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DYNAMIC MODELS OF ASSET PRICES WITH LONG MEMORY

V. ANH AND A. INOUE

ABSTRACT. This paper introduces a class of AR(o0)-type models for mean-square
continuous processes with stationary increments. The models allow for short- or
long-memory dynamics in the processes. Their solutions are shown to have a
semimartingale representation. The models are used to describe the dynamics of
asset prices, which reduce to the traditional Black-Scholes model as a special case.
It is shown that there exists an equivalent martingale measure under which the
behaviour of the discounted price process is equal to that in the Black-Scholes
environment. As a result, the European option price is given by the Black-Scholes
formula. The variance of the log price ratio is also obtained.

1. INTRODUCTION

We consider a risky asset with price S(¢) at time t. We suppose that S(t) is of the
form

(1.1) S(t) = S(0)exp Z(t) (t > 0),

where S(0) is a positive constant and (Z(t) : t € R) is a zero-mean, mean-square
continuous process with stationary increments such that Z (0) = 0. Let o € (0,0),
m € R, and (W (t) : t € R) be a one-dimensional standard Brownian motion such that
W(0) =0. If Z(¢) is of the form

(1.2) Z(t) = mt + oW (1),

then this is the Black—Scholes stock price model. In this case, the dynamics of (Z(t))
is described by the equation

(1.3) %(t)—m:a%(t).

In order to allow for long memory (Beran [2|, Anh and Heyde [1]) in the dynamics
of Z(t), attempts have been made to replace Brownian motion W (¢) by fractional
Brownian motion Wg(t) in (1.2) with Hurst index 1/2 < H < 1 (Lin [13], Cutland et
al. [4], Comte and Renault [5, 6], Willinger et al. [18]). However this approach is not
entirely satisfactory since fractional Brownian motion is not a semimartingale (Liptser
and Shiryayev [14], Lin [13], Rogers [16]), and as a result, the market is not arbitrage
free (Cutland et al. [4], Rogers {16]).
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In this paper, we consider a stock price model in which the process (Z(t)) is deter-
mined by the equation

(1.4) m [ rte= 9 { L) - mias oS,

where dZ/dt and dW/ dt are the derivatives of Z (¢) and W (¢) respectively in the
random distribution sense (to be defined in § 4). Here, in general, for a Borel measure
p on (0, 00) such that [°(s+ 1) 'u(ds) < oo, we write

(1.5) k#(t) = I(()’OO)(t) /Ooo —ts (ds) (t c R)

The integral on the right-hand side of (1.4) has the effect of incorporating memory
into the dynamics of the process, and the constant m corresponds to the trend. The
simplest case u =0 or k,(-) = 0 gives the Black-Scholes model (1.3). The assumption

that S (0) is a constant implies that we model the risky asset under the setting that
we know its price at ¢t = 0.

We use the following two kinds of assumptions on u:
 is a (possibly zero) finite Borel measure on (0, o)
such that [ s™!u(ds) < 1

u is a finite Borel measure on (0, oo) satisfying
JoT s tu(ds) =1, [J° s ?u(ds) = oo, and (L1).

with condition (L1) in (L) being given later in §5. Examples of p satisfying (S) or (L)
are given in Examples 6.9, 6.5 and 5.4.

For p satisfying (L) or (S), we show that the solution (Z(t)) (in a proper sense) to
the equation (1.4) is of the form

(1.6) Zty=mt+o /t U,(s)ds +oW (1),

where (U, (t) : t € R) is a stationary process of the form

(1.7) U,,(t):/ ko (t — s)dW (s)

— 0

with some finite Borel measure v on (0, c0) such that

/ / 31+32 v(dsy)v(dsy) = / k,(t)2dt < oo

(Theorems 5.1 and 6.1). We write v, () for the autocovariance function of (U, (¢)):
() = E[U, 1)U, (0)] (teR).
Then, by simple calculation, we have

(1.8) /OOO w(t)dt = % {/Om éy(ds)}z .

Hence if [;° s 'v(ds) < oo, then (U,(t)) is a short-memory process in the sense that
I~ v (t)dt < oo, while if fo ly(ds) = oo, then (U, (t)) is a long-memory process in
the sense that fo 7, (t)dt = oo (see [10] and the references cited there). We show that

(U,(t)) is a short-memory process under (S) (Theorem 6.1), while it is a long-memory
process under (L) (Theorem 5.1). We determine the asymptotics for k,(t) and ~, (),
as t — 00, in some typical cases (Theorems 5.3, 6.4, and 6.8).
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The representation (1.6) with (1.7) implies that (Z,), hence (S;), is a semimartingale.
In §7, using Girsanov’s theorem, we show that there exists an equivalent martingale
measure P* under which the behavior of the discounted price process (e "S(t) : 0 <
t < oo) with 7 > 0 is equal to that in the Black-Scholes environment with volatility
o. In particular, the European option price is given by the Black-Scholes formula, and
the constant o serves as the implied volatility.

If (S(t)) follows the Black-Scholes model (1.2), then the variance of log(S(t)/S(s))
with ¢ > s > 0 is given by (¢t — s)o?, and so ¢ is also the historical volatility. Of course
this is not so unless the model is Black-Scholes. For the stock price process (S(t)) in

our model, we investigate the variance of log(S(t)/S(s)), in particular, its asymptotic
behavior as ¢t — s — o0, in §7.

2. CORRESPONDENCE BETWEEN TWO MEASURES (1)

In this and next sections, we consider correspondences between two measures p and
v on (0, 00) through the relation

(2.1) {1+/0°°S_12,Zu(ds)}{1—/0003_1”“@5)}1 (G2 > 0).

This kind of results is needed in studying the correspondence between the forms (1.4)
and (1.6).

Lemma 2.1. Let n € N. Let u be a Borel measure on (0,00) of the form

(2.2) p=> b,
k=1
with
(2.3) ar € (0,00) (k=1,2,...,n),
(2.4) 0<r <rg <o - <y < 00,
1
(2.5) / Las) < 1.
0 S

Then there exists a Borel measure v on (0,00) of the form

(2.6) v=> bedp,
k=1

(2.7) b € (0,00) (k=1,2,...,n),
(2.8) 0<pi <71 <pr<Ty < <Pp<Tp,
satisfying (2.1).

Proof. For w =iz, we have

{1—/000 S_leds)}_l-l: /Ooo s_lwu(ds>} {1—/000 wau(ds)}_l




where f(w) is a polynomial in w, of degree n, given by

n

flw) = H(rk —w) — Zak H (rm — w).

k=1 k=1 m#k
Now we have

and
sgn f(rk):(_l)k (k:1,27’n)
Therefore there exist positive numbers pr (k= 1,2, ..., n) satisfying (2.8) and

Fw) = T]pe —w).
k=1
JFrom f(p,) =0, it follows that

Zak H(Tm_Pl) =

k=1  msk k

s

(ri—p)  (1=1,2,...,n).

1
So, in the partial fraction decomposition

n

Fa) S e [ tre—w) = 3 —2

—w
k=1  mshk -1 P

the coefficients b, are given by

_ 22:1 Ak Hm;ék(rm —p1) _ szl(rk — 1)
[xlpr —p1) [Teoi(Pr — 1)

With these p; and b;, the measure v defined by (2.6) gives the desired measure. d

by

>0 (1=1,2,...,n).

Conversely, we have the following lemma.

Lemma 2.2. Let n € N. Let v be a Borel measure on (0,00) of the form (2.6) with
(2.7) and

0<pr<pr < < pp <00.
Then there exists a Borel measure p on (0,00) satisfying (2.1)—(2.3), (2.5), and (2.8).

Proof. For w = iz, we have

1+{1+/0ms_lwy(ds)}1 /OOOS_lwy(ds)}{w/owS_lwy(ds)}fl

= g(w) "> b [ (pm — w),

k=1 m#k
where g(w) is a polynomial in w, of degree n, given by
g(w) == [[(ox —w) + > bx [ (pm — w).
k=1 k=1 m#k
4



Since

o) = (<1 4 -
sen glpe) = (-1)*1 (k=1,2,...,n),

there exist positive numbers ri (k= 1,2,...,n) satisfying (2.8) and

g(w) = [ ri = w).

k=1

iFrom g(r;) = 0, it follows that

Zak H(Pm‘rl):—H(pk—Tz) (I=1,2,...,n).
k=1

k=1  m#k

Therefore, in the partial fraction decomposition

n

gw) 3 b [ (o —w) = 3 —,

Tl w
k=1 m#k =1

the coefficients a; are given by

_ b1 b [npn (P = 70) _ _HZ=1(Pk ) -
Hk;ﬁl(rk — 1) Hk;ﬁl(rk — 1)

With these r; and a;, we define the measure p by (2.2). Then

1—/()ws‘1u(ds)A{1+lim s l/(ds)}—l

yi0Jo s+uy

= {1 +/OOO %u(ds)}_l > 0.

Thus p satisfies (2.5). U

aj

0 (I=1,2,...,n).

(2.9)

We call a Borel measure p on (0, o) simple if it is of the form (2.2), for some n € N,
with (2.3) and (2.4). We define

M i is a (possibly zero) simple measure on (0, co)
1" such that [ s u(ds) < 1 ’

N = {v :visa (possibly zero) simple measure on (0, c0)}.
Definition 2.3. We define the one-to-one and onto map
Os : Mg D p— v =0s(p) € Ng
by (2.1).

Example 2.4. Let p = aé, with 0 < a <r. Then fooo s tu(ds) < 1, and so p € Ms.
Since

1 - a
{1—/ M(ds)} —l=—
g S—w r—a—w

we have Os(pu) = ab,_,.




3. CORRESPONDENCE BETWEEN TWO MEASURES (2)

In the proofs of this and next sections, we regard Borel measures 5 on {0, 00) as
Borel measures on [0, oo} by {0} = n{cc} = 0 if necessary.
We define

M p is a (possibly zero) Borel measure on (0, oo)
0 " such that [ s tu(ds) <1 ’

N v is a (possibly zero) Borel measure on (0, 0o)
"7 1Y such that I s v(ds) < o0 '

First we consider the correspondence between u in Mg and v in Ay through the relation
(2.1).

Theorem 3.1. For u € My, there exists a unique v € Ny satisfying (2.1). Conversely,
for v € Ny, there exists a unique p € My satisfying (2.1).

Proof. (I) Let p € My. We define the finite Borel measure fi on [0, oo by
(ds) = 5~ (0 o) ()pe(ds).

Take a sequence of simple measures u, (n = 1,2,...) such that s~!u, (ds) converges
weakly to i on [0, oo]. Since

0. 00] = [T s () < 1.

we may assume that [ s u,(ds) < 1 for n = 1,2,.... We put vy, = 05(u,) and
Up(ds) := s~ v, (ds). Then we have, for n =1,2,. ..,

(3.1) {1+/O°° S_Sz,zﬁn(ds)} {1_/000 S_Siz;ln(ds)} =1 (Sz>0).

Letting y | 0 in (3.1) with z = iy, we see that

1in 0,
sup ¥, [0, co] = sup fin}0, o< < o0

n 1 — fin]0, 00]

Therefore, by the Helly selection principle, we can find a subsequence n’ such that o,
converges weakly to 7, say, on [0, oo]. It follows that

{1+17{oo}+/000 S_lizz/(ds)} {1—/000 S_lizp(ds)} —1 (Sz>0),

where v is the measure on (0, co) defined by
v(ds) = I,00)(8)s0(ds).

Letting y T oo in this with z = iy, we see that 1 +7{oo} = 1 or #{cc} = 0. This proves
the first half of the theorem.

(IT) Let v € M. We define the finite Borel measure & on [0, oo] by
U(ds) = s (g 00)(s)v(ds).

Take a sequence of simple measures v, (n = 1,2,...) such that s71v,(ds) converges
weakly to 7 on [0, 0o]. We put p, = 07 (1,) and fi,(ds) := s~ p,(ds). Then we have
(3.1) for n =1,2,.... Letting y | 0 in (3.1) with z = 1y, we see that

- n |0, 00
sup fin [0, 0o] = sup #fg[()—%ﬂ < 0.
6



Therefore, again by the Helly selection principle, we can find a subsequence n’ such
that fi, converges weakly to [, say, on [0, oo]. It follows that

{H/Ooo S_lizv(ds>}{1—ﬁ{oo}—/omSfizu(ds)} —1 (32>0),

where p is the measure on (0, 0o) defined by

plds) = I 00y (s)sit(ds).
Letting y 1 oo in this with z = 1y, we see that 1 — i{oc} = 1 or i{oo} = 0. Finally, by

the same argument as (2.9), it follows that f;o s~ 1u(ds) < 1. This proves the second
half of the theorem:. O

Definition 3.2. We define the one-to-one and onto map
Oo: Mo > p— v =>0(u) €Ny
by (2.1).
We define

M w is a Borel measure on (0, 0o) such that
1= 3H" poo _ oo _ )
S s u(ds) = 1, [ s 2u(ds) = oo

N v is a Borel measure on (0, cc) such that
S [ s+ 1) w(ds) < oo, [i7 s w(ds) = o0

Next we consider the correspondence between u in M; and v in N through the relation
(2.1).

Theorem 3.3. For u € My, there exists a unique v € N satisfying (2.1). Conversely,
for v € N1, there exists a unique p € My satisfying (2.1).

Proof. (1) Let € M. Set m :=inf{s: s € supp(p)}. If m =0, then
/ s 2u(ds) < m“l/ s u(ds) < oo,
0 [m,00)

contradicting the condition f;o 572u(ds) = 0o. Thus m = 0. Therefore there exists an
N € N, such that, for pn(ds) 1= I(1/n,00)(s)p(ds),

/ s un(ds) < / s 'u(ds) =1 (n>N),
0 0
whence u, € Mg for n > N. We define v, := 0p{pun) € No. Then, as n — oo,
oo gl “Ln(d (1 “lu(d
[ patas = pe LAl o D1 M) g, e
0 s+1 L= [ (4 8) tun(ds) 1= [ (1+s) tu(ds)
so that

> 1
su vn(ds) < oc.
p/o 1+ s (ds)

n

Therefore, for iy (ds) := (s 4 1)"'1(g.00)(s)¥n(ds), there exists a subsequence n’ such
that 7,s converges weakly to a finite Borel measure 77, say, on [0, oo, It follows that,
for &z > 0,

I R OO e Co) S (R e (Ol B

where v is the measure on (0, o0) defined by v(ds) 1= (1 4 )10, 00)(s)7(ds).
7




Letting y T oo in (3.2) with z = iy, we have #{co} = 0. From [~ s u(ds) = 1, it

follows that o 1 - .
1—/ ds :y/ w(ds),
Jo s+yu( ) o s(sty) (ds)

hence
foroors [7 @) [ e =1 o)
and so
“ o0~ { [ s(siw“(ds)}l -0
Finally,

[ - { [ e} {1- [T e}

Thus v is the desired element of .
(II) Conversely, for v € N7, define v,(ds) = I(l/nm)(s)z/(ds) (n=1,2,...). Then
vn, € No. We put iy, == 951(1/”) € Mg forn=1,2,.... Then, as n — o0,

/oo 1 i (ds) — fo (1+s8)~ l/n(ds) . fo (1+s)” (ds)
o s+17" L+ [5(1+ s) tun(ds) 1+ fi(1+ ) 1v(ds)

S (:’::)7
hence

Sup ] ,un d Q.

n / ( S) <

Therefore, for fin(ds) == (s + 1) 10,00y (s ),un(ds), there exists a subsequence n’ such
that fi,s converges weakly to a finite Borel measure fi, say, on [0, oo]. It follows that,
for &z > 0,

(3.3) {1+/Oms_1m (d)}{1+ﬂ{0} Ai{oo} — / — ds)}L

where p is the measure on (0, 0o) defined by u(ds) := (1 + s)I(0,00)(s)f(ds).
Letting y T oo in (3.3) with z = 4y, we have i{oo} = 0. Moreover, letting y | 0 in

_ © 1 o o Als/y) +1) T wds)
M{O}+/ (s/y) + ,u(d ) 1+ [ {(s/y) + 1} Yu(ds)’
—1

v(ds) = oo, we have

-1
1-— —u(ds) = lim 1+/ l/ds} = 0.
[ buta =i {1s [T vt

In particular, this implies

o0 1 N oo y
1—/0 s+yu(d5)—/0 hwas)

—1
1 o 1
[ s =l [T dran} <o
Thus u is the desired element of M. O

we get i{0} = 0. Since [;° s

and so

Definition 3.4. We define the one-to-one and onto map
0 M1 pu—v==0(ueM
by (2.1).



Lemma 3.5. For u € My (resp. p € My ), we setv = 8p(u) € Ny (resp. v = 61(p) €
Ni). Then u(0,00) = v(0, 00). In particular, (0, 00) < oo if and only if v (0, 00) < 0.

Proof. 1t follows from (2.1) that

oo B d
v(0,00) = lim Y y(ds) = lim Js oyo/(y tolulds) p(0, 00).
yloo Jg Y+ s yloo 1 — [;7 1/(y + s)p(ds)
Thus the lemma follows. O

4. STATIONARY RANDOM DISTRIBUTIONS

We recall some notation in the theory of stationary random distributions (cf. [11]
and [10]). We denote by H the Hilbert space of C-valued random variables, defined
on a probability space (2, F, P), with expectation zero and finite variance:

H:={a€ L}, F,P): E[d) =0},
(¢,0) == E [ab], llallu = (a,@)}*  (a,be H).

By D(R), we denote the space of all ¢ € C°°(R) with compact support, endowed
with the usual topology. A random distribution (with expectation zero) is a linear
continuous map from D(R) to H. We write D'(H) for the class of random distributions
on (0, F, P). For X € D'(H), we define DX € D'(H) by DX (¢) := —X(d¢/dz). We
call DX the derivative of X. For X € D'(H) and t € R, we write M{X) (resp. M;(X))
for the closed linear hull of {X(¢) : ¢ € D(R)} (resp. {X(¢) : ¢ € D(R), supp ¢ C
(—o0,t]}) in H. For X,Y € D'(H), we define Py X € D/'(H) by Py X(¢) = py (X(¢)),
where py is the orthogonal projection operator from H onto M(Y). It holds that
PyDX = DPy X for X,Y € D/(H). Two random distributions X and Y are said to

be stationarily correlated if

(X(mhe), Y(m¥))y = (X(8),Y(¥))ua  (¢,¢¥ € D(R), heR),

where 7y, is the shift operator defined by 7,¢(t) :== ¢(t + h).
A random distribution X is called stationary if

(X (@), X(mn¥))m = (X(0), X(¥))r (¥ € D(R), h €R).

We write S for the class of stationary random distributions on (2, F, P). For X,Y € S,
the random distribution Py X is also stationary if X and Y are stationarily correlated
(see {10, Theorem 2.1]). For X € S, we write ux for the spectral measure of X:

(X(¢), X(¥))u = /jo HOD(Epx(dE) (4,4 € DR)),

where ¢ is the Fourier transform of ¢: ¢(¢) = [ e p(€)dE. For k € N U {0}, we
define

Sy = {X €S: /0o (1+ &) Fux(de) < oo} .

o>

Then S C 81 C Sy C -+ and S = U Sy (see [11, Theorem 3.2]). The class Sp can be
naturally identified with that of mean-square continuous weakly stationary processes
with zero expectation ([11, Theorem 4.2]). Any stationary random distribution X has
the spectral representation of the form

x(@) - [ T HO)2xde) (6 DR)),
9



where Zx is the associated random measure. It holds that

w0~ { [ a1zt s € L?W)}.

We say that X in S is purely nondeterministic if Nger M;(X) = {0},

For k € L'(R, dt) and X € S, we wish to define the convolution kS € S. Formally
we have

/: (/Z k(u)X (t — u)du> o(t)dt = /oo k() </: X(t)(t +u)dt) du

= b k(u)X (1, ¢)du.
With this in mind, we define kx X € S by
(he X)) = [ )X (rdldu (o€ D)),

where the integral on the right-hand side is in the sense of H-valued Bochner integral.
We set

M = {p: pis a Borel measure on (0,0) such that [;°(1 + s)"!p(ds) < oo} .
For p € M, we define

Fo(z):= /000 ! plds) (Sz > 0).
Recall k,(t) from (1.5). We have
(4.1) p(0,00) = ky(0+),

(12) [ = [T ka
(4.3) /Om S_Qp(ds):/:o dt/too kp(w)du.

As in [10, Proposition 2.3], we have the following proposition.

Proposition 4.1. Let k€ LY(R, dt) and X € S. Then

(heX)0)~ [ -03(©2x(de)  (6€ D).
In particular, for p € M such that fooo s u(ds) < oo, we have
(ki + X) () = [ T RA©4©Zx(dg) (6 € DRY).

Notice that k, * X can be written formally as
t
kux X(t) = / ku(t — s)X(s)ds.

Proposition 4.2. Let X € S, and let p € M such that fooo s 1p(ds) < oco. Then X
is stationarily correlated with X — k, * X.

Proof. By Proposition 4.1, we have

(X =k X)@) = [ 11~ O} BO2x(a2).

The lemma follows from this. O
10



Proposition 4.3. Let X € S.

(1) For pe My, X satisfies X =k, x X if and only if X = 0.
(2) For pe My, X satisfies X =k, * X if and only if X = a for some a € H.

Proof. By Proposition 4.1, we have

|WX—@*Xﬂ@ﬁf:/w|&QPU—FM@FMﬂ%)

— 00

If u e My, then

RO} 1= [ (a2 1~ [ s utds) >0,
0o s°+¢€ 0
while if 1 € My, then

1-F.&F >0 (£#£0), =0 (£=0).

The lemma follows easily from these. il

5. LONG-MEMORY MODEL

Let 0 > 0 and let W = (W(t) : t € R) be a one-dimensional standard Brownian
motion such that W(0) = 0, defined on (2, F, P). Since W is a process with stationary
increments, the derivative DW is a stationary random distribution (see [11]). We are
concerned with the following equation

(5.1) X =k,+xX+oDW.
It should be noted that the equation (5.1) can be written formally as
(5.2) X)) = /t ku(t — ) X(s)ds + o%vg«(t).

For v € M such that
(53) /Ooo ko (6)2dt < o,
we define a real, centered, weakly stationary process (U, (t) : t € R) by
(54) U, (t) = /t k,(t — s)dW(s) (teR).

Then (U,(t)) is purely nondeterministic, and (5.4) corresponds to the so-called canon-
ical representation of (U, (t)); thus, M,(U,) = M;(DW) for t € R. On the other hand,
the spectral representation of U,,, as a stationary random distribution, is given by

(5.5) vo) - [ T R0 Zowlde) (6 DR)).

We refer to [10] for these results.
If v is a finite measure in Ay such that

(5.6) / k,(t)%dt < oo,
1
then v satisfies (5.3) since

1 1
/ k,(t)%dt < ky(0+)/ k,(t)dt < oo,
0 0

11



In this case, since [5 k,(t)dt = oo, the stationary process (U, (t)) defined by (5.4)
is long-memory. Now recall the condition (L} in §1; we define the condition (L1) for
u € Mj there by

(L1) v = f1(p) satisfies (5.6).

Theorem 5.1. Leto > 0. Let p be a measure satisfying (L), and let v := 64 (p). Then
a stationary random distribution X satisfies (5.1) if and only if X = Xg + a, where

a is an arbitrary element of M(DW)L and X is the stationary random distribution
defined by

(5.7) Xo = oU, + o DW.

In particular, Xy is the only purely nondeterministic stationary random distribution
that satisfies (5.1).

Proof. Let X be a stationary random distribution satisfying (5.1). Then, by Propo-
sition 4.2, X and DW = X — k, * X are stationarily correlated. We define X; =
X — PpwX. Then, by [10, Theorem 2.1], Xy is a stationary random distribution sat-
isfying X1 = k, * X1. So, by Proposition 4.3 (2), we see that X — Ppw X = a for some
a€ M(DW)*-.

We set Xg := PpwX. Then, again by [10, Theorem 2.1], there exists g € L?(R, (1 +
x?)~*dg), for some k € N U {0}, such that

Xolo) ~ [ " 9(©)3(E) Zow (de).

By Proposition 4.1, we have
o0

b+ Xo(6) — / F(6)9(6)$(6) Zow (de).

Since ppw (d€) = (2m)~1dg, it follows that, for ¢ € D(R),
0= || Xo(6) — ku * Xo(9) — s DW (9)II3

- % 7°° |P(E)2|{(1 — FL.(€)g(&) — o }|2dE.
This implies
ol8) = ﬁ(g_) =oF,(€) +o,

hence
Xo(4) = /_ (0F,(€) + 0}3(€) Zow (dE) = o, (§) + o DW ().

Thus X is given by (5.7). Conversely, we can easily show that X = Xy + a with (5.7)
and a € M(DW)! is a stationary random distribution that satisfies (5.1).
For z = z 4 iy with y > 0, it holds that

R{cF, = e —y(d 0.
i) oy =0t [ =t utag >
By Theorem A in the appendix, this implies

M (Xo) = M (DW) (t € R),

see, e.g., , hence M (Xg+a)= M; + Ca for a € . erefore
( [9]), h M(X ) = M,(DW) + Ca f M(DW)t. Theref:

[(YM:(Xo+a) = {ﬂMt(XO)} & Ca = {ﬂMt(DW)} & Ca = Ca.

t
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Thus Xo + a with a € M(DW)* is purely nondeterministic if and only if a =0. O
We give a sufficient condition for (L1).

Lemma 5.2. Let 0 < p < 1 and let ¢(-) be a slowly varying function at infinity. Let
p € M1 and define v € Ny by v :=01(u). Then

(5.8) ko) ~ P etyp  (t — o)
if and only if

t=(=2)  sin(pn)
4Qt) T

Proof. We prove only (5.8) = (5.9); the converse implication (5.9) = (5.8) can be
proved in the same way. Since fooo k,(t)dt = 1, we have, by integration by parts,

1- /Ooo ek, (t)dt = y./ooo et (/tm kﬂ(s)ds> dt  (y>0)

/m e Wi (1)t = —J0_ & Rult)dt Jo e Whu(t)dt
0 Y 1-— fooo e Wk,(t)dt gy fooo ety (ftoo k“(s)ds> dt’

(5.9) ko (t)

(t — o).

Hence

Now (5.8) implies
[ hutoyds e o oo),
so that o t .
v [T ([ ko) de~vei/ira —n) o)
(cf. [3, Theorem 1.7.6]). On the other hand,

lim e Wk, (t)dt = 1.
yl0 Jo
Thus
o) 1—-p
e Wk, (t)dt ~ S A— 0).
v, R gy 010
By Karamata’s Tauberian theorem ([3, Theorem 1.7.6]), this implies (5.9). O

Theorem 5.3. Let 0 < p < 1/2 and let #(-) be a slowly varying function atl infinity.
Let u be a finite measure in My satisfying (5.8). Then u satisfies (L1), whence (L).
If we put v 1= 01(u), then k,(-) satisfies (5.9), and the autocovariance function ~y,(-)
of the stationary process (U,(t)) in (5.7) satisfies

$—(1-2p)

. 2
Wy (Smg;mr)> B(1 —2p,p) (t — o0).

Proof. By Lemma 5.2, k,(-) satisfies (5.9). Thus (5.6) holds. Moreover, by [10, Propo-
sition 4.3], we have

(5.10) Yo (t) ~

o ~(1-2p) /gin(pm)\ 2
)= [Tt~ S (B B gy (- co)

Thus the theorem follows. O
13



Example 5.4. For 0 < p < 1/2, set pu(ds) :=T(p) " tsPe*ds. Then we have

b (t) = (H’ﬁ (t > 0).

Since ku(0+) < oo, [Cku(t)dt =1, [°dt [ ku(s)ds = o0, and
ku(t) ~pt= Y (= o0),
we find that p satisfies (L); take £(-) = 1 in Theorem 5.1.

6. SHORT-MEMORY MODEL

If v is a finite measure in A, then

/m k,(#)%dt < k,(0+) /Oo k,(t)dt < oo.
0 0

Thus v satisfies (5.3). In this case, since [; k,(t)dt < oo, the stationary process
(U, (t)) is short-memory.

Theorem 6.1. Let o > 0 and let p be a measure satisfying (S). Set v := 0o(p). Then
the stationary random distribution X defined by

(6.1) X =0oU, +0DW.
is the unique stationary random distribution that satisfies (5.1).

Proof. It follows from Lemma 3.5 that (0, 00) < co. Hence (5.3) holds. Let X be a
stationary random distribution satisfying (5.1). As in the proof of Theorem 5.1 but
using Proposition 4.3 (1) instead of (2), we see that X1 =0, i.e., X = PpwX. Then,
in a similar manner, we find that X is given by (6.1). O

We investigate the asymptotics for k,(t) and v, (t) as t — oo when k,(t) is regularly
varying.

Lemma 6.2. Let p € My and v := 0p(p). Let 0 < p < o0 and ¢(-) be a slowly varying
function at oo. Then

(6.2) ku(t) ~ =P e)p  (t — o)
if and only if
(6.3) ko (t) ~ t= @D g(t) P (t — o0).

{1= [ ku(u)du}?

Proof. We prove only the implication (6.2) = (6.3). The converse implication (6.3} =
(6.2) can be proved in a similar fashion. Thus we assume (6.2). We set n := [p], where
[-] denotes the integer part. We define

fly) =1- /000 e Yk, (t)dt (y > 0).

By differentiating both sides of

i 1
/ e Vik,(t)dt = — — 1 (y >0)
0 f
n + 1 times with respect to y, we obtain

o0 3 0Oyt n+1k (t)dt Fn 1(y)
vyl (14 :fo e vt I3 +
[ et Tt ORE
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where F, 1 1(y) is a polynomial in { f(*)(y) : k = 0,1,...,n} (see [8, Lemma 3.2}). Since
n+l—(p+1)=n—-p>-1and

() ~ P (t— o),
it follows that

/ e VM e, ()dt ~ y TP y)pT(n —p+ 1) (y — O+)
0

(see [3, Theorem 1.7.6]). On the other hand, for any € > 0 and 0 < k < n, we have
v [Py -0 (y—0+)
(cf. [8, Lemma 3.5]), and so

Fn+1(y)

mz—l—/—zj)-—»o (y — 04).

Thus

e —ytin o g~ P— pr(n_p+1) N
/0 I O~y G s o),

Since the function log{t" 1k, (t)} is slowly increasing ([3, §1.7.6]), Karamata’s Taube-
rian theorem (cf. [3, Theorem 1.7.6]) yields

Uk OO e g e
0 I

or (6.3), as desired. |

Remark 6.3. The condition p € Mg implies

1 —/ ky(u)du=1-— / s u(ds) > 0.
0 0

Theorem 6.4. Let 0 < p < o0 and {(-) be a slowly varying function at co. Let p be
a measure satisfying (S), and set v = Og(p). Let (U,(t) : t € R) be the stationary
process in (6.1} with autocovariance function v,(-}. Then (6.2) implies (6.3) and

pfooo ku(u)du
(1= f57 ku(u)du}®

Proof. That (6.2) implies (6.3) is a direct consequence of Lemma 6.2. Now we have
)= [kt oo~ k) ([T hoas) oo
(see [8, Lemma 3.8]). Since
/O "k (s)ds = ;Ei(—ﬂ—

— fooo ku(s)ds’
(6.4) follows. O

(6.4) W (t) ~ 1~

(t — o0).

Example 6.5. For 0 <p < oo and 0 < ¢ < 1, we put

plds) =

sPe %ds.

c
I'(p)
Then k,(t) = pc(l + )71 fort > 0. We see that u satisfies (S) and (6.2) with
{)=c.

15



We now investigate the asymptotics for k,(¢) and ~,.(t) when k,(t) decays expo-
nentially as ¢ — oo. For a finite Borel measure p on (0, o0), we define so(p) € [0, 00)
by

so{p) :=inf{s : s € supp p}.
Then it holds that

lim w = —s0(p)

t—oo

(see [15, Proposition 3.2]). This implies that k,(t) decays exponentially if and only if
So(p) > 0.

Lemma 6.6. Let p € Mo, and let v := 8y(p) € No. Then the following are equivalent:
(65) (k) > 0,
(6.6) so(v) > 0.

Proof. We prove only the implication (6.5) = (6.6). The converse (6.6) = (6.5) can be
proved in a similar fashion. Assume (6.5). Then, in part (I) of the proof of Theorem
3.1, we can choose the sequence of simple measures p,, so that supp p, C [so(u),c0)
for n = 1,2,.... Moreover, by taking u, + (1/1)ds,(4), We may (and shall) assume
that so(pn) = so(p) for n =1,2,.... Then, by (2.8), we find that the simple measures
Uy, are of the form

Uy :b(n)5p(n) + M (n: 1,2,...),

where b(n) € (0, 00), p(n) € (0, so(u)), and 7}, are simple measures such that supp 7, C
(so(p), 00). Since

f]n(so(,u)a OO) S I?n((), OO) S sup i}m(()v OO) < o0,

m

we can choose the subsequence n' there so that, for some b € [0, 00), p € [0, so{p)] and
finite Borel measure 7 on [sq(u), o], we have b(n'} — b, p(n/) — p, and 7,, — 77 weakly
on [so(p), o0]. By the arguments in the part (I) of the proof of Theorem 3.1, we find
that v := 0p(u) is of the form

{b6p+n ifp>0,
n ifp=0,
where 7 is the measure on (0, co) defined by
n(ds) 1= I[so(u),00)(8)577(ds).
Thus (6.6) follows. a
Remark 6.7. For p € Mg and v := 6g(p) € No, we can prove so(v) < so(u).

Theorem 6.8. Let i be a measure satisfying (S), and set v = 0y(u). Let (U,(t) it €
R) be the stationary process in (6.1) with autocovariance function v, (-). Ifk,(t) decays
exponentially as t — oo, then both k,(t) and ~v,(t) decay exponentially as t — co.

Proof. The exponential decay of k,(t) follows from Lemma 6.6. Now

/00 e Po(ds) (teR)
0

with




Clearly so(o) == so(v}, and so 7, (t) also decays exponentially. O

Example 6.9. Let i1 be as in Example 2.4. Clearly p satisfies (S). In this case, k,(t) =
ae™™ fort > 0 and k,(t) = ae" "9t The autocovariance function v,(t) of U, in
(6.1) is given by

a267(rfa)\t[

w(t) = az/ e raitts)g=(r—a)sge — — — (teR).
0 2(r —a)

7. RISKY ASSET MODEL

Let o € (0,00), m € R, and (W{(t) : t € R) be a one-dimensional standard Brownian
motion such that W(0) = 0, defined on (2, F, P). We consider a risky asset with price
S(t) at time ¢t. We suppose that S(t) is of the form (1.1) with

Z@t)=mt+Y(t) (t € R),
where (Y(t) : t € R) is a zero-mean, mean-square continuous process with stationary
increments such that Y(0) = 0. We also suppose that the derivative X := DY is the
(purely nondeterministic) solution to (5.1) for p satisfying (S) (resp. (L)). Then, by

Theorem 5.1 (resp. Theorem 6.1) and [11, Theorem 6.1], Z(¢) is of the form (1.6) with
v = 0y(u) (resp. v = 61(u)), whence

t
(7.1) S(t) —S(O)exp{mt—l—d/ UU(S)d8+O'W(t)} (t > 0).
0
As before, we write v, () for the autocovariance function of the stationary process
(U,@) - teR).

Let NV be the class of all P-negligible sets from F. We use the following P-augmented
filtration (Fi)e>o:

Fpo= ﬂ (G c UN) (t > 0),
e>0
where

Gy :=a{W(s): —oco < s <t} (t >0).

Then, with respect to (F;)¢>0, the Brownian motion (W{t) : ¢t > 0) is a (F;)-Brownian
motion, and the process (U,(t) : t > 0) is (F;)-adapted, as is desired here.

Suppose that we are in a market in which the riskless asset price Sy(¢) follows
So(t) = exp(rt) for t > 0, where r is a nonnegative constant. We write S(t) for the
discounted price of the risky asset: S(t) == e "*S(t). We put

m—r+%02
Q=
o

W) =W () + /t{a +U,(s)}ds (t > 0).
Then we have

(7.2) S(t) = 5(0) exp (O”W*(t) - %a%) .

Lemma 7.1. Let 0 <t < oo and 0 < § < 7, (0)"1. Then

143
exp{%/t i (a+U,,(s))2ds}} < 0.
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Proof. By Jensen’s inequality, we have

exp {%/ﬁt+5(a+ Uu(S))QdS} < %/jﬂs exp {g(a+UV(s))2} ds.

Since (U, (s)) is a stationary Gaussian process, it follows that

£ |exp {% /ttH(a - Uu<s>>2dsﬂ < %/tm B loxw { 3o+ vt} as
~ B |oxp { 3o+ 0,000}
W/ e"p{ (a+a) }‘”‘p {‘25(0)}““'
Thus the lemma follows. O

Remark 7.2. Let {t,}>°, be a sequence of real numbers with 0 =tg < --- <1, T 00,
such that t, —t,—1 <7,(0)"! forn=1,2,.... Then, by Lemma 7.1, we have

E ]:exp{%/ttn (a+U,,(s))2dsH <o (n=1,2,...).

Therefore, by [12, Corollary 5.14] and Geirsanov’s theorem (cf. {12, §3.5]), there exists a
probability measure P* | equivalent to P, under which (W*(t) : 0 <t < 00) s o standard
Brownian motion . From (7.2), we see that the behaviour of (S(t) : 0 <t < co) under
P* is equal to that in the Black-Scholes environment with volatility . In particular,
for any T > 0, the prices of European calls and puts with maturity T are given by the
Black-Scholes formulas with implied volatility o.

We now turn to the variance of log(S(t)/S(s)) for t > s > 0.
Lemma 7.3. Lett > s> 0. Then

Var{log(5(t)/.5(s))}

74) {t—s+2/ du/ dv+2/ du/ 'y,,(vdv}

Proof. We have
{W(t) - W(s)+ /: U,,(u)du}g} o?

= {(t —s)+2E [(W(t) — W(s)) du} +/ Yo (u — v)dudv}

By simple calculation, we get

t t t—s U
/ / v {u — v)dudv = 2/ du/ Yo (v)dv
5 Js 0 0

Now, for s <u <t,

Var{log($(t)/S(s))} = B




whence

E [(W(t) —W(s))/:Ul,(u)du} ‘/: /u k-,,(u—v)dudv/ots du/ou ko (0)do.

Thus the lemma follows. ]

From (7.3), we find that, in our model,
Var{log(S(t)/S(s))} > (t — s)o? (t>s2>0).

In other words, the historical volatility > the implied volatility. The equality holds
only when the model is Black-Scholes.

Now we investigate the asymptotic behavior of Var{log(S(t)/S(s))} ast — s — oc.
First we consider the short-memory case.

Proposition 7.4. We assume (S). Then

2

Var{log{S(t)/S(s))} ~ (t — s) {1 + /0°° ku(u)du} o?

(7.5) - y
(t—s){l—/ ku(u)du} a? (t — s — o).
0
Proof. The assumption (S) implies that [~ k, (t)dt < co. Now
o0 1 00 2
/ Tw(t)dt = = {/ kl,(u)du} .

0 2 {Jo

Thus (7.5) follows from (7.4). 0

Next we consider the long-memory case.

Proposition 7.5. Let0 < p < 1/2 and let £(-) be a slowly varying function at infindty.
We assume (L) and (5.8), hence (5.9). Then

(t — &)?P+1 [sin(pr)\? B(1 — 2p, p)
(7.6) Var{log(S(t)/S(s))} ~ =y ( - ) o2p 1 1) o? (t—s— o).

Proof. By Theorem 5.3, (5.9) and (5.10) hold. We then find that, among the three
terms on the right-hand side of (7.4), the first and second terms are negligible relative
to the third. Thus

Var{log(5(t)/S(s))} ~ 20? / du/ Yo (v

N( s)PPtt (Sln(p )) B(1 —2p,p) ,
ot — s)? T p(2p+1)

as t —s — 0o, hence (7.6). O

It should be noted that, in (7.6), the index of (£ —s) is 2p+1 unlike the short-memory
case (7.5).
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8. APPENDIX

If ¢ is a positive measurable function on R such that (1+t?)"!log#(t) € L1(R, dt),
and if

1 [ 14tz log¢(t)
8.1 = — — s =t & 0
(8.1) f@) e { L [ EE R (52>0)
then we call f an outer function. For completeness, we prove the following (seemingly
well-known) theorem.

Theorem A. Let f(z) be analytic and R{f(2)} > 0in {z € C: 3z > 0}. Then f is

an outer function.

Proof. Asin Duren {7, p. 189], we consider the following mappings from {z € C : 3z >
0} onto {w € C: |w| < 1} :
z—1 (14 w)

weps) =, s glw) -

1—w
Set,

gw) = flg(w))  (lw| <1).

Since R{F(w)} > 0, F is an outer function on {{w| < 1} (see, e.g., Duren {7, p. 51}).
Hence

U(e) = lim [ (re)

exists for almost every 6 € (—x, 7) and it holds that

o) = oxp {5 [ S og o) (ol < 1)

_x € w

(cf. Rudin [17, 17.16 Theorem]). Now with the change of variables ¢ = p(t) and
w = p(z), it follows that

e +w 14tz

et —w it —z)

and
2t

L
1+4¢?
Thus ¢ defined by é(t) := ¥(q(t)) satisfies (1+t*) " log ¢(t) € L'(R,dt) and (8.1). O

From the proof above, we find that, for f and ¢ in (8.1),
li{% |flz + )| = &(z) a.e. on R.
y

dt.
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