1-parameter smooth family f; € I3,0 <t < 1, connecting fo and fi.

Proof. We can assume that f = f,; : (R?,0) — (T*R",0). Then there exist
a family of diffeomorphisms oy : (R",0) — (R",0) and 7 : (R?,0) — (R",0) such
that j°0;(0) = 7°1d(0),7°%(0) = j 1d(0) and that 71 om0 foo 07! = 7o fi. We then
set 7 = 7, % (T*R",0) — (T*R™,0). Then 7; is a family of symplectomorphisms with
7°7(0) = j°id(0) and mor; = 7 (cf. Lemma 3.1). Consider the family f/ = r,ofoo; ! € I
Then 7 o f1 = mo f;. Take the generating function e’ and e of f] and f; respectlvely
so that f{"0 = de’ and fy8 = de with ¢/(0) = e(0) = 0. Then j*+1e/(0) = j°*+1e(0).
Now set e; = (1 —t)e’ -+ te. Then there exists a family f{’ € I} such that f;"*f = e; and
o f' =mo f{(=mo f1). Then f{' = f{ and fi’ = f;. This proves the Lemma. =

Proof of Theorem 1.3: Assume
[ (X,z0) =R",0) — (T"Y,y) = (T*R™,0)
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1s infinitesimally Lagrange stable and take 7 € Sp,;(n). Then it suffices to show that,
for the standard Lagrange projection 7 : (T*R™,0) — (R",0), (7 o f,7) and (f, 7) are
Lagrange equivalent. Set ¢ = 7o f. Then, by Proposition 3.4, there exists a smooth family
Tt € SPp41(n) such that 79 = id and 7, = 7. Consider the family f; = 7 o f of isotropic
map-germs. By Lemma 3.3 (2), we see each f; is infinitesimally Lagrange stable. Then,
by Lemma 3.3 (3),

’I’TL;T}%VIft Ctfi(mxVx)+ wfi(my VLIpsy).

Moreover this equality holds for vector fields smoothly depending on ¢. See [14], Lemma
5.4, Therefore, for each tg € [0, 1], the family f; is trivialised under Lagrange equivalence
(0¢, 1) fixing base points; namely we have f;, = 7/ o f; 0 01, 7 is a Lagrange diffeomor-
phism, {(0) = 0, and 04(0) = 0. Thus f = fo and g = 7o f = f; are Lagrange equivalent
with respect to .

Now we recall that ry is determined as the least positive integer satisfying R; N
m’"X°+2 C f*m3t3. For any f' € IJ'Z", by Lemma 3.5, we connect f’ and f by a smooth
family f; € I}". Remark that ro > n 4+ 1. Then, for the family f; of isotropic map-germs
with j f,(0) = 70 f(0), we see, similarly as above,

VI, nmETV; Ctfi(mxVx) +wfi(myV Lpey).

Thus f; is trivialised under Lagrange equivalence fixing base points. =

4. Isotropic Jets. Let f: (X,z0) — (M, y0) be an isotropic map-germ of corank at
most one. We set :

VI} ={veVI;|jv(z) =0} = VI nm'Vy, (s=0,1,2,...).

Let 2 € Jj(n,2n). Define m, : VI} — T,J"(n,2n) as follows: For each v € VI3, take
an isotropic deformation f; of f with v = %ftlh:(), and set m,(v) = d(J f; 0 |t=0. Then
the image of the linear map =, coincides with T,J}(n, 2n).

Let z € Jf(n,2n) and z = j7f(0) for a f : (R",0) — (T*R™,0). Hereafter we set

X =(R",0),Y = (R",0)and M = (T*Y,0). Then under the identification 7, J" (n, 2n) =
mx Vi /mi TV, we have

T,Ji(n,2n) = VI /VI;.

If we denote by S"z (resp, £7z) the orbit of z under the symplectic equivalence (resp.
Lagrange equivalence), we have

7,8z = VI}J/{(tf(vaX) + wf(mMVHM)) N Vfr},

T,Lz = VI?/{(tf(mXVX) +wf(myVLy))NVi}

Set z = j" f(zo). For (w,v) € Ty, X ® VI, take a curve z; in X with the velocity
vector w at ¢ = 0 and take an isotropic deformation f; of f with v = %ftih:o (cf. [14],
Lemma 3.4), and define a linear map

I, : To, X ® VI; — T,J" (X, M),
by

jrdft(mt)

I (w,v) = p lt=q.
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Then I, (T, X ® VI;) = T,J{(X, M) and Kerll, = {0} @ VI;. Moreover we have, for
the Lagrange equivalence class

2] = {j"f'(zp) | zp € X, f' is Lagrange equivalent to f}
in J7(X, M),
Ty[2) = O, (Tpo X & (tf(mxVx) + wf(V Lar))).
For the jet extension j"f : (X, z0) — J}(n M) we have

(" Pl )"H( FRE LG o ))

Now the condition that j” f is trasnverse to [z] =[4r f(:co)] at zg is equivalent to that
(7" Du(Tee X) + T:[2] = T, J7 (X, M),
and to that o
()71 Fe(Teo X)) + Too X @ (Lf(mx Vi) + wf(VIn)) + {0} @ VI]
coincides with T, X @ VI;. This condition is equivalent to that

Vip = (f*(g%), e ,f*(%))n +f(mx V) + wf (VL) + VI,

namely that
VIp =tf(Vx) +wf(VLy)+ VI;.

We recall that
- CP(X, M) ;= {f € C®(X,M) | f is isotropic and of corank < 1}

is a Bair space ([13]). Furthermore we have

THEOREM 4.1. ([13]) Let Q be a submanifold J7(X,M). Then the set
T={feCPX,M)|jf:X — J{(X, M) is transverse to Q}
is residual and therefore dense in C3°(X, M)!.

5. Transversality and Lagrange Stability.

Proof of Theorem 1.1: The equivalence of (hs), (is), (a) and (a’) is shown already in [14].
We show the remaining implications.

(s) = (t,): Take a representative f: U — T*Y of f such that f € C°(X,M)!. By
Theorem 4.1, f is approximated by f’ € C®(X,M)! such that j7f : U — J{(X, M)
is transverse to the Lagrange orbit [j” f(zo)]. Since f is Lagrange stable, there exists
zh € U such that (f;:),ﬂ') and (fy,,7) are Lagrange equivalent. Then j"f’ is transverse
to [j" f(zo)] at @y, and therefore j" f is transverse to [j” f(zq)] at zo.

(tr) = (a))): As we see in §4, the condition (t,) is equivalent to that

VI; = tf(Vx) + wf(VLM) + VI;.
Taking generating functions of both sides, we have
Ry =(mo f)*Ey + Z(ﬂ' ofY*Eypiof+ Ry N mrX+2.
i=1
Remarking Ry = f*Ep~y, we have (a;).
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(a)) = (2') Since Ry Nmy? C mi3Ry, (a) implies that Ry /(my Ry + m3 2 Ry)
is generated by 1,p; o f,...,p, o f over R. Then we have m'ﬂ'lRf CmyR; + m"M+3Rf,
therefore, by Nakayama’s lemma, m"M"'lRf C my R;. Then my Ry +m”M+3Rf = my Ry, so
we have that Ry /my Ry is generated by 1,p1 0 f,...,p, o f over R, namely, the condition
(a'). .

Thus we see the implication (t,) = (is).

(tr) & (is) = (s): If j" f is transverse to [j" f(zo)] at zo, then there exists a neighbor-
hood W C C(X, M)! of an isotropic representative f : U — T*Y such that, for any
f' €W, j"f is transverse to [j" f(zo)] at a point zf, € U. Since 5" f'(z}) € [j” f(zo)], there
exists an isotropic map-germ f” : (X,z9) — T*Y which is Lagrange equivalent to fég
with respect to 7 and j” f"(zo) = j” f(zo). On the other hand, since f is infinitesimally
Lagrange stable, by Theorem 1.3, f is strictly Lagrange r-determined. Therefore (f”, 7)
and (f, 7) are Lagrange equivalent. Thus ( fég ,m) and (f, ) are Lagrange equivalent, and
f is Lagrange stable.

6. Supplementary Remarks. On the point (C): Let f, f' : (R",0) — (T*R",0)
be Lagrange stable open Whitney umbrella. Then we naturally ask that whether the
isomorphism (Q,e) = (Qy,€’) implies that f and f’ are Lagrange equivalent or not.
Here Q = f*Ep.p./(mo f)*mR.f*Ep.R~ and e is the generating function of f with
e(0) = 0. In the case of complex analytic Lagrange immersions, the implication is true
by Yau’s theorem [25]. See also [19]. In real case, there exists a counter example [8]. See
also [21]. So the problem is how to change the formulation in the real case.

Also in Legendre case, similar question can be posed, analoguously to Mather-Yau
type theorem. For Legendre immersions, it is solved affermatively from Mather’s theorem
on K-versal unfoldings of functions and Arnol’d’s thoerem on Legendre singularities, even
in real case. This fact is imformed by S. Izumiya to the author.

On the point (E): Lagrange immersions X® — T*Y, dimX = dimY = n, with
Lagrange stable jets are dense in the space of Lagrange immersions, if n < 5 [4]. This is
based on Arnol’d classification of simple Lasgrange singularities [1]. So we can say that
the nice range for Lagrange immersions is {n € N | n < 5}.

It is known the generic Lagrange classification, consisting of finite lists, of open Whit-
ney umbrellas for n < 3, and in this case all germs are of L-corank < 1. See [12].

Then it is natural to ask that n = 4,5 belong to the nice range or not, for Lagrange
projections of open Whitney umbrellas. Ilya A. Bagaevski poses to the author the neces-
sity of the theory of simple singularities of open Whitney umbrellas.

Besides, in the case n = 4, there appear generaic isotropic map-germs of corank one
and of L-corank two. See [13]. Generic classification is unknown for n > 4. Then we
ask, according to V.M. Zakalyukin, to begin with, whether there exists a Lagrange stable
projection of an open Whitney umbrella of L-corank > 2, or not.

The following example is found in 23 June 1998, during the workshop “Caustics” in
Warszawa. The example is based on Scherbak’s parametrisation of the variety of irreg-
ular orbits of the reflection group Hy [22]. This answers to the question posed by V.M.
Zakalyukin on the occasion of author’s talk.

EXAMPLE 6.1. Let z,y,2,w,) be the coordinates of R® and f : (R5,0) — (T*RS,0)
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a map-germ defined by

prof=g,prof=3%y% psof= —%wyz,p40f=~§y3,p50f=—wy3,
Gof=%2+ 5%+ A%, o f =2z +yw+y’ + SAay,
gsof=z,uof=w,gsof=2A
Then f is an open Whitney umbrella of type 1, Lagrange stable with respect to the

standard projection # : T*R® — RS defined by w(p,q) = ¢, corank(f) = 1, and
L-corank(f) = 2. The generating function of f is given by

1 1 1 1457
e= gccs + Zy‘l + §a:y2z + —6—y3w + Zmys)\,

and the caustic of f, namely, the set of singular values of 7 o f is given by
zw+ 2zy + %w2)\ —yz? — %yzz/\ - -z—y3)\2 =0,
in (R®,0).
Proof. (1) Set X = (R%,0),Y = (R°,0). Then
R; = {h€Ex|dhe Exd(f"Ersy)}
{heBx | 3 € (y,w+ §ra)s, ),
and R; is generated by

z,2,w, 0 9%, y%, y(w + g’\m),zf(w + g/\m)

as differentiable algebra. Therefore we see Ry = f* Ep+y . Moreover we see codimX(fc) =
2. Then, by [14] Prop. 5.1, page 230, and by considering the multiplicity of f, we conclude
that f is an open Whithey umbrella of type 1.

(2) By a straightforward caluculation, we see that

Qr = [*Epey/myf*Ep-y
= Ry/{z?,yw+y*+ %/\xy,z, W, A) Ry s
and Q; is generated by 1,p; o f,...,ps o f. Therefore by Theorem 1.1, f is Lagrange
stable. =
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