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Abstract. Two dimensional commutative Banach algebra B with a unit has a
simple form : a + bB for some fixed B in B and for a,b in C. When B is an operator
algebra on a Hilbert space, we show that the norm on B is explicitly determined and then
B is a Q-algebra. Moreover, we describe completely two dimensional @)-algebras with

their norms.



§1. Introduction

Let B be a two dimensional commutative Banach algebra with a unit 7. Hence
B = {al+bB; a,b € C}. The following proposition shows that we can choose good ones
as B in B.

Proposition 1. Suppose B = {al + bB ; a,b € C} is a commutative Banach
algebra. Then B? = al+ B for some o, 8 € C. If 3?+4a # 0 then B = {al+bB, ; a,b €
C} where By =1. If f* + 40 =0 then B = {al + bBy ; a,b € C} where B? = 0.

Proof. Suppose B* = al + 8B. If 8% + 4o # 0, put By = agl + byB where

i) 2
= ——=——— and by = ———
o N/ E Y ane %o VB + 4a’

then BZ = (al + ab?)I + (2a0bo + b28)B = I. If 52 + 4a = 0, put By = aol + by B where
ag = —5 and bo = 1,

then B = (a2 + ab2)I + (2a0bo + b33)B = 0.

In Proposition 1, if 32 + 4« # 0 then B = {aP +bQ ; a,b € C} where P+ Q =
I, PP=Pand Q*=Q. Infact P = (I + By)/2 and Q = (I — By)/2.

Two dimensional semi-simple Banach algebras have been studied by Drury [3],
and Cole, Lewis and Wermer [2].

In Section 2, when B is an operator algebra on a Hilbert space H, the norm of
al + BB, is given explicitly using «,f and ||By||. When B2 = I, this is a theorem of
Feldman, Krupnik and Markus [4]. In Section 3, as a result in Section 2 we give a formula
for a norm on two dimensional Q-algebra using a part metric and a norm of a bounded
point derivation. In Section 4, we consider the algebras C? under a few multiplication.

§2. Norm of ol + B

In this section, assuming that B2 = I or B% = 0 we give explicit formulae for
norms of ol + B using «, § and || B||. (1) of Theorem 1 is a theorem of Feldman, Krupnik
and Marcus [4] and (2) of Theorem 1 can be proved by [4]. We give elementary proofs of
them.

Theorem 1. Let B be a bounded linear operator on a Hilbert space H.



(1) If B2 = I and B is not a scalor multiple of I then

2 | _ 2

ol + BB = W (121 - ”}9”) (et fltlemdl)
8f 1 o+ 81— lo— B\
+ Jg <||B||-”B”> +( - )

(2) If B2 =0 then

2

8 |
IIaI+ﬂBII=\H§ IBIE + laf? + |11\

Proof. (1) Set P = (I-B)/2and Q = ([+B)/2then P+Q =1, P =P, PQ =0
and al + B = (a+ )P+ (a— B)Q = aP + bQ. Put H; = PH and H; = QH then

L C 0 —C
Pz(o 0>’mdQ=(o b)

on H = H; ® H, where I; is an identity operator on H; (j = 1,2) and C is a bounded
linear operator from H, to H;. Hence

_( aly (a—0)C
aI-{-ﬂB—( 0 bI, )

Suppose |jal + BB|| =+, then
aly 0 aly (a—0)C\ _ »
(@a—b)C* bl 0 bl =7

(" ~ aP) (b~ |al*)C -
(ab— |a[)C* (2~ )L~ la — bCC ) 27

and hence

Hence

(V" = [a)IIfII* + 2Re(@b — |a|*)(Cg, £) + (v* — [6]*)]lg]|* — |a = b*[|Cg]|* = 0

for any f @ g € H, ® H; where (, ) denotes the inner product on H. Therefore it is easy
to see that

(v = a2 |7* = (1B + |a — bIZHH ‘(ﬁﬂ ) > jab — lal*| - [{Cg, AI/IIFN - gl



Taking the supremum over f and g with ||f]| < 1 and ||g|| < 1, we get that
(7" = 1al) 2 [y* — (1B + |a — B[ CIP)Y* > &b — af?| - |||

and hence
7* = (laf* + |8 + |a — B C||*)¥* + |al?[]? > .
Since 7* > max(|al?, |6]%) > |ab],

1
v 2 S{(lal® + B + |a - bl*|CI)

+ /(af? + B2 + |a — b2[|C]12)2 — 4af2[p]2}.

Since \/t + 1/t — |a|?[b]? = \/t +2|ab| n \/t —2|ab|’

leP+5Q| = «

J

Conversely if

2
a—b a

la| + [8]\* —b/* la| — [5]\*
+( 5 X\l + 5 .
a

[ o ()

then (72 — [af?)/2{y? = (|b]2 + |a — b]2) - |CIP)!/2 = [ab — [af?| [|C]| and hence

v

a— bl

(4 = laf )1/2[ (b + - |2”,f~‘|’|'l )] > lab— lal?|-1(Ca, A / IF11- Nl

By the first half of the proof, this implies that ||aP + bQ)]|| < 7. Thus

2

jeoye + (2L

ot Bl—la—p]\’
el + (L2t 2ole= Ay

Asa=0and =1, |[|B|| =+/IIC||* + 1 + ||C]| and hence ||C|| = (|| B||> — 1)/2|| B||. This
implies (1).

e

+

-

(2) Put H; = BH and H; = H & H; then

B:(g g) on H=H, ¢ H,



where C is a bounded linear operator from H; to H;. Hence

_ aI1 ﬂC
“HﬂB“( 0 a12>

where I; is an identity operator on H; (j = 1,2). Suppose ||al + 8B|| = v, then
5_1.[1 0 OlIl [30 2
( ,BC* C_¥I2 ) ( 0 O[Iz S 7

( (v = o) —afC ) >0
—afC* {7y = (IBPC*C+ )}z ) =

and hence

Hence
(7" = le)IfII* — 2ReaB(Cy, f) + (+* = lel))llgl* = 1B Cy|l* = 0
for any f @ g € Hy @ H?. Therefore it is easy to see that

ICyg]|?
llg]I?

l{Cyg, f)
[Fall2

1/2
(7% = |a)V? {(72 ~ o) - 18" ] > Jaf]

and so
(v = le)(7* = lef* = |BPICI) = [aB||C*.

Then v* > |af? + |B?||C||* because 4* > |af?. Since v* — (2]ef* + |BP*|C}*)7* + |af* 2 0
and 7* 2 o] + |8 C,

1
7 2 5 {(@laP + 1BPICIE) + /2lal + IBRICI?)? - 4lal

B
”2“5

ol + BB| = \]

and hence

2

1+ el + |2 101

As in the proof of (1),

8

’ B
2 2 L
2| et + 1ot + 5]

and so || B|| = ||C||. This implies (2).



§3. Two dimensional ()-algebra

Let A be a uniform algebra and J a closed ideal of A. The quotient algebra A/J
is called a @)-algebra. It is known that if A/J is of two dimension then J has one of the
following two forms :

J={feA; f(z) = f(y) =0}

where z and y are two points in the maximal ideal space M(A) of A, or

J={f€A; f(z) =6(f) =0}

where € M(A) and § is a bounded point derivation at x, that is , § is a bounded linear
functional on A such that 6(fg) = f(2)é(g) + g(z)8(f) for f,g € A. Put

o(z,y) = oa(z,y) = sup{|f(¥)| ; f € A, f(z) =0, ||flle <1}

and

w(e,8) = wa(z,6) = sup{|8(f)| ; f € A, f(z)=0, [ fllw < 1}.

- In Corollary 2, if the Hilbert space is of two dimensional and B is a semi-simple
then it was proved by Drury [3] (see [2]).

Lemma. Let z,y be two points in M(A) and § a bounded point derivation at x.

(1) Suppose J = {f € A; f(z) = f(y) = 0}. If fu(z) = 1 and fi(y) = 0, then
I+ Jl|l =1/o(=,y). .

(2) Suppose J = {f € A; f(z) = 6(f) = 0}. If fo(z) = 0 and §(f,) = 1, then
Ifo+ Il = 1/w(z, 8).

Proof. (1) (¢f1)(y) = 0 and (¢ f1)(z) = o where 0 = o(z,y). By the definition of
o=o(z,y)

There exists {g,} in A with ||g,||cc = 1 such that

lofulleo > 1 and Jlofy + J] > 1.

gn(y) =0 and o — 1 <gu(z) <o
n

forn=1,2,---. Put f, = g,/gs(z) then

Lo s —— <1
4 |gn(w)| iy

1 1
Then f,(z) =1, fo(y) =0and f, € fi+J. Hence ||fi+J]| < == andso |ofi+J]| < 1.
Thus ||o fi + J|| = 1. (2) follows from the same argument to (1)



Theorem 2. Let z,y be two points in M(A) and 6 a bounded point derivation
at .

(1) I J={f € A; f(a) = f(y) = 0} then
f@) ~ fG)[" (&-1)+ (If(w)l + If(y)l)2

o? 2

If+JI = \

o[ F (1), (e i)

where o = o(z,y).

() If J={f e A; f(z)=6(f) =0} then

I+ 1= |12

1 )
=+ |f(z)? + l—z—

where w = w(z, ).

Proof. By a theorem of Cole [2], A/J is isometrically isomorphic to an algebra
of bounded operators on a Hilbert space H. Hence there exists a unital homomorphism
from A to L(H) such that ||®(f)| = ||f+ J|| for all f € A, where ||f + J|| is the quotient
norm of the coset f + J of f in A/J. Then J = ker ®.

(1) By [5, Lemma 1],

[ f@h (f@) - fw)C
q’(f)‘( 0 [TO1 )

on H = H, @ H, for all f € A, where I; is an identity operator on H; (j =1,2) and C is
a bounded linear operator from H; to H;. Then

(f) = f(=)I + f(y)B
where I = I, @ I;, B> =1 and
o= %),

By (1) of Theorem 1, we can give the norm of ®(f) usmg f(z), f(y) and || B||. Suppose
f1 and f; in A such that fi(z) = fa(y) =1 and fi(y) = fa(z) = 0. Then

o= (1 §) o= (g 7).

By Lemma, ||(f)ll = |Ifs + JI| = 1/o(z,y). Since |C|I* = [|@(f)||* — 1 and ||B|| =
VICIIZ+ 1+ ||C|l, (1) of Theorem 1 implies (1).



(2) By [5, Lemma 1],

on H = H, @ H, for all f € A. Then

o(f) = f(=)I + &(f)B

i-(£ ).

and so ||B|| = [§(/)IC||- By (2) of Theorem 1, we can give the norm of ®(f) using
f(z), 6(f) and ||B||. Suppose fo in A such that fy(z) = 0 and §(fy) = 1. Then

<I>(fo>V=(8 f)’)

By Lemma, |[®(fo)l| = ||fo + J|| = 1/w(=, §) and so (2) of Theorem 1 implies (2).

where B? = 0 and

Corollary 1. Let A be an arbitrary uniform algebra and J a closed ideal of A.
Ifdim A/J = 2 then A/J is isometrically isomorphic to A/J where A is the disc algebra
and J is a closed ideal of A ‘

Proof. By the remark above Lemma, if dimA/J =2 then J = {f € A; f(z) =
fly) =0} or J={f € A; f(z) =6(f)=0}. There exist two points 2z’ and ' in M(A)
and a bounded point derivation § at z’ such that

oa(z,y) = oa(z’,y’) and wa(z, §) = wa(a’,§).

Put J = {f € A; f(a) = f(y') = 0} or T = {f € A; f(a') = §(f) = 0}. Then by
Theorem 2 A/J is isometrically isomorphic to A/1.

Corollary 2. If a two dimensional commutative Banach algebra B with a unit
is an operator algebra on a Hilbert space then B is a Q)-algebra.

Proof. By Proposition 1 B = {af + 8B ; o, € C} with B2 = [ or B? = 0. By
Theorems 1 and 2, B is a @Q-algebra.



§4. Q-algebra C?
‘C?is an algebra under coordinate-wise multiplication and if ||(«, 8)|| = max(|a/,|3])

then C? is a Q-algebra. In this section we consider the converse. For elements (o, 8) and
(o, B') in C?, we introduce the following three kinds of product.

(1) (o, B)o(d, B') = (ad, BB'),

(2) (e, B)o(o, B') = (ac + BB, Bo’ + ),

(3) (e, B) x (o, ') = (e, B’ + aff').

Theorem 3. Let C? be an aigebm under one of the three kinds of products o, e

and X.
(1) {C?, (e, B)||} is a Q-algebra under a product {o} if and only if for some

constant p > 0
2 2 5
(e Bl = J’ﬁgﬁ o (lel12l) +\' w8y (L1 w|>

(2) {C? (e, B)|l} is @ Q-algebra under a product {e}if and only if for some
constant p > 0 :

n(a,ﬂ)n=lezm('““"; ""ﬂ’) +J,ﬂ,2p2+(la+m;|a—m) |

(8) {C?%, |l(e,B)||} is a Q-algebra under a product {x} if and only if for some
constant 'piO

2

(a8l = g

2 2 4
+ || ‘2 ' p-
Proof. (1) Suppose

s = “;ﬁzpu('a"‘;’ﬁ')ﬂ\' "o (5B

for some p > 0. Then (1,0) o (1,0) = (1,0), (0,1) o (0,1) = (0,1),(1,0) + (0,1) = (1,1)
and ||(1,0)|| = ]|(0,1)]| = +/p*+ 1. If P and @ are projections on a Hilbert space with
P+Q = I,and ||P|| = ||Q|| = V/p? + 1, then {C?, o, ||(e, B)||} is isometrically isomorphic
to {aP + BQ ; a,8 € C}. By Theorems 1 and 2 {C?, o, (e, DI} is a Q-algebra.
Conversely if {C?, |[(e, B)||} is a @-algebra under a product {o}, by a theorem of Cole [2]
it is isometrically isomorphic to {aP + 8Q ; «,8 € C} where P and @ are projections

'ﬁ

a—p
2




on a Hilbert space, and P 4+ @ = I. Theorem 1 determines the norm ||(e, 8)||. (2) and (3)
are can be shown similarly to (1).
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