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CRYSTALLINE AND LEVEL SET FLOW - CONVERGENCE
OF A CRYSTALLINE ALGORITHM FOR A GENERAL
ANISOTROPIC CURVATURE FLOW IN THE PLANE

MI-HO GIGA AND YOSHIKAZU GIGA*

Abstract. Recently, a level set formulation is extended by the authors to handle
evolution of curves driven by singular interfacial energy including crystalline energy. In
this paper as an application of this theory a general convergence result is established for
a crystalline algorithm for a general anisotropic curvature flow.

1 Introduction

We consider an evolution equation of a closed, simple curve I'; in the plane R?:
V = M(n)(A,(n) + C) (1.1)

or its generalization

V = g(n,A,(n)). )

Here V denotes the normal velocity of I'; in the direction of the outward unit normal
n. For a given smooth simple closed curve S in R? the quantity A,(n) on S is the first
variation of the interfacial energy fqv(n)ds with respect to change of area enclosed by S.
It is formally of form ‘

A,(n) = —div €{(n), (1.3)

where £ = Vv and v is a given positively homogeneous function of degree one in R? called
an interfacial energy (density); div denotes the divergence on the curve S. If v(p) = |p|
with then A,(n) equals the usual curvature x of S. So A, is called an (enegetically)
weighted curvature. In (1.1) M(n) denotes a given positive function called mobility and
C is a given constant. In (1.2) we always assume that g is nondecreasing in the second
variable. Clearly, (1.1) is an example of (1.2). We always assume that the interfacial

*Partly supported by the Grand-in-Aid for Scientific Research No. 10304010, the Japan Society for
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energy demsity v is convex. By these assumptions (1.2) is at least degenerate parabolic.
The dependence of nin g gives a kinetic anisotropy. The reader is referred to an interesting
book of [22] for derivation of (1.1) and (1.2) from thermomechanics and review articles
[14], [15] for mathematical analysis on these equations. For example the well-posedness
of the initial value problem is well-known when 7 is at least C* (outside the origin) and
g is continuous in the level set formulation; see [14] and papers cited there.

If v is not C', the meaning of (1.1) may not be clear. The authors of [26] and [2]
proposed a notion of a solution when the Frank diagram Frank v = {p € R?; ~(p) < 1}
of -y is a convex polygon containing the origin as an interior point. In this case v is called
a crystalline energy. They consider a special family of evolving polygonal curves to define
a notion of solutions for (1.1) which is sometimes called a crystalline flow. An extension
to (1.2) is given in §2 with various properties of solutions. In fact, we give a sufficient
condition for (1.2) so that a crystalline flow is extended after disappearing of some facets
before formation of a self-intersection or extinction. If (1.2) is V = |A,|*"'A, (a > 0) and
Frank « is a rectangle, our condition (@ > 1) is also necessary. This relates to the problem
whether a convex polygon shrinks to a point or line. As shown in [31] all rectangle shrinks
to a point if and only if & > 1 when Frank v is a square. We extend this result for more
general equation (1.2) when g is not necessarily a power of curvatures.

Recently, a level set formulation is extended by the authors [10], [12] so that it applies
to some classs of non C! interfacial energy 7 including any crystalline energy. The theory
is nontrivial since the evolution when ~ is not C! has nonlocal feature. One has to build
up fundamental calculus for nonlocal curvatures. In [10], [12] we gave a notion of solutions
(called a level set flow) without a priori restriction of the shape. This approach is synthetic
since it applies to both smooth and singular interfacial energy simultaneously. Typical
results include:

(i) (well-posedness) the problem (1.2) admits a unique (up to fattening) global-in-time
solution for any initial curve; (1.2) is solvable beyond pinching.

(ii) (approximation property) the solution of (1.2) can be approximated by solutions
of approximate equation with approximate interfacial energy.

In this paper we prove the consistency of two notions of solutions (§3). In fact we prove
that a crystalline flow is a level set flow under some assumptions on g(p,0). A general
theory developed in [10], [12] provides several important properties on a crystalline flow.
In particular, from the approximation property it follows that a crystalline flow can be
~approximated by solutions of approximate strictly parabolic equations with smooth 7.
The approximation property also gives the convergence of crystalline algorithm for (1.2)
which is one of main topics in this paper (§4). The convergence of a crystalline algorithm
of graph-like solutions of V' = & is proved by [18] with convergence rate. Independently,
general convergence of graph-like solutions of (1.1) with C' = 0is proved in [4] via nonlinear



semigroup theory. Later, the result in [18] is extended for closed convex curves in [17]; see
also [19] for overview of these development. In [25] K. Ishii and H. M. Soner proved the
convergence crystalline algorithm for V' = « for any closed curve (not necessary convex)
by using viscosity solutions. At the same time we proved the convergence for graph-like
solutions for general equation (1.2) by extending the theory of viscosity solutions to motion
by nonlocal curvature [6], {7], [9]. In [6] the consistency has been proved for graph-like
solutions while in [7] well-posedness of the problem is studied. In [9] the convergence has
been established. In the meanwhile the result in [17] is extended in [30] to V = |&|*"1k
with a > 0 for closed convex curves, where time is also discreted. Our approach is
synthetic and does not require convexity of curves. Also the equation that our theory
applies is a general equation of form (1.2). However, our theory does not provide rate of
convergence since the situation is too general.

There are several other topics related to crystalline flow but we do not mention them
here. Instead, we refer review papers [27], [29], [15] and a recent paper [12] and references
therein for these topics.

2 Crystalline flow

We consider a crystalline energy +, i.e., Frank ~ is a convex m-polygon. Let ¢; (: =
1,2,...,m) be its verteces. Let N' C S' = {|p| = 1} be the set of all unit vectors of form
¢:/\] (i =1,2,...,m). We say that a simple polygonal curve S in R? is an admissible
crystal if all outward normal (orientation) belongs to A/ and orientations of adjacent
segment (facet) point to verteces adjacent in Frank y. We say a family of polygon {S:}:es
is an admissible evolving crystal if S; is an admissible crystal for all £ € J and corners of
S; move at least C'! in time, where J is a time interval. The last requirement implicitly
assumes that the number of facets and the orientation at each facet are independent of
time. In other words, S; is of form S, = Uj, S;(t) and S;(f) is a maximal nontrivial
closed segment (facet) of S, and the orientation n; of S;(t) is independent of time. For
later convenience we number facets clockwise. Our definition is consistent with [16].

2.1 Regular flow

Let {S:}ics be an admissible evolving crystal with J = [0,T). We say that {S,},es is a
~v-regular flow of (1.2) if :

V= g(nj; x;An;)/Li(t)) on Sj(t) (2.1)

for j =1,2,...,r. The quantity x;A(n;)/L;(t) is a nonlocal weighted curvature A,(n;),
where L;(t) is the length of S;(t) and A(m;) = 5'(6;4+0)—%(6;—0), m; = (cos §;, sin ;) €
N with 4(6) = v(cos8,sin ). The quantity x; is a transition number. It takes +1 (resp.



—1) if S, is concave (resp. convex) in the direction of n;; we use convention that y; = —1
for all j = 1,...,r if {S,} is a convex polygon. Otherwise we set x; = 0. The quantity
A(m;) is the length of facet of Wulff shape

W,={z¢€ RQ; z-p<7y(p) forall pe Rz} (2.2)

with outward normal m; € A. By this convention the weighted curvature A, of Wulff
shape is —1 independent of the facet. This explains that the quantity x;A(n;)/L;(t) is a
substitute of A, in (1.3) provided we postulate that A, is constant on each facet. (This
constancy hypotheses may not be appropriate when the equation (1.2) or (1.1) is not
spatially homogeneous [8] or surface evolution [3], [32].)

Lemma 1(Local existence). Assume that ) — g(m;, N)(m; € N) is locally Lipschitz
(continuous) on R\ {0}. Let Sy be an admissible crystal. Then there is a constant T' > 0
and a unique y-reqular flow {S,}ies of (1.2) with initial data Sy, where J = [0,T).

This follows from the local existence theorem of a system of ordinary differential equations
for L;’s. Indeed, L; always fulfills

iL; : , _ :
EE}(t) = (cot 91 +cot 9;)V;—(sin 9;)7 V1 —(sin Uj41) Wi (G=1,...,r) (2.3)

as in [2], [22]. Here ¥; = 6; — 6;—1 for n; = (cos 6;,sin ;) and V; denotes the normal
velocity of S;(t); the index 7 is considered modulo r. Combining (2.1) and (2.3) we get
an r-system of ordinary differential equations for Lj’s.

For later citation we define a few classes of g. We say that g belongs to D, if A —
g(m;, )) is locally Lipschitz on R\ {0}, nondecreasing on R and limy_,+ g(m;, A) = oo
for all m; € N. If g € D, satisfies a growth condition

/ g(my, WVA"2d) = £00 forall m; € N (2.4)
Ix
with Iy = (1,00) and I_ = (—o00,—1), we say that g belongs to D3.

Lemma 2(Facet disappearing).  For g € D, let {Si}es, be a y-regular flow of (1.2)
with Jy = [0,T), T < 0o. Let S;; denote a facet of S; disappearing at T, i.e. the length
€;; of S,; tends to zero as t — T.; this follows from a weaker condition lim, 7 ¢,; = 0.

(i) If the transition number X; of Sy is not zero near T,, then one of following two
phenomena occurs exclusively.

(a) (Single point extinction). S, becomes convex near T. and all facets disappear at T..
(b) (Degenerate pinching). For t close to T. there are two parallel facets Sy, Sy, (i0 <
j < iy) with opposite orientations such that all facet Sy (ig < ¢ < iy) disappears at t = T,
with x; = x; and that Sy, (k = 4o, i) does not disappear at t = T, unless x; = 0.



(ii) If (a) and (b) does not occur, all facet disappearing at t = T, always has zero transition
number and at most two consecutive facets disappear. The limit S, of {S;} ast — T.
is a polygonal curve satisfying conditions of admissible crystals except the embeddedness
assumption.

(iii) If g € D3, then (b) does not occur.

(iv) If the Wulff y has not parallel facets (i.e. NN (=N) = (), then (b) does not occur.

The part (i) and (ii) can be proved as in [28], [25, Lemma 3.4] where (1.1) with C =0
and M = v is discussed. However, it is easy to generalize to our setting. There are no
parallel facets for (iv) so (iv) is trivial. For graph-like solutions clearly (b) does not occur.
In [6] all possible way of facet disappearing is discussed for (1.1) for graph-like solutions.
The part (iii) is new in this generality. For (1.1) with C = 0 and M = 7 it is essentially
proved in [28]; it corresponds to [25, Case 1, subcase 2] where no details are given. The
growth condition (2.4) is actually necessary to exclude (b) when Wulff -y is a rectangle.
We shall show it after the proof of (iii). |

Proof of (111). We shall derive a contradiction assuming (b). Let ¢;(t) be the length of
Sii. Let w(t) be the distance between of Su‘o and Sy, . Since the argument is symmetric,
we may assyme that y; =1 for i =ig+1,...,i; — 1. By assumption and geometry V;, is
bounded and (sin ¥;,) "1V}, is bounded from below near T, so by (2.3) we see that

(=df)dt < C—aVigyy with £=10; (2.5)

with some constant C > 0 independent of ¢, where a = 1/sin¥;,4;. By our convention
and x;,+1 = 1 the constant « is positive. Since £;,4; < aw, we see

1/io+1 > g(nio-l-l’ A(ni0+1)/(a’w)) (26)

by monotonicity of g. Since lim;r, w = 0 and limy_, g(-,A) = oo, (2.5) and (2.6)
implies é,—o < 0 for t close to T, and similarly éil < 0. Thus, monotonicity of g and (2.1)
implies that V;, and V;, are nondecreasing near T.. Thus w = —(V;, + V;;) < 0 since
lim, 7, w = 0. Since S;, does not disappear if x;, # 0 and the same for S;,, w is bounded
near T,. Thus ’

. . . . ,
I={" bwdt <G / (—0)dt = Cof(T, — §) < o0
Tu—6 Tu—6 ’

with some constant Cy for small § > 0. On the other hand by (2.5) and (2.6)
T
I> (C - ag(nio-l-lvA(nio-l-l)/(a‘w)))wdt'
T.—6

Our assumption (2.4) implies fol g(m;, 1/s)ds = 0o so we get I > oo which is a contradic-
tion. O



Example. Assume that Wulff v is a rectangle. Assume that (2.4) is not fulfilled, say
the integral for I_ is finite for m; (orthogonal to m,). Then a small rectangle whose
facet Sy of orientation m; is small compared with adjacent Sy shrinks to a line and Sy
disappears. Indeed, let z denote the length of S;; and y denote that of Sj. Then by
(2.1) and (2.3) gy = —hy(z), T = —ha(y), with hi(z) = —g(m;, —A(m;)/z), + = 1,2. If
initial data is taken small, say zo,yo € (0,¢), then £ < 0, y < 0 and at least one of z
and y tends to zero in a finite time 7. Since f; g(mj, A)A72d\ > —oo is equivalent to
Jo hi(z)dz < oo, for small € there is 7 such that [ ho(y)dy > f¢ hy(2)dz. Let 19(¢) denote
infimum of > 0. Then n(§) — 0 as &€ — 0. We take zg,yo € (0,<) so that yo > no(zo).
Since zhi(z) = yho(y), integrating on (0,¢) yields fy'“’("t) ho(y)dy =[50, ha(z)dz. When
z(t) — 0 as t — T, y(t) does not converge to zero because of the choice of yy since
otherwise we get a contradiction.

Similarly, it is possible to construct an example of initial data so that it exhibits
degenerate pinching before extinction time. For this purpose consider a big squre with
orientations m;, m, touching the above rectangle on a part of one of long facets of the
rectangle. We remove the intersection (except end points) to get a desired admissible
crystal Sy of 8 facets.

In [31] for g(\) = |A|*~!A, @ > 0 it is shown that all rectangle shrinks to a point if and
only if @ > 1, which is equivalent to (2.4) for such a type of g. Our results generalize his
result for general g. When Frank « is 2k-regular polygon, it is reasonable to conjecture
that all convex polygon shrinks to a point if and only if & > o = (1 + 2cos/k)71;
this is settled for & = 2 as mentioned above. The number oy is a critical number such
that regular 2k-polygon is “linearly stable” discussed in [31], where it is shown that some
convex polygon shrinks to a line for small o > 0 for k¥ = 3,4, while all convex polygon
shrinks to a point for a > 1 for all k; the last result is included in Lemma 2.

2.2 Extension

By Lemma 1 it is rather clear that one can construct a y-regular flow after some facet
disappears provided that S, is an admissible crystal. We say that {S;}.es is a crystalline
flow with initial data Sy there is some tp = 0 < t; < -+ < tp = T < oo such that
{S:}tes, is a y-regular flow for J;, = [ts,tp41) with initial data S;, (h=0,...,£—1) and
Sy —= Sy, 4+ 10 the sense of Hausdorff distance topology as t T £, and at t54; some facet
disappears for h = 0,1,...,£ — 2. By definition a crystalline flow S, is continuous in time
t € [0,T). Since the number of facets is finite, facet disappearing occurs at most finitely
many epochs. At the time of extinction (i.e. enclosed open set becomes empty), at least
one of facets with nonzero transition number disappears by geometry. So by Lemma 2
either (a) or (b) occurs. Lemma 2 yields:



Lemma 3.  Assume that (i) g € DS or that (ii) g € D, and Wulff v has no parallel
facets. At the maximal time T.. of existence of a crystalline flow {S;}1e; with J = [0,T%)
for (1.2) S, self-intersects or shrinks to a point at T, provided that T. < co.

Remark 4. If S; is convex so that transition number of all facets is —1, then S, cannot
self-intersect from its geometry before the extinction time. By Lemma 2 we have:

Theorem 5.  Assume that g € D,. Let T, € (0,00] be the maximal time of the
existence of a crystalline flow {S;}e; with J = [0,T.) for (1.2). If Sy is convex, then S,
stays convex so that no facet disappears during evolutions. Moreover, if T, < oo, then S;
shrinks to a point or a line.

This is interpreted as a discrete analog for (1.2) of the result of [5] when V' = & is discussed.
For (1.1) with M = 1 and C =1 this is contained in [28, Theorem 3.2]. If the Wulff shape
of v has a center of symmetry and g(p, \) = —g(—p, =) for p € R?, |p| = 1, A € R, then
the evolution law (1.2) is independent of the choice of orientation of n. The condition of
v is for example fulfilled if we assume that v is even, i.e., 7(p) = v(—p) for all p € R%. A
typical example is (1.1) with C = 0, M(p) = M(—p), 7(p) = v(—p) for all p € R? with
|p] = 1. For such an evolution law one can prove that self intersection does not occur even
if Sp is not convex. The proof is essentially the same as in [25, Lemma 3.3} (reflecting
idea of [16]) and [28, Theorem 3.2]; one should also handle the case that self-intersection
and facet disappearing occur simultaneously although it is not difficult. Lemma 2 now
yields the next result, which is a discrete analog of the result of [21] for V' = k.

Proposition 6.  Assume that g € DS and that y(p) = y(—p) and g(p, A) = —g(~p, =)
forallpe N, A € R. Let T € (0,00] be as in Theorem 5. If T. < oo, then S; shrinks to
a point at T,. In particular, S; becomes convex for t close to T..

3 Consistency with a level set flow

Our goal is to prove that a crystalline flow is a level set flow under some assumptions on

g(p,0) for p ¢ N.

3.1 Level set flow

Let D (resp. E) be an open (a closed) set in ﬁi = R? x [0,00). Assume that D N R7
(E N Ry) is bounded for every T, where Ry = R? x {0,T]. We say that D (resp. E)
is an open (a closed) evolution of (1.2) with initial data D(0) (resp. E(0)) if there is
a continuous function » in E:i that is a continuous “solution” of the level set equation
of (1.2) in R3 = R2? x (0,00) such that D = {(2,t) € _P:i; u(z,t) > 0} (resp. E =



{(z,¢t) € _R_i; v(x,t) > 0}) and that u(x,t) is negative constant outside some bounded
set in Ry for every T < oco. Here A(t) denotes the cross-section of A at time ¢t i.e.,
A(t) = {z € R%(z,t) € A} for a set A in Ei. If a closed set I' is expressed as E \ D
with closed and open evolution E and D, we say that ' is a level set flow with initial data
Iy = E(0)\ D(0) of (1.2); the orientation is reflected in the level set equation.

Of course, the definition of solutions of the level set equation is not standard when
Frank v has corners. We refer [10], [12] for rigorous definitions. We list several properties
of open and closed evolutions.

Lemma 7.  Assume that 7 is crystalline. Assume that A = ¢(p,\) is nondecreasing
and that g(p,)\) is continuous on S* x R. Assume that -

T3 oo sup lo(p, M)/ < oo. (3.1)

pl=

(The totality of g satisfying these three conditions denotes A).
(i) (Unique existence). For a given bounded open (closed) set Dy (resp. Ey) there is a
unique open (closed) evolution of (1.2) D(resp. E) in ﬁi with initial data Dg(resp. Ep).
In particular, there is a unique level set flow of (1.2) with initial data I'y = Eg \ Dy.
(ii) (Semigroup property). Let M(t) denote the mapping from Ty to I'(t). Then M(t +
$)Tg = M(t)(M(s)Ty) for any t >0, s > 0.
(iii) (Left continuity). I'(t —68) — I'(¢t) as § | 0 for t > 0 in the Hausdorff distance
topology.

The part (i) is contained in one of main results of [10], [12], where more general v is
discussed. The part (ii) immediately follows from (i). Note that even if Ty = 8D, the
set T'(¢) may have interior. This phenomenon may occur even for V' = « [14] and called
fattening phenomena. The part (iii) needs more explanation. The upper semicontinuity
of I'(t) is immediate since I is closed. To see left lower semicontinuity we observe that
center of small ball survives for a while (depending on the size) when we flow the ball.
(This is implicit in [12, Section 8].) The left lower semiconitinuity of I'(t) follows by
comparing such evolutions with the aid of the comparison principle in {10}, [12]. For a
related argument see Remark 14(i). Similar phenomenon is found in [1] for the mean

curvature flow equation.

Remark 8. The growth assumption (3.1) can be removed if we modify the notion of
solution as in [24] or [20] although it needs more technical complexity.
3.2 Condition on preserving corners

We consider an evolution equation V' = ¢%(n) with ¢%(p) = ¢(p, 0)‘, It is easy to see that the
coners of 4; = ﬂ}=0 Hiijand B; = ﬂjl-z_o Hiy; with Hiyy = {2 € R 2. m;;; < go(mi_,_]l)}



stay as coners by motion by V = ¢%n) if and only if
4, c{zeR?} z-m< ¢%m)} C B (3.2)

for all m = (cos#,sinf) such that §; < 8 < 8;4;, where m;; = (cosb4;,sin;y;) € N
(=0,1) and N = {m;}; m; is indexed (modulo m) counterclockwise i.e., §; < 6;,;.
If evolving curve is given as the graph of a function u = u(z;,t), then V' = ¢%(n) is of
the form
1
02 1+ 02

where n is taken upward. The condition (3.2) is equivalent to

uy = alug, ), a(oc) =vV1+a%g( \/1—_;7 ), Uy, = Ou/dz,

a(p) = 8a(p:;) + (1 — 8)a(pi+1) (3.3)

for p = ép; + (1 — 8)piy1, 0 < 6 <1, where my; = (=pigj,1)/4/1 +p%+j with j =0,1. (If
the corner perserving condition (3.2) is not fulfilled, the coner may be cut and rounded.)
This condition is well-noticed for example in [23], [13]. The form (3.3) is found in [6].

3.3 Consistency with y-regular flow

Theorem 9.  Assume that v is crystalline and ¢ € AN D,. Assume that g satisfies
(3.2) for all i. Let Sy be an admissible crystal. Let Dy be the bounded open set enclosed
by Sy. Then a y-regular flow {S,},ej, of (1.2) with Si|i=0 = So agree with a level set flow
of (1.2) with initial data Sy = 0Dy in R? x J, where Jy is a time interval [0, Tp).

Proof. By the semigroup perperty (Lemma 7 (ii)) it suffices to prove that y-regular
flow {S,} agrees with the level set flow {I'(t)} for a short time [0,T"). Indeed, let T'(> T')
be the maximal time such that S; agree with ['(t) for ¢ € [0,7"). If 7' < T, then
I(T") = Sy follows from by left continuity of I'(¢) (Lemma 7 (iii)) and continuity of S;.
By a short time consistency M(s)['(T") = Spi4s for small s. The semigroup property
yields I(T" + s) = Sti4,. This contradicts the maximality of T".

We shall prove a short time consistency. We set

uo(z) = max{—46, min{é, dist,(z,S)}}, =z € R?

for 6 > 0. Here dist., denotes the signed distance function with respect to the Minkowski
metric such that W, is a unit ball. (We use the convention that dist,(z,Ss) > 0 for
z € Dy.) The value of dist, is defined by dist,(z,So) = infyes, {¢# > 0; z —y € uW,} for
x € Dy. If 6 is taken sufficiently small, then every c-level set S§ (=6 < ¢ < §) and the
boundary of £é-level set Soi5 is an admissible crystal. One can construct y-regular flow
S¢ starting from S§(—6 < ¢ < 6) for some time interval [0, T¢). By continuous dependence
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of solution of ODE (2.1), (2.3) in ¢ we see that T, for ¢ € [—4, 6] is bounded from below
by some positive constant T. For t € [0,T) we set u(z,t) = cif z € S§ for ¢ € [-§,6];
u(z,t) = 6 if z is a point enclosed by S?; u(z,t) = -8 if z is a point not enclosed by S;°.
By continuous dependence of solution of ODE and the comparison principle stated at the
end of §3.3 (Lemma 10) u is well-defined in Qo = R? x [0,T"). Moreover, by nonincreasing
of distance of S§ and S,f'/ in Lemma 10 we see that u is Lipschitz continuous in z locally
uniformly in time ¢ € [0, 7). It is not difficult to see that u(z,-) is also continuous in time
for fixed z. Thus the function u is continuous in Qg and u(z,t) = —6 for z, |z| > Ry,
t € [0,T) with some large Ry. By construction S, is the zero level set of u for ¢ € [0,T).

It suffices to prove that u is a sub and supersolution of the level set equation of (1.2).
We present a proof only for a subsolution since the proof for a supersolution is symmetric.
Let ¢ be a test function of u at (2,) € @ =R? x (0,7), i.e.,

max(u - ¢) = (u—¢)(2,1) =0, (3.4)

with @(z,t) = h(z) + k(t), k € CY(0,T), h € C2(U), where U is a neighborhood of
(2,). The class C2 is defined in [10], [12]. If V(2,£) = 0 and VV(#,%) = 0, then by
construction u(2,f) = £6. If & ¢ S, then by (3.4) clearly ¢,(2,8) = k'(f) = 0. If & € S?,
¢i(%,f) < 0 since otherwise near #, u(z,t) < 6 for #(> t) close to f which contradicts
continuity of S¢ near £. Similarly, & € Sy % implies @:(£,%) < 0. In any cases we have
©i(#,%) < 0 which is the desired inequality.

It remains to handle the case V(#,t) # 0. By construction Z € S § for some ¢ € [—6, 6].
There are two cases.

c

Case A.  —VR(%)/|Vh(2)| € N. If & is not a corner point of 5§, i.e.,, & € Sf; is not an

end point for some 7, then by (3.4) and comparison of the curvature as in [16] we have

Ay(ny) < A, (R)(2), (3.5)

where A, (h) is defined as in [10], [12]; it is a nonlocal curvature of the h(Z)-level set of h
at £. Since {Sf} is a y-regular flow, the normal velocity V; of {Sf]} satisfies V; = g(nj,
A,(ny)). By (3.4) we see V; = ¢,(%,1)/|Vy(%,1)]. Since g is nondecreasing in the last
variable, (3.5) now yields

o(,8)/IV (2, B)| - g(~Vh(@)/|VA(E), A(h)(2)) < 0. (3.6)

Suppose that a facet containing & of h(%)-level set of h touches a facet S, other than the
end points. Then we still get (3.6) since the left hand side of (3.6) is unchanged on the
intersection of Sfj and h(Z)-level set of h and the necessary inequality is derived at some
intersection point other than end points in the same way.



Thus it remains to handle the case that h(Z)-level set of h touches S¥; only at a corner
point & of two facets of S7,. By (3.4) and geometry we have (3.5) for one of facet SE;
containing # and obtain (3.6). The proof of Case A is now complete.

Case B. m = —Vh(1)/|Vh(2)| ¢ N. By (3.4) and geometry & must be a corner of Sf..
Moreover, A,(n;) < 0if a facet Stf'j containing Z. Since 7 is crystalline, A, (h)(%) = 0. By
corner preserving condition (3.2) and (3.4) we observe that ¢,(%,7)/|Ve(,7)] — g(m,0) <
V; — g(n;,0) for at least one of facet Sf; containing Z. Since A,(n;) < 0 and since g is
nondecreasing in the last variable, we have V; — g(n;,0) < 0. We have thus proved (3.6)
for the Case B. O '

Lemma 10. Assume that v is crystalline and g € D,. Let S be an admissible crystal
enclosing another admissible crystal So. Let {S}}ies and {S;}ies be a crystalline flow for
(1.2) with initial S}, and S, respectively. Then S} always encloses S; for t € J and the
distance of S} is nonincreasing in t.

In [16] this statement is proved for (1.1). However, it is straightforward to extend
their result to (1.2) based on the comparison of nonlocal curvature A,.

3.4 Consistency with a crystalline flow

Theorem 11.  Assume that v is crystalline and g € AN D, satisfies (3.2) for all i.
Let Sy be an admissible crystal. Let Dy be the bounded open set enclosed by Sy. Then
a crystalline {S,},es of (1.2) with Si|i=o = So agrees with a level set flow of (1.2) with
initial data Sy = 8Dy in R? x J, where J is a time interval [0,T).

By Theorem 9 one can prove Theorem 11 by using semigroup property and left semicon-
tinuity (Lemma 7) as described in the begining of the proof of Theorem 9 since {S;} is
continuous in time t (even if some facet disappear at that time.)

Remark 12. A level set flow exists after the time self-intersection occurs. Thus it
gives a unique way to extend a crystalline flow after pinching up to fattening. We do not
discuss this topic in this paper. A heuristic argument is found in [28].

4 Convergence of a crystalline algorithm

In [12] we proved a general convergence of a level set flow. We give here a special version
of [12, Corollary 8.3, Remark 8.5 (i), (iii)].

Theorem 13.  Assume that 7, is crystalline for ¢ > 0 and 7. converges to 7y locally
uniformly on R? as ¢ — 0. Assume that vy > 0 and 7 is C 2 outside the origin. Assume
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that g. € A for ¢ > 0 and that

lim})|~co SUP sup |ge(p, A)/A| < 0. (4.1)
0<e<1 [p|=1
Assume nioreover that g. converges to gy locally uniformly on S' x R as ¢ — 0. Let
D§(z > 0) be a bounded open set in R* and let E§ = D§. Let E° and D* be a closed (an
open) evolution in ﬁi of
V = g.(n, A, (n)) (L)

with initial data E§ and D, respectively. Assume that lim._o dg(E§, EJ) = 0, where dg
denotes the Hausdorff distance in R?. Then the following two properties hold.
(i) For T < oo

lim sup dg(E°(t),E%t)) =0 (4.2)
e=09<i<T

provided that E° is strongly reqular in [0, T) in the sense that
E%t) = DO(t) for all te[0,T). (4.3)

(i) Let T¢ be the extinction time of E¢ (¢ > 0) ie., T = sup{t > 0; E*(t) = §}. If (4.3)
holds for all T < Ty (so that E° = DV in Ei}, then E¢ converges to E° in the Hausdorff
distance topology in Ei. Moreover, T, — Ty as € — 0.

Remark 14. (i) The condition (4.3) is stronger than usual nonfattening condition
E =D in R?x [0, T as remarked in [12, Remark 8.5 (iii)]. It also guarantees that E(t) is
continuous in ¢ € [0, 7] so Theorem 13 follows from \[12, Corollary 8.3]. Indeed, by Lemma
7 (iil) and closedness of E it suffices to prove that E(t) is right lower semicontinuous at
each tg € [0,T]. If not, there is an open ball B C R?\ E(t;) and ¢; | t, such that
BN E(ty) # 0. Since E(ty) = D(to) this implies there is another small open ball By C B
such that By C E(ty). If we flow By by (Ip) its center Z stays in an evolution for a while.
By the comparison we see By C E(t;) which is a contradiction.

(ii) Under the hypotheses of Theorem 13 it follows that lim,_q supye,<p da(T¢(t), T0(t)) =
0, where I'* = E° \ D° is the level set flow of () with initial data T§ = 0D§. To
prove convergence of crystalline algorithm it is convient to notice the following elementary

property.

Lemma 15(Interpolation).  Assume the same hypotheses of Theorem 13 concerning
Ye(¢ > 0). Assume that go € A. Then there is a sequence {g.} C A satisfying the
following properties.

(i) g: — go as € — 0 locally uniformly on S' x R.

(ii) The uniform growth condition (4.1) is fulfilled.

(iii) g. satisfies the corner perserving condition (3.2) for all m; € N, where N, is the set
of unit vectors pointing to verteces of Frank ~,.



(iv) g.(m;, \) = go(m;, ) for all m; € N..

It is also convenient to define a notion of a kind of simplicity of curves for the boundary of
E(t). For a closed set F in ﬁi and § > 0 we set Dy(t) = {z € E(t); dist(z, 0(E(¢))) > 6}
and Us(t) = {z ¢ E(t); dist (z,0(E(t))) > 6}. For n > 0 if both Ds(t) and Us(t) is
connected for all ¢ € [0,T] and all § < 1, we say that O(E(t)) is n-simple on [0,T]. By
definition a smoothly evolving smooth simple curve on [0, 7] is 7-simple for some 7 > 0.

Main Theorem. Assume that v, is crystalline for € > 0 and 7, converges to v locally
uniformly on R? as ¢ — 0. Assune that 7o > 0 and g is C? outside the origin. Assume
that gy € A. Assume that go € D4, fore > 0. Let Ey be the closure of a bounded open
set Dg. Let FE be a closed evolution in R—i of

V = go(n, A,(n)) | (4.4)

with initial data Eg. For T < oo assume that E is strongly regular in [0,T]. Let S§ be
an admissible crystal with respect to v.(¢ > 0). Assume that dg(E§, Ey) — 0 ase — 0,
where E§ = D§ and Dj§ is a bounded open set enclosed by S§. Assume one of following
three conditions.
(a) (Convexity) S§ is convex for small ¢ > 0 (so that E§(t) is convex.)
(b) (Symmetry) v.(p) = v.(—p) for ¢ > 0 and go(p,\) = —go(—p,—A) for all p € S,
A€ R and gy € D, fore > 0.
(c) 8(E(T)) is n-simple on [0,T]. Moreover, either Wulff v, does not have parallel facets
or go € D3, fore > 0.
Then we have the following properties
(i) (Existence of crystalline flow up to T for small € > 0) For sufficiently small € > 0 there
is a crystalline flow {S¢}iey of

V = go(n, Ay, () (45)

for some J = [0,T}) with T, > T.
(ii) (Convergence) Let Ef be the compact set enclosed by {S;}. Then

lim sup dgy(Ef,E(t)) =0, lim sup dg(S;,d(E(t))) =0.
e—00<i<T e—0p<i<T ’
Proof. (i) We take g. approximating go as in Lemma 15. Let E° be a closed evolution
of (I) in ﬁi with E5(0) = E§. Then by the consistency (Theorem 11) 9(E5(t)) is a
crystalline flow of (4.5) with initial data S§ on [0,T}), where T] > 0 is the maximal time
of the existence of the crystalline flow. By the convergence (4.2) and strong regularity
(4.3) for sufficiently small ¢ the set E%(¢) cannot be a singleton nor a line for t € [0,7]. In
the case (a) Theorem 5 yields T/ > T'. Assume that 7/ < T. Then by Lemma 3 9(E*(T}))



must self-interest and satisfies conditions of admissible crystals except embededness; de-
generate pinch does not occur. This does not happen in the case (b) by Proposition 6.
In the case (c) by (4.2) and n-simplicity of d(E°(t)) on [0,T], we see for small £ > 0
O(E*(T})) is 6-simple for small 6 > 0, which yields a contradiction. We thus have T > T.
(ii) Since Ef = E¢(t) for t < T, this follows from (4.2). O

Remark 16. (i) In [12, Corollary 8.3] a more general interfacial energy -, is considered
in Theorem 13. For example 7 is allowed to be some non C' function in Theorem 13 and
also in Main Theorem. For gy € A there is g, € DS, satisfying (i)-(iii) of Lemma 15 and
ge(=p, =) = —g.(p, A) if g has such a property. Thus, if we consider a crystalline flow
of V = g.(n, A, (n)) instead of (4.5) we need not assume go € D7 nor go € D,, to get
convergence results in the Main Theorem.

(ii) Our main theorem includes the convergence result of [25] for V = & as a very special
case of (b). In their situation E(t)\ D(t) is a smooth solution until it shrinks to a point
at t = Tp. So strong regularity (4.3) is automatically fulfilled.

(iii) If Ep \ Dy is a C'-curve, it is not difficult to construct a sequence E§ = D§ such
that S§ = E§\ D§ is an admissible crystal with respect to v, and that dg(E§, Eg) — 0 as
e —0.

(iv) The convergence of normals or curvature of S§ is not known although such a result
is available for graph-like solutions [11].

(v) (Approximation of extinction time) If E? is strongly regular for every T' < Ty, where
Ty is the extinction time of E°, then T! — Tj provided that one of (a), (b) holds. Here
T! is the maximal time of existence of a crystalline flow of (I;) with initial data S§. This
follows from Theorem 13 (ii), Theorem 5 and Proposition 6. Note that we need to prove
that 9(E*(t)) agrees with crystalline flow up to ¢ = T} although it is not difficult.
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