Title	Dynamic models of asset prices with long memory
Author(s)	Anh, V.; Inoue, A.
Citation	Hokkaido University Preprint Series in Mathematics, 526, 1-21
Issue Date	2001-05
DOI	10.14943/83672
Doc URL	http://hdl.handle.net/2115/69276
Туре	bulletin (article)
File Information	pre526.pdf

Dynamic models of asset prices with long memory

V. ANH and A. INOUE

Series #526. May 2001

HOKKAIDO UNIVERSITY PREPRINT SERIES IN MATHEMATICS

- #500 I. Tsuda and S. Kuroda, Cantor coding in the hippocampus, 20 pages. 2000.
- #501 M. Tsujii, Fat solenoidal attractors, 20 pages. 2000.
- #502 A. Arai, Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation, 19 pages. 2000.
- #503 Y. Giga, S. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, 19 pages. 2000.
- #504 A. Inoue and Y. Kasahara, Partial autocorrelation functions of the fractional ARIMA processes with negative degree of differencing, 14 pages. 2000.
- #505 T. Nakazi, Interpolation problem for ℓ^1 and a uniform algebra, 12 pages. 2000.
- #506 R. Kobayashi and Y. Giga, On anisotropy and curvature effects for growing crystals, 38 pages. 2000.
- #507 A. Arai, Instability in the spectral and the Fredholm properties of an infinite dimensional Dirac operator on the abstract Boson–Fermion Fock space, 6 pages. 2000.
- #508 A. Arai, Supersymmetric methods for constructing soliton-type solutions to multi-component nonlinear Schrödinger and Klein-Gordon equations, 22 pages. 2000.
- #509 Y. Tonegawa, Phase field model with a variable chemical potential, 30 pages. 2000.
- #510 Y. Giga, Shocks and very strong vertical diffusion, 11 pages. 2000.
- #511 S. Izumiya & N. Takeuchi, Special curves and raled surfaces, 18 pages. 2001.
- #512 S. Izumiya, Generating families of developable surfaces in \mathbb{R}^3 , 18 pages. 2001.
- #513 S. Izumiya, K. Maruyama, Transversal topology and singularities of Haefliger foliations, 8 pages. 2001.
- #514 S. Izumiya, D-H. Pei & T. Sano, Singularities of hyperbolic Gauss maps, 27 pages. 2001.
- #515 S. Izumiya, N. Takeuchi, Generic special curves, 12 pages. 2001.
- #516 S. Izumiya. D-H. Pei & T. Sano, Horospherical surfaces of curves in hyperbolic space, 9 pages. 2001.
- #517 R. Yoneda, The composition operators on weighted bloch space, 8 pages. 2001.
- #518 M. Jinzenji, T. Sasaki, N=4 supersymmetric Yang-Mills theory on orbifold- T^4/\mathbb{Z}_2 , 18 pages. 2001.
- #519 Y. Giga, Viscosity solutions with shocks, 58 pages. 2001.
- #520 A. Inoue, On the worst conditional expectation, 10 pages. 2001.
- #521 Yumiharu Nakano, Efficient hedging with coherent risk measure, 10 pages. 2001.
- #522 T. Nakazi, Toeplitz operators and weighted norm inequalities on the bidisc, 15 pages. 2001.
- #523 T. Mikami, Covariance kernel and the central limit theorem in the total variation distance, 80 pages. 2001.
- #524 K. Yamaguchi and T. Yatsui, Geometry of higher order differential equations of finite type associated with symmetric spaces, 43 pages. 2001.
- #525 T. Suwa, Residues of Chern classes, 20 pages. 2001.

DYNAMIC MODELS OF ASSET PRICES WITH LONG MEMORY

V. ANH AND A. INOUE

ABSTRACT. This paper introduces a class of $AR(\infty)$ -type models for mean-square continuous processes with stationary increments. The models allow for short- or long-memory dynamics in the processes. Their solutions are shown to have a semimartingale representation. The models are used to describe the dynamics of asset prices, which reduce to the traditional Black-Scholes model as a special case. It is shown that there exists an equivalent martingale measure under which the behaviour of the discounted price process is equal to that in the Black-Scholes environment. As a result, the European option price is given by the Black-Scholes formula. The variance of the log price ratio is also obtained.

1. Introduction

We consider a risky asset with price S(t) at time t. We suppose that S(t) is of the form

(1.1)
$$S(t) = S(0) \exp Z(t) \qquad (t \ge 0),$$

where S(0) is a positive constant and $(Z(t):t\in\mathbf{R})$ is a zero-mean, mean-square continuous process with stationary increments such that Z(0)=0. Let $\sigma\in(0,\infty)$, $m\in\mathbf{R}$, and $(W(t):t\in\mathbf{R})$ be a one-dimensional standard Brownian motion such that W(0)=0. If Z(t) is of the form

$$(1.2) Z(t) = mt + \sigma W(t),$$

then this is the Black–Scholes stock price model. In this case, the dynamics of (Z(t)) is described by the equation

(1.3)
$$\frac{dZ}{dt}(t) - m = \sigma \frac{dW}{dt}(t).$$

In order to allow for long memory (Beran [2], Anh and Heyde [1]) in the dynamics of Z(t), attempts have been made to replace Brownian motion W(t) by fractional Brownian motion $W_H(t)$ in (1.2) with Hurst index 1/2 < H < 1 (Lin [13], Cutland et al. [4], Comte and Renault [5, 6], Willinger et al. [18]). However this approach is not entirely satisfactory since fractional Brownian motion is not a semimartingale (Liptser and Shiryayev [14], Lin [13], Rogers [16]), and as a result, the market is not arbitrage free (Cutland et al. [4], Rogers [16]).

Date: 26 April 2001.

¹⁹⁹¹ Mathematics Subject Classification. Primary 91B28; Secondary 60G10, 60G20.

JEL Classification. C22.

Key words and phrases. Option pricing, long-memory processes, semimartingale representation, stochastic differential equations.

Partially supported by the Australian Research Council grant A10024117.

In this paper, we consider a stock price model in which the process (Z(t)) is determined by the equation

(1.4)
$$\frac{dZ}{dt}(t) - m = \int_{-\infty}^{t} k_{\mu}(t-s) \left\{ \frac{dZ}{dt}(s) - m \right\} ds + \sigma \frac{dW}{dt}(t),$$

where dZ/dt and dW/dt are the derivatives of Z(t) and W(t) respectively in the random distribution sense (to be defined in § 4). Here, in general, for a Borel measure μ on $(0,\infty)$ such that $\int_0^\infty (s+1)^{-1} \mu(ds) < \infty$, we write

(1.5)
$$k_{\mu}(t) := I_{(0,\infty)}(t) \int_{0}^{\infty} e^{-ts} \mu(ds) \qquad (t \in \mathbf{R}).$$

The integral on the right-hand side of (1.4) has the effect of incorporating memory into the dynamics of the process, and the constant m corresponds to the trend. The simplest case $\mu=0$ or $k_{\mu}(\cdot)=0$ gives the Black-Scholes model (1.3). The assumption that S(0) is a constant implies that we model the risky asset under the setting that we know its price at t=0.

We use the following two kinds of assumptions on μ :

(S)
$$\begin{cases} \mu \text{ is a (possibly zero) finite Borel measure on } (0, \infty) \\ \text{such that } \int_0^\infty s^{-1} \mu(ds) < 1; \end{cases}$$

(L)
$$\begin{cases} \mu \text{ is a finite Borel measure on } (0,\infty) \text{ satisfying} \\ \int_0^\infty s^{-1} \mu(ds) = 1, \ \int_0^\infty s^{-2} \mu(ds) = \infty, \text{ and (L1)}. \end{cases}$$

with condition (L1) in (L) being given later in §5. Examples of μ satisfying (S) or (L) are given in Examples 6.9, 6.5 and 5.4.

For μ satisfying (L) or (S), we show that the solution (Z(t)) (in a proper sense) to the equation (1.4) is of the form

$$Z(t) = mt + \sigma \int_0^t U_{\nu}(s) ds + \sigma W(t),$$

where $(U_{\nu}(t):t\in\mathbf{R})$ is a stationary process of the form

(1.7)
$$U_{\nu}(t) = \int_{-\infty}^{t} k_{\nu}(t-s)dW(s)$$

with some finite Borel measure ν on $(0, \infty)$ such that

$$\int_0^\infty \int_0^\infty rac{1}{s_1+s_2}
u(ds_1)
u(ds_2) = \int_0^\infty k_
u(t)^2 dt < \infty$$

(Theorems 5.1 and 6.1). We write $\gamma_{\nu}(\cdot)$ for the autocovariance function of $(U_{\nu}(t))$:

$$\gamma_{\nu}(t) := E[U_{\nu}(t)U_{\nu}(0)] \qquad (t \in \mathbf{R}).$$

Then, by simple calculation, we have

(1.8)
$$\int_0^\infty \gamma_{\nu}(t)dt = \frac{1}{2} \left\{ \int_0^\infty \frac{1}{s} \nu(ds) \right\}^2.$$

Hence if $\int_0^\infty s^{-1}\nu(ds) < \infty$, then $(U_\nu(t))$ is a short-memory process in the sense that $\int_0^\infty \gamma_\nu(t)dt < \infty$, while if $\int_0^\infty s^{-1}\nu(ds) = \infty$, then $(U_\nu(t))$ is a long-memory process in the sense that $\int_0^\infty \gamma_\nu(t)dt = \infty$ (see [10] and the references cited there). We show that $(U_\nu(t))$ is a short-memory process under (S) (Theorem 6.1), while it is a long-memory process under (L) (Theorem 5.1). We determine the asymptotics for $k_\nu(t)$ and $\gamma_\nu(t)$, as $t \to \infty$, in some typical cases (Theorems 5.3, 6.4, and 6.8).

The representation (1.6) with (1.7) implies that (Z_t) , hence (S_t) , is a semimartingale. In §7, using Girsanov's theorem, we show that there exists an equivalent martingale measure P^* under which the behavior of the discounted price process $(e^{-rt}S(t):0 \le t < \infty)$ with $r \ge 0$ is equal to that in the Black-Scholes environment with volatility σ . In particular, the European option price is given by the Black-Scholes formula, and the constant σ serves as the *implied* volatility.

If (S(t)) follows the Black-Scholes model (1.2), then the variance of $\log(S(t)/S(s))$ with $t > s \ge 0$ is given by $(t - s)\sigma^2$, and so σ is also the historical volatility. Of course this is not so unless the model is Black-Scholes. For the stock price process (S(t)) in our model, we investigate the variance of $\log(S(t)/S(s))$, in particular, its asymptotic behavior as $t - s \to \infty$, in §7.

2. Correspondence between two measures (1)

In this and next sections, we consider correspondences between two measures μ and ν on $(0, \infty)$ through the relation

$$(2.1) \qquad \left\{1+\int_0^\infty \frac{1}{s-iz}\nu(ds)\right\}\left\{1-\int_0^\infty \frac{1}{s-iz}\mu(ds)\right\}=1 \quad (\Im z>0).$$

This kind of results is needed in studying the correspondence between the forms (1.4) and (1.6).

Lemma 2.1. Let $n \in \mathbb{N}$. Let μ be a Borel measure on $(0, \infty)$ of the form

$$\mu = \sum_{k=1}^{n} a_k \delta_{r_k},$$

with

$$(2.3) a_k \in (0, \infty) (k = 1, 2, ..., n),$$

$$(2.4) 0 < r_1 < r_2 < \dots < r_n < \infty,$$

$$\int_0^\infty \frac{1}{s} \mu(ds) < 1.$$

Then there exists a Borel measure ν on $(0, \infty)$ of the form

$$(2.6) \nu = \sum_{k=1}^{n} b_k \delta_{p_k}$$

$$(2.7) b_k \in (0, \infty) (k = 1, 2, ..., n),$$

$$(2.8) 0 < p_1 < r_1 < p_2 < r_2 < \dots < p_n < r_n,$$

satisfying (2.1).

Proof. For w = iz, we have

$$\left\{1 - \int_0^\infty \frac{1}{s - w} \mu(ds)\right\}^{-1} - 1 = \left\{\int_0^\infty \frac{1}{s - w} \mu(ds)\right\} \left\{1 - \int_0^\infty \frac{1}{s - w} \mu(ds)\right\}^{-1} \\
= \left\{\sum_{k=1}^n \frac{a_k}{r_k - w}\right\} \left\{1 - \sum_{k=1}^n \frac{a_k}{r_k - w}\right\}^{-1} \\
= f(w)^{-1} \sum_{k=1}^n a_k \prod_{m \neq k} (r_m - w),$$

where f(w) is a polynomial in w, of degree n, given by

$$f(w) := \prod_{k=1}^n (r_k - w) - \sum_{k=1}^n a_k \prod_{m \neq k} (r_m - w).$$

Now we have

$$f(0) = \prod_{k=1}^n r_k - \sum_{k=1}^n a_k \prod_{m
eq k} r_m = \left(\prod_{k=1}^n r_k\right) \left\{1 - \int_0^\infty rac{1}{s} \mu(ds)
ight\} > 0,$$

and

$$\operatorname{sgn} f(r_k) = (-1)^k \qquad (k = 1, 2, \dots, n).$$

Therefore there exist positive numbers p_k (k = 1, 2, ..., n) satisfying (2.8) and

$$f(w) = \prod_{k=1}^{n} (p_k - w).$$

From $f(p_l) = 0$, it follows that

$$\sum_{k=1}^{n} a_k \prod_{m \neq k} (r_m - p_l) = \prod_{k=1}^{n} (r_k - p_l) \qquad (l = 1, 2, \dots, n).$$

So, in the partial fraction decomposition

$$f(w)^{-1} \sum_{k=1}^{n} a_k \prod_{m \neq k} (r_k - w) = \sum_{l=1}^{n} \frac{b_l}{p_l - w},$$

the coefficients b_l are given by

$$b_{l} = \frac{\sum_{k=1}^{n} a_{k} \prod_{m \neq k} (r_{m} - p_{l})}{\prod_{k \neq l} (p_{k} - p_{l})} = \frac{\prod_{k=1}^{n} (r_{k} - p_{l})}{\prod_{k \neq l} (p_{k} - p_{l})} > 0 \qquad (l = 1, 2, ..., n).$$

With these p_l and b_l , the measure ν defined by (2.6) gives the desired measure.

Conversely, we have the following lemma.

Lemma 2.2. Let $n \in \mathbb{N}$. Let ν be a Borel measure on $(0, \infty)$ of the form (2.6) with (2.7) and

$$0 < p_1 < p_2 < \dots < p_n < \infty.$$

Then there exists a Borel measure μ on $(0, \infty)$ satisfying (2.1)–(2.3), (2.5), and (2.8). Proof. For w = iz, we have

$$1 + \left\{1 + \int_0^\infty \frac{1}{s - w} \nu(ds)\right\}^{-1} = \left\{\int_0^\infty \frac{1}{s - w} \nu(ds)\right\} \left\{1 + \int_0^\infty \frac{1}{s - w} \nu(ds)\right\}^{-1}$$

$$= \left\{\sum_{k=1}^n \frac{b_k}{p_k - w}\right\} \left\{1 + \sum_{k=1}^n \frac{b_k}{p_k - w}\right\}^{-1}$$

$$= g(w)^{-1} \sum_{k=1}^n b_k \prod_{m \neq k} (p_m - w),$$

where g(w) is a polynomial in w, of degree n, given by

$$g(w):=\prod_{k=1}^n(p_k-w)+\sum_{k=1}^nb_k\prod_{m
eq k}(p_m-w).$$

Since

$$g(w) = (-1)^n w^n + \cdots,$$

 $\operatorname{sgn} g(p_k) = (-1)^{k-1} \quad (k = 1, 2, \dots, n),$

there exist positive numbers r_k (k = 1, 2, ..., n) satisfying (2.8) and

$$g(w) = \prod_{k=1}^n (r_k - w).$$

From $g(r_l) = 0$, it follows that

$$\sum_{k=1}^{n} a_k \prod_{m \neq k} (p_m - r_l) = -\prod_{k=1}^{n} (p_k - r_l) \qquad (l = 1, 2, \dots, n).$$

Therefore, in the partial fraction decomposition

$$g(w)^{-1} \sum_{k=1}^{n} b_k \prod_{m \neq k} (p_m - w) = \sum_{l=1}^{n} \frac{a_l}{r_l - w},$$

the coefficients a_l are given by

$$a_l = rac{\sum_{k=1}^n b_k \prod_{m
eq k} (p_m - r_l)}{\prod_{k
eq l} (r_k - r_l)} = -rac{\prod_{k=1}^n (p_k - r_l)}{\prod_{k
eq l} (r_k - r_l)} > 0 \qquad (l = 1, 2, \dots, n).$$

With these r_l and a_l , we define the measure μ by (2.2). Then

(2.9)
$$1 - \int_0^\infty s^{-1} \mu(ds) = \left\{ 1 + \lim_{y \downarrow 0} \int_0^\infty \frac{1}{s+y} \nu(ds) \right\}^{-1} \\ = \left\{ 1 + \int_0^\infty \frac{1}{s} \nu(ds) \right\}^{-1} > 0.$$

Thus μ satisfies (2.5).

We call a Borel measure μ on $(0, \infty)$ simple if it is of the form (2.2), for some $n \in \mathbb{N}$, with (2.3) and (2.4). We define

$$\mathcal{M}_{\mathrm{s}} = \left\{ \mu : egin{aligned} \mu & \text{is a (possibly zero) simple measure on } (0, \infty) \\ & \text{such that } \int_0^\infty s^{-1} \mu(ds) < 1 \end{aligned} \right\},$$

 $\mathcal{N}_{\mathbf{s}} = \{ \nu : \nu \text{ is a (possibly zero) simple measure on } (0, \infty) \}.$

Definition 2.3. We define the one-to-one and onto map

$$\theta_{s}: \mathcal{M}_{s} \ni \mu \mapsto \nu = \theta_{s}(\mu) \in \mathcal{N}_{s}$$

by (2.1).

Example 2.4. Let $\mu = a\delta_r$ with 0 < a < r. Then $\int_0^\infty s^{-1}\mu(ds) < 1$, and so $\mu \in \mathcal{M}_s$. Since

$$\left\{1-\int_0^\infty \frac{1}{s-w}\mu(ds)\right\}^{-1}-1=\frac{a}{r-a-w},$$

we have $\theta_{s}(\mu) = a\delta_{r-a}$.

3. Correspondence between two measures (2)

In the proofs of this and next sections, we regard Borel measures η on $(0, \infty)$ as Borel measures on $[0, \infty]$ by $\eta\{0\} = \eta\{\infty\} = 0$ if necessary.

We define

$$\mathcal{M}_0 = \left\{ \mu : \begin{array}{l} \mu \text{ is a (possibly zero) Borel measure on } (0, \infty) \\ \text{such that } \int_0^\infty s^{-1} \mu(ds) < 1 \end{array} \right\},$$

$$\mathcal{N}_0 = \left\{
u ext{ is a (possibly zero) Borel measure on } (0, \infty)
ight\}.$$
 such that $\int_0^\infty s^{-1}
u(ds) < \infty$

First we consider the correspondence between μ in \mathcal{M}_0 and ν in \mathcal{N}_0 through the relation (2.1).

Theorem 3.1. For $\mu \in \mathcal{M}_0$, there exists a unique $\nu \in \mathcal{N}_0$ satisfying (2.1). Conversely, for $\nu \in \mathcal{N}_0$, there exists a unique $\mu \in \mathcal{M}_0$ satisfying (2.1).

Proof. (I) Let $\mu \in \mathcal{M}_0$. We define the finite Borel measure $\tilde{\mu}$ on $[0, \infty]$ by

$$\tilde{\mu}(ds) = s^{-1} I_{(0,\infty)}(s) \mu(ds).$$

Take a sequence of simple measures μ_n (n=1,2,...) such that $s^{-1}\mu_n(ds)$ converges weakly to $\tilde{\mu}$ on $[0,\infty]$. Since

$$\tilde{\mu}[0,\infty] = \int_0^\infty s^{-1} \mu(ds) < 1,$$

we may assume that $\int_0^\infty s^{-1}\mu_n(ds) < 1$ for $n = 1, 2, \ldots$ We put $\nu_n := \theta_s(\mu_n)$ and $\tilde{\nu}_n(ds) := s^{-1}\nu_n(ds)$. Then we have, for $n = 1, 2, \ldots$,

(3.1)
$$\left\{1 + \int_0^\infty \frac{s}{s - iz} \tilde{\nu}_n(ds)\right\} \left\{1 - \int_0^\infty \frac{s}{s - iz} \tilde{\mu}_n(ds)\right\} = 1 \quad (\Im z > 0).$$

Letting $y \downarrow 0$ in (3.1) with z = iy, we see that

$$\sup_n \tilde{\nu}_n[0,\infty] = \sup_n \frac{\tilde{\mu}_n[0,\infty]}{1 - \tilde{\mu}_n[0,\infty]} < \infty.$$

Therefore, by the Helly selection principle, we can find a subsequence n' such that $\tilde{\nu}_{n'}$ converges weakly to $\tilde{\nu}$, say, on $[0, \infty]$. It follows that

$$\left\{1+\tilde{\nu}\{\infty\}+\int_0^\infty \frac{1}{s-iz}\nu(ds)\right\}\left\{1-\int_0^\infty \frac{1}{s-iz}\mu(ds)\right\}=1 \quad (\Im z>0),$$

where ν is the measure on $(0, \infty)$ defined by

$$u(ds) := I_{(0,\infty)}(s)s\tilde{\nu}(ds).$$

Letting $y \uparrow \infty$ in this with z = iy, we see that $1 + \tilde{\nu}\{\infty\} = 1$ or $\tilde{\nu}\{\infty\} = 0$. This proves the first half of the theorem.

(II) Let $\nu \in \mathcal{N}_0$. We define the finite Borel measure $\tilde{\nu}$ on $[0, \infty]$ by

$$\tilde{\nu}(ds) = s^{-1} I_{(0,\infty)}(s) \nu(ds).$$

Take a sequence of simple measures ν_n $(n=1,2,\ldots)$ such that $s^{-1}\nu_n(ds)$ converges weakly to $\tilde{\nu}$ on $[0,\infty]$. We put $\mu_n:=\theta_s^{-1}(\nu_n)$ and $\tilde{\mu}_n(ds):=s^{-1}\mu_n(ds)$. Then we have (3.1) for $n=1,2,\ldots$ Letting $y\downarrow 0$ in (3.1) with z=iy, we see that

$$\sup_n \tilde{\mu}_n[0,\infty] = \sup_n \frac{\tilde{\nu}_n[0,\infty]}{1 + \tilde{\nu}_n[0,\infty]} < \infty.$$

Therefore, again by the Helly selection principle, we can find a subsequence n' such that $\tilde{\mu}_{n'}$ converges weakly to $\tilde{\mu}$, say, on $[0, \infty]$. It follows that

$$\left\{1 + \int_0^\infty \frac{1}{s - iz} \nu(ds)\right\} \left\{1 - \tilde{\mu}\{\infty\} - \int_0^\infty \frac{1}{s - iz} \mu(ds)\right\} = 1 \quad (\Im z > 0),$$

where μ is the measure on $(0, \infty)$ defined by

$$\mu(ds) := I_{(0,\infty)}(s)s\tilde{\mu}(ds).$$

Letting $y \uparrow \infty$ in this with z = iy, we see that $1 - \tilde{\mu}\{\infty\} = 1$ or $\tilde{\mu}\{\infty\} = 0$. Finally, by the same argument as (2.9), it follows that $\int_0^\infty s^{-1}\mu(ds) < 1$. This proves the second half of the theorem.

Definition 3.2. We define the one-to-one and onto map

$$\theta_0: \mathcal{M}_0 \ni \mu \mapsto \nu = \theta_0(\mu) \in \mathcal{N}_0$$

by (2.1).

We define

$$\mathcal{M}_1 = \left\{ \mu : egin{aligned} \mu & ext{ is a Borel measure on } (0,\infty) ext{ such that} \\ \int_0^\infty s^{-1} \mu(ds) = 1, \int_0^\infty s^{-2} \mu(ds) = \infty \end{aligned}
ight\},$$

$$\mathcal{N}_1 = \left\{ \nu : \frac{\nu \text{ is a Borel measure on } (0, \infty) \text{ such that}}{\int_0^\infty (s+1)^{-1} \nu(ds) < \infty, \ \int_0^\infty s^{-1} \nu(ds) = \infty} \right\}.$$

Next we consider the correspondence between μ in \mathcal{M}_1 and ν in \mathcal{N}_1 through the relation (2.1).

Theorem 3.3. For $\mu \in \mathcal{M}_1$, there exists a unique $\nu \in \mathcal{N}_1$ satisfying (2.1). Conversely, for $\nu \in \mathcal{N}_1$, there exists a unique $\mu \in \mathcal{M}_1$ satisfying (2.1).

Proof. (I) Let $\mu \in \mathcal{M}_1$. Set $m := \inf\{s : s \in \text{supp}(\mu)\}$. If m = 0, then

$$\int_0^\infty s^{-2} \mu(ds) \le m^{-1} \int_{[m,\infty)} s^{-1} \mu(ds) < \infty,$$

contradicting the condition $\int_0^\infty s^{-2}\mu(ds) = \infty$. Thus m=0. Therefore there exists an $N \in \mathbb{N}$, such that, for $\mu_n(ds) := I_{(1/n,\infty)}(s)\mu(ds)$,

$$\int_0^\infty s^{-1} \mu_n(ds) < \int_0^\infty s^{-1} \mu(ds) = 1 \quad (n \ge N),$$

whence $\mu_n \in \mathcal{M}_0$ for $n \geq N$. We define $\nu_n := \theta_0(\mu_n) \in \mathcal{N}_0$. Then, as $n \to \infty$,

$$\int_0^\infty \frac{1}{s+1} \nu_n(ds) = \frac{\int_0^\infty (1+s)^{-1} \mu_n(ds)}{1 - \int_0^\infty (1+s)^{-1} \mu_n(ds)} \to \frac{\int_0^\infty (1+s)^{-1} \mu(ds)}{1 - \int_0^\infty (1+s)^{-1} \mu(ds)} \in (0,\infty),$$

so that

$$\sup_{n} \int_{0}^{\infty} \frac{1}{1+s} \nu_{n}(ds) < \infty.$$

Therefore, for $\tilde{\nu}_n(ds) := (s+1)^{-1} I_{(0,\infty)}(s) \nu_n(ds)$, there exists a subsequence n' such that $\tilde{\nu}_{n'}$ converges weakly to a finite Borel measure $\tilde{\nu}$, say, on $[0,\infty]$. It follows that, for $\Im z > 0$,

$$(3.2) \qquad \left\{1-\frac{\tilde{\nu}\{0\}}{iz}+\tilde{\nu}\{\infty\}+\int_0^\infty\frac{1}{s-iz}\nu(ds)\right\}\left\{1-\int_0^\infty\frac{1}{s-iz}\mu(ds)\right\}=1,$$

where ν is the measure on $(0,\infty)$ defined by $\nu(ds):=(1+s)I_{(0,\infty)}(s)\tilde{\nu}(ds)$.

Letting $y \uparrow \infty$ in (3.2) with z = iy, we have $\tilde{\nu}\{\infty\} = 0$. From $\int_0^\infty s^{-1}\mu(ds) = 1$, it follows that

$$1-\int_0^\infty rac{1}{s+y}\mu(ds)=y\int_0^\infty rac{1}{s(s+y)}\mu(ds),$$

hence

$$\left\{y+ ilde{
u}\{0\}+\int_0^\inftyrac{1}{(s/y)+1}
u(ds)
ight\}\int_0^\inftyrac{1}{s(s+y)}\mu(ds)=1\quad (y>0),$$

and so

$$ilde{
u}\{0\} = \lim_{y\downarrow 0} \left\{ \int_0^\infty rac{1}{s(s+y)} \mu(ds)
ight\}^{-1} = 0.$$

Finally,

$$\int_0^\infty \frac{1}{s} \nu(ds) = \lim_{y \downarrow 0} \left\{ \int_0^\infty \frac{1}{s+y} \mu(ds) \right\} \left\{ 1 - \int_0^\infty \frac{1}{s+y} \mu(ds) \right\}^{-1} = \infty.$$

Thus ν is the desired element of \mathcal{N}_1 .

(II) Conversely, for $\nu \in \mathcal{N}_1$, define $\nu_n(ds) := I_{(1/n,\infty)}(s)\nu(ds)$ $(n = 1, 2, \ldots)$. Then $\nu_n \in \mathcal{N}_0$. We put $\mu_n := \theta_0^{-1}(\nu_n) \in \mathcal{M}_0$ for $n = 1, 2, \ldots$. Then, as $n \to \infty$,

$$\int_0^\infty \frac{1}{s+1} \mu_n(ds) = \frac{\int_0^\infty (1+s)^{-1} \nu_n(ds)}{1+\int_0^\infty (1+s)^{-1} \nu_n(ds)} \to \frac{\int_0^\infty (1+s)^{-1} \nu(ds)}{1+\int_0^\infty (1+s)^{-1} \nu(ds)} \in (0,\infty),$$

hence

$$\sup_{n} \int_{0}^{\infty} \frac{1}{1+s} \mu_{n}(ds) < \infty.$$

Therefore, for $\tilde{\mu}_n(ds) := (s+1)^{-1} I_{(0,\infty)}(s) \mu_n(ds)$, there exists a subsequence n' such that $\tilde{\mu}_{n'}$ converges weakly to a finite Borel measure $\tilde{\mu}$, say, on $[0,\infty]$. It follows that, for $\Im z > 0$,

$$(3.3) \qquad \left\{1+\int_0^\infty \frac{1}{s-iz}\nu(ds)\right\} \left\{1+\frac{\tilde{\mu}\{0\}}{iz}-\tilde{\mu}\{\infty\}-\int_0^\infty \frac{1}{s-iz}\mu(ds)\right\} = 1,$$

where μ is the measure on $(0,\infty)$ defined by $\mu(ds):=(1+s)I_{(0,\infty)}(s)\tilde{\mu}(ds)$.

Letting $y \uparrow \infty$ in (3.3) with z = iy, we have $\tilde{\mu}\{\infty\} = 0$. Moreover, letting $y \downarrow 0$ in

$$ilde{\mu}\{0\} + \int_0^\infty rac{1}{(s/y)+1} \mu(ds) = rac{\int_0^\infty \left\{ (s/y)+1
ight\}^{-1}
u(ds)}{1+\int_0^\infty \left\{ (s/y)+1
ight\}^{-1}
u(ds)},$$

we get $\tilde{\mu}\{0\} = 0$. Since $\int_0^\infty s^{-1} \nu(ds) = \infty$, we have

$$1-\int_0^\inftyrac{1}{s}\mu(ds)=\lim_{y\downarrow 0}\left\{1+\int_0^\inftyrac{1}{s+y}
u(ds)
ight\}^{-1}=0.$$

In particular, this implies

$$1 - \int_0^\infty \frac{1}{s+y} \mu(ds) = \int_0^\infty \frac{y}{s(s+y)} \mu(ds),$$

and so

$$\int_0^\infty \frac{1}{s^2} \mu(ds) = \lim_{y \downarrow 0} \left\{ y + \int_0^\infty \frac{1}{(s/y) + 1} \nu(ds) \right\}^{-1} = \infty.$$

Thus μ is the desired element of \mathcal{M}_1

Definition 3.4. We define the one-to-one and onto map

$$heta_1: \mathcal{M}_1
i \mu \mapsto
u = heta_1(\mu) \in \mathcal{N}_1$$

by (2.1).

Lemma 3.5. For $\mu \in \mathcal{M}_0$ (resp. $\mu \in \mathcal{M}_1$), we set $\nu := \theta_0(\mu) \in \mathcal{N}_0$ (resp. $\nu := \theta_1(\mu) \in \mathcal{N}_1$). Then $\mu(0,\infty) = \nu(0,\infty)$. In particular, $\mu(0,\infty) < \infty$ if and only if $\nu(0,\infty) < \infty$.

Proof. It follows from (2.1) that

$$\nu(0,\infty) = \lim_{y\uparrow\infty} \int_0^\infty \frac{y}{y+s} \nu(ds) = \lim_{y\uparrow\infty} \frac{\int_0^\infty y/(y+s) \mu(ds)}{1-\int_0^\infty 1/(y+s) \mu(ds)} = \mu(0,\infty).$$

Thus the lemma follows

4. STATIONARY RANDOM DISTRIBUTIONS

We recall some notation in the theory of stationary random distributions (cf. [11] and [10]). We denote by H the Hilbert space of \mathbf{C} -valued random variables, defined on a probability space (Ω, \mathcal{F}, P) , with expectation zero and finite variance:

$$H:=\{a\in L^2(\Omega,\mathcal{F},P): E[a]=0\},$$
 $(a,b)_H:=E\left[a\overline{b}\right],\quad \|a\|_H:=(a,a)_H^{1/2} \qquad (a,b\in H).$

By $\mathcal{D}(\mathbf{R})$, we denote the space of all $\phi \in C^{\infty}(\mathbf{R})$ with compact support, endowed with the usual topology. A random distribution (with expectation zero) is a linear continuous map from $\mathcal{D}(\mathbf{R})$ to H. We write $\mathcal{D}'(H)$ for the class of random distributions on (Ω, \mathcal{F}, P) . For $X \in \mathcal{D}'(H)$, we define $DX \in \mathcal{D}'(H)$ by $DX(\phi) := -X(d\phi/dx)$. We call DX the derivative of X. For $X \in \mathcal{D}'(H)$ and $t \in \mathbf{R}$, we write M(X) (resp. $M_t(X)$) for the closed linear hull of $\{X(\phi) : \phi \in \mathcal{D}(\mathbf{R})\}$ (resp. $\{X(\phi) : \phi \in \mathcal{D}(\mathbf{R}), \text{ supp } \phi \subset (-\infty, t]\}$) in H. For $X, Y \in \mathcal{D}'(H)$, we define $P_Y X \in \mathcal{D}'(H)$ by $P_Y X(\phi) := p_Y(X(\phi))$, where p_Y is the orthogonal projection operator from H onto M(Y). It holds that $P_Y DX = DP_Y X$ for $X, Y \in \mathcal{D}'(H)$. Two random distributions X and Y are said to be stationarily correlated if

$$(X(\tau_h\phi), Y(\tau_h\psi))_H = (X(\phi), Y(\psi))_H \qquad (\phi, \psi \in \mathcal{D}(\mathbf{R}), h \in \mathbf{R}),$$

where τ_h is the shift operator defined by $\tau_h \phi(t) := \phi(t+h)$.

A random distribution X is called *stationary* if

$$(X(\tau_h\phi), X(\tau_h\psi))_H = (X(\phi), X(\psi))_H \qquad (\phi, \psi \in \mathcal{D}(\mathbf{R}), h \in \mathbf{R}).$$

We write S for the class of stationary random distributions on (Ω, \mathcal{F}, P) . For $X, Y \in S$, the random distribution $P_Y X$ is also stationary if X and Y are stationarily correlated (see [10, Theorem 2.1]). For $X \in S$, we write μ_X for the spectral measure of X:

$$(X(\phi),X(\psi))_H=\int_{-\infty}^\infty \hat{\phi}(\xi)\overline{\hat{\psi}}(\xi)\mu_X(d\xi) \qquad (\phi,\psi\in\mathcal{D}(\mathbf{R})),$$

where $\hat{\phi}$ is the Fourier transform of ϕ : $\hat{\phi}(\xi) := \int_{-\infty}^{\infty} e^{-it\xi} \phi(\xi) d\xi$. For $k \in \mathbb{N} \cup \{0\}$, we define

$$\mathcal{S}_k := \left\{ X \in \mathcal{S} : \int_{-\infty}^{\infty} (1 + \xi^2)^{-k} \mu_X(d\xi) < \infty
ight\}.$$

Then $S_0 \subset S_1 \subset S_2 \subset \cdots$ and $S = \bigcup_{k=0}^{\infty} S_k$ (see [11, Theorem 3.2]). The class S_0 can be naturally identified with that of mean-square continuous weakly stationary processes with zero expectation ([11, Theorem 4.2]). Any stationary random distribution X has the spectral representation of the form

$$X(\phi) = \int_{-\infty}^{\infty} \hat{\phi}(\xi) Z_X(d\xi) \qquad (\phi \in \mathcal{D}(\mathbf{R})),$$

where Z_X is the associated random measure. It holds that

$$M(X) = \left\{ \int_{-\infty}^{\infty} g(\xi) Z_X(d\xi) : g \in L^2(\mu_X)
ight\}.$$

We say that X in S is purely nondeterministic if $\cap_{t\in\mathbb{R}} M_t(X) = \{0\}$.

For $k \in L^1(\mathbf{R}, dt)$ and $X \in \mathcal{S}$, we wish to define the convolution $k * S \in \mathcal{S}$. Formally we have

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} k(u)X(t-u)du \right) \phi(t)dt = \int_{-\infty}^{\infty} k(u) \left(\int_{-\infty}^{\infty} X(t)\phi(t+u)dt \right) du$$
$$= \int_{-\infty}^{\infty} k(u)X(\tau_u \phi)du.$$

With this in mind, we define $k * X \in \mathcal{S}$ by

$$(k*X)(\phi) := \int_{-\infty}^{\infty} k(u) X(au_u \phi) du \qquad (\phi \in \mathcal{D}(\mathbf{R})),$$

where the integral on the right-hand side is in the sense of H-valued Bochner integral.

 $\mathcal{M} = \left\{ \rho : \rho \text{ is a Borel measure on } (0, \infty) \text{ such that } \int_0^\infty (1+s)^{-1} \rho(ds) < \infty \right\}.$

For $\rho \in \mathcal{M}$, we define

$$F_{\rho}(z) := \int_{0}^{\infty} \frac{1}{s - iz} \rho(ds) \qquad (\Im z \ge 0).$$

Recall $k_{\rho}(t)$ from (1.5). We have

$$\rho(0,\infty)=k_{\rho}(0+),$$

(4.2)
$$\int_0^\infty s^{-1} \rho(ds) = \int_0^\infty k_\rho(t) dt,$$

(4.3)
$$\int_0^\infty s^{-2} \rho(ds) = \int_0^\infty dt \int_t^\infty k_\rho(u) du.$$

As in [10, Proposition 2.3], we have the following proposition.

Proposition 4.1. Let $k \in L^1(\mathbf{R}, dt)$ and $X \in \mathcal{S}$. Then

$$(k*X)(\phi) = \int_{-\infty}^{\infty} \hat{k}(-\xi)\hat{\phi}(\xi)Z_X(d\xi) \qquad (\phi\in\mathcal{D}(\mathbf{R})).$$

In particular, for $\mu \in \mathcal{M}$ such that $\int_0^\infty s^{-1}\mu(ds) < \infty$, we have

$$(k_{\mu}*X)(\phi) = \int_{-\infty}^{\infty} F_{\mu}(\xi) \hat{\phi}(\xi) Z_X(d\xi) \qquad (\phi \in \mathcal{D}(\mathbf{R})).$$

Notice that $k_{\mu} * X$ can be written formally as

$$k_{\mu}*X(t)=\int_{-\infty}^{t}k_{\mu}(t-s)X(s)ds.$$

Proposition 4.2. Let $X \in \mathcal{S}$, and let $\mu \in \mathcal{M}$ such that $\int_0^\infty s^{-1}\mu(ds) < \infty$. Then X is stationarily correlated with $X - k_\mu * X$.

Proof. By Proposition 4.1, we have

$$(X - k_{\mu} * X)(\phi) = \int_{-\infty}^{\infty} \{1 - F_{\mu}(\xi)\} \hat{\phi}(\xi) Z_X(d\xi).$$

The lemma follows from this.

Proposition 4.3. Let $X \in S$.

- (1) For $\mu \in \mathcal{M}_0$, X satisfies $X = k_{\mu} * X$ if and only if X = 0.
- (2) For $\mu \in \mathcal{M}_1$, X satisfies $X = k_{\mu} * X$ if and only if X = a for some $a \in H$.

Proof. By Proposition 4.1, we have

$$\|(X-k_{\mu}*X)(\phi)\|_{H}^{2} = \int_{-\infty}^{\infty} |\hat{\phi}(\xi)|^{2} |1-F_{\mu}(\xi)|^{2} \mu_{X}(d\xi).$$

If $\mu \in \mathcal{M}_0$, then

$$\Re\{1 - F_{\mu}(\xi)\} = 1 - \int_{0}^{\infty} \frac{s}{s^2 + \xi^2} \mu(ds) \ge 1 - \int_{0}^{\infty} s^{-1} \mu(ds) > 0,$$

while if $\mu \in \mathcal{M}_1$, then

$$|1 - F_{\mu}(\xi)|^2 > 0 \quad (\xi \neq 0), = 0 \quad (\xi = 0).$$

The lemma follows easily from these.

5. Long-memory model

Let $\sigma > 0$ and let $W = (W(t) : t \in \mathbf{R})$ be a one-dimensional standard Brownian motion such that W(0) = 0, defined on (Ω, \mathcal{F}, P) . Since W is a process with stationary increments, the derivative DW is a stationary random distribution (see [11]). We are concerned with the following equation

$$(5.1) X = k_{\mu} * X + \sigma DW.$$

It should be noted that the equation (5.1) can be written formally as

(5.2)
$$X(t) = \int_{-\infty}^{t} k_{\mu}(t-s)X(s)ds + \sigma \frac{dW}{dt}(t).$$

For $\nu \in \mathcal{M}$ such that

$$\int_0^\infty k_\nu(t)^2 dt < \infty,$$

we define a real, centered, weakly stationary process $(U_{\nu}(t):t\in\mathbf{R})$ by

(5.4)
$$U_{\nu}(t) := \int_{-\infty}^{t} k_{\nu}(t-s)dW(s) \qquad (t \in \mathbf{R}).$$

Then $(U_{\nu}(t))$ is purely nondeterministic, and (5.4) corresponds to the so-called *canonical representation* of $(U_{\nu}(t))$; thus, $M_t(U_{\nu}) = M_t(DW)$ for $t \in \mathbf{R}$. On the other hand, the spectral representation of U_{ν} , as a stationary random distribution, is given by

(5.5)
$$U_{\nu}(\phi) = \int_{-\infty}^{\infty} F_{\nu}(\xi) \hat{\phi}(\xi) Z_{DW}(d\xi) \qquad (\phi \in \mathcal{D}(\mathbf{R})).$$

We refer to [10] for these results.

If ν is a finite measure in \mathcal{N}_1 such that

$$(5.6) \qquad \int_{1}^{\infty} k_{\nu}(t)^{2} dt < \infty,$$

then ν satisfies (5.3) since

$$\int_0^1 k_{\nu}(t)^2 dt \le k_{\nu}(0+) \int_0^1 k_{\nu}(t) dt < \infty.$$

In this case, since $\int_0^\infty k_{\nu}(t)dt = \infty$, the stationary process $(U_{\nu}(t))$ defined by (5.4) is long-memory. Now recall the condition (L) in §1; we define the condition (L1) for $\mu \in \mathcal{M}_1$ there by

(L1)
$$\nu = \theta_1(\mu) \text{ satisfies (5.6)}.$$

Theorem 5.1. Let $\sigma > 0$. Let μ be a measure satisfying (L), and let $\nu := \theta_1(\mu)$. Then a stationary random distribution X satisfies (5.1) if and only if $X = X_0 + a$, where a is an arbitrary element of $M(DW)^{\perp}$ and X_0 is the stationary random distribution defined by

$$(5.7) X_0 = \sigma U_{\nu} + \sigma D W_{\nu}$$

In particular, X_0 is the only purely nondeterministic stationary random distribution that satisfies (5.1).

Proof. Let X be a stationary random distribution satisfying (5.1). Then, by Proposition 4.2, X and $DW = X - k_{\mu} * X$ are stationarily correlated. We define $X_1 := X - P_{DW}X$. Then, by [10, Theorem 2.1], X_1 is a stationary random distribution satisfying $X_1 = k_{\mu} * X_1$. So, by Proposition 4.3 (2), we see that $X - P_{DW}X = a$ for some $a \in M(DW)^{\perp}$.

We set $X_0 := P_{DW}X$. Then, again by [10, Theorem 2.1], there exists $g \in L^2(\mathbf{R}, (1+x^2)^{-k}d\xi)$, for some $k \in \mathbf{N} \cup \{0\}$, such that

$$X_0(\phi) = \int_{-\infty}^{\infty} g(\xi) \hat{\phi}(\xi) Z_{DW}(d\xi).$$

By Proposition 4.1, we have

$$k_{\mu}*X_0(\phi)=\int_{-\infty}^{\infty}F_{\mu}(\xi)g(\xi)\hat{\phi}(\xi)Z_{DW}(d\xi).$$

Since $\mu_{DW}(d\xi) = (2\pi)^{-1}d\xi$, it follows that, for $\phi \in \mathcal{D}(\mathbf{R})$,

$$0 = \|X_0(\phi) - k_\mu * X_0(\phi) - \sigma DW(\phi)\|_H^2$$

= $\frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{\phi}(\xi)|^2 |\{(1 - F_\mu(\xi))g(\xi) - \sigma\}|^2 d\xi.$

This implies

$$g(\xi) = \frac{\sigma}{1 - F_{\mu}(\xi)} = \sigma F_{\nu}(\xi) + \sigma,$$

hence

$$X_0(\phi) = \int_{-\infty}^{\infty} \{\sigma F_{\nu}(\xi) + \sigma\} \hat{\phi}(\xi) Z_{DW}(d\xi) = \sigma U_{\nu}(\phi) + \sigma DW(\phi).$$

Thus X_0 is given by (5.7). Conversely, we can easily show that $X = X_0 + a$ with (5.7) and $a \in M(DW)^{\perp}$ is a stationary random distribution that satisfies (5.1).

For z = x + iy with y > 0, it holds that

$$\Re\{\sigma F_
u(z)+\sigma\}=\sigma+\int_0^\inftyrac{s+y}{(s+y)^2+x^2}
u(ds)>0.$$

By Theorem A in the appendix, this implies

$$M_t(X_0) = M_t(DW) \qquad (t \in \mathbf{R})$$

(see, e.g., [9]), hence $M_t(X_0 + a) = M_t(DW) + \mathbf{C}a$ for $a \in M(DW)^{\perp}$. Therefore

$$igcap_t M_t(X_0+a) = \left\{igcap_t M_t(X_0)
ight\} \oplus \mathbf{C} a = \left\{igcap_t M_t(DW)
ight\} \oplus \mathbf{C} a = \mathbf{C} a.$$

Thus $X_0 + a$ with $a \in M(DW)^{\perp}$ is purely nondeterministic if and only if a = 0.

We give a sufficient condition for (L1).

Lemma 5.2. Let $0 and let <math>\ell(\cdot)$ be a slowly varying function at infinity. Let $\mu \in \mathcal{M}_1$ and define $\nu \in \mathcal{N}_1$ by $\nu := \theta_1(\mu)$. Then

(5.8)
$$k_{\mu}(t) \sim t^{-(p+1)} \ell(t) p \qquad (t \to \infty)$$

if and only if

(5.9)
$$k_{\nu}(t) \sim \frac{t^{-(1-p)}}{\ell(t)} \cdot \frac{\sin(p\pi)}{\pi} \qquad (t \to \infty).$$

Proof. We prove only (5.8) \Rightarrow (5.9); the converse implication (5.9) \Rightarrow (5.8) can be proved in the same way. Since $\int_0^\infty k_\mu(t)dt = 1$, we have, by integration by parts,

$$1 - \int_0^\infty e^{-ty} k_\mu(t) dt = y \int_0^\infty e^{-ty} \left(\int_t^\infty k_\mu(s) ds \right) dt \qquad (y > 0).$$

Hence

$$\int_0^\infty e^{-ty} k_{\nu}(t) dt = \frac{\int_0^\infty e^{-ty} k_{\mu}(t) dt}{1 - \int_0^\infty e^{-ty} k_{\mu}(t) dt} = \frac{\int_0^\infty e^{-ty} k_{\mu}(t) dt}{y \int_0^\infty e^{-ty} \left(\int_t^\infty k_{\mu}(s) ds \right) dt}.$$

Now (5.8) implies

$$\int_t^\infty k_\mu(s)ds \sim t^{-p}\ell(t) \qquad (t o\infty),$$

so that

$$y \int_0^\infty e^{-ty} \left(\int_t^\infty k_\mu(s) ds \right) dt \sim y^p \ell(1/y) \Gamma(1-p) \qquad (y \downarrow 0)$$

(cf. [3, Theorem 1.7.6]). On the other hand,

$$\lim_{y\downarrow 0} \int_0^\infty e^{-ty} k_\mu(t) dt = 1.$$

Thus

$$y \int_0^\infty e^{-ty} k_{\nu}(t) dt \sim \frac{y^{1-p}}{\ell(1/y)\Gamma(1-p)} \qquad (y \downarrow 0).$$

By Karamata's Tauberian theorem ([3, Theorem 1.7.6]), this implies (5.9). \Box

Theorem 5.3. Let $0 and let <math>\ell(\cdot)$ be a slowly varying function at infinity. Let μ be a finite measure in \mathcal{M}_1 satisfying (5.8). Then μ satisfies (L1), whence (L). If we put $\nu := \theta_1(\mu)$, then $k_{\nu}(\cdot)$ satisfies (5.9), and the autocovariance function $\gamma_{\nu}(\cdot)$ of the stationary process $(U_{\nu}(t))$ in (5.7) satisfies

(5.10)
$$\gamma_{\nu}(t) \sim \frac{t^{-(1-2p)}}{\ell(t)^2} \left(\frac{\sin(p\pi)}{\pi}\right)^2 B(1-2p,p) \qquad (t \to \infty).$$

Proof. By Lemma 5.2, $k_{\nu}(\cdot)$ satisfies (5.9). Thus (5.6) holds. Moreover, by [10, Proposition 4.3], we have

$$\gamma_{\nu}(t) = \int_{0}^{\infty} k_{\nu}(t+s)k_{\nu}(s)ds \sim \frac{t^{-(1-2p)}}{\ell(t)^{2}} \left(\frac{\sin(p\pi)}{\pi}\right)^{2} B(1-2p,p) \qquad (t\to\infty).$$

Thus the theorem follows.

Example 5.4. For $0 , set <math>\mu(ds) := \Gamma(p)^{-1} s^p e^{-s} ds$. Then we have

$$k_{\mu}(t) = rac{p}{(t+1)^{p+1}} \qquad (t>0).$$

Since $k_{\mu}(0+) < \infty$, $\int_0^{\infty} k_{\mu}(t)dt = 1$, $\int_0^{\infty} dt \int_t^{\infty} k_{\mu}(s)ds = \infty$, and

$$k_{\mu}(t) \sim pt^{-(p+1)}$$
 $(t \to \infty),$

we find that μ satisfies (L); take $\ell(\cdot) = 1$ in Theorem 5.1.

6. Short-memory model

If ν is a finite measure in \mathcal{N}_0 , then

$$\int_0^\infty k_{\nu}(t)^2 dt \le k_{\nu}(0+) \int_0^\infty k_{\nu}(t) dt < \infty.$$

Thus ν satisfies (5.3). In this case, since $\int_0^\infty k_{\nu}(t)dt < \infty$, the stationary process $(U_{\nu}(t))$ is short-memory.

Theorem 6.1. Let $\sigma > 0$ and let μ be a measure satisfying (S). Set $\nu := \theta_0(\mu)$. Then the stationary random distribution X defined by

$$(6.1) X = \sigma U_{\nu} + \sigma DW.$$

is the unique stationary random distribution that satisfies (5.1).

Proof. It follows from Lemma 3.5 that $\nu(0,\infty) < \infty$. Hence (5.3) holds. Let X be a stationary random distribution satisfying (5.1). As in the proof of Theorem 5.1 but using Proposition 4.3 (1) instead of (2), we see that $X_1 = 0$, i.e., $X = P_{DW}X$. Then, in a similar manner, we find that X is given by (6.1).

We investigate the asymptotics for $k_{\nu}(t)$ and $\gamma_{\nu}(t)$ as $t \to \infty$ when $k_{\mu}(t)$ is regularly varying.

Lemma 6.2. Let $\mu \in \mathcal{M}_0$ and $\nu := \theta_0(\mu)$. Let $0 and <math>\ell(\cdot)$ be a slowly varying function at ∞ . Then

(6.2)
$$k_{\mu}(t) \sim t^{-(p+1)} \ell(t) p \qquad (t \to \infty)$$

if and only if

(6.3)
$$k_{\nu}(t) \sim t^{-(p+1)} \ell(t) \frac{p}{\{1 - \int_{0}^{\infty} k_{\mu}(u) du\}^{2}} \qquad (t \to \infty).$$

Proof. We prove only the implication $(6.2) \Rightarrow (6.3)$. The converse implication $(6.3) \Rightarrow (6.2)$ can be proved in a similar fashion. Thus we assume (6.2). We set n := [p], where $[\cdot]$ denotes the integer part. We define

$$f(y):=1-\int_0^\infty e^{-yt}k_\mu(t)dt \qquad (y>0).$$

By differentiating both sides of

$$\int_0^\infty e^{-yt} k_{\nu}(t) dt = \frac{1}{f(y)} - 1 \qquad (y > 0)$$

n+1 times with respect to y, we obtain

$$\int_0^\infty e^{-yt} t^{n+1} k_{\nu}(t) dt = \frac{\int_0^\infty e^{-yt} t^{n+1} k_{\mu}(t) dt}{f(y)^2} + \frac{F_{n+1}(y)}{f(y)^{n+2}} \qquad (y > 0),$$

where $F_{n+1}(y)$ is a polynomial in $\{f^{(k)}(y): k = 0, 1, ..., n\}$ (see [8, Lemma 3.2]). Since n+1-(p+1)=n-p>-1 and

$$t^{n+1}k_{\mu}(t) \sim t^{n-p}\ell(t)p \qquad (t \to \infty),$$

it follows that

$$\int_{0}^{\infty} e^{-yt} t^{n+1} k_{\mu}(t) dt \sim y^{-n+p-1} \ell(1/y) p\Gamma(n-p+1) \qquad (y \to 0+)$$

(see [3, Theorem 1.7.6]). On the other hand, for any $\epsilon > 0$ and $0 \le k \le n$, we have

$$y^{\epsilon} f^{(k)}(y) \to 0 \qquad (y \to 0+)$$

(cf. [8, Lemma 3.5]), and so

$$\frac{F_{n+1}(y)}{y^{-n+p-1}\ell(1/y)} \to 0 \qquad (y \to 0+).$$

Thus

$$\int_0^\infty e^{-yt} t^{n+1} k_{\nu}(t) dt \sim y^{-n+p-1} \ell(1/y) \frac{p\Gamma(n-p+1)}{\{1 - \int_0^\infty k_{\mu}(u) du\}^2} \qquad (y \to 0+).$$

Since the function $\log\{t^{n+1}k_{\nu}(t)\}$ is slowly increasing ([3, §1.7.6]), Karamata's Tauberian theorem (cf. [3, Theorem 1.7.6]) yields

$$t^{n+1}k_{\nu}(t) \sim t^{n-p}\ell(t) \frac{p}{\{1 - \int_{0}^{\infty} k_{\mu}(u)du\}^{2}}$$
 $(t \to \infty),$

or (6.3), as desired.

Remark 6.3. The condition $\mu \in \mathcal{M}_0$ implies

$$1 - \int_0^\infty k_\mu(u) du = 1 - \int_0^\infty s^{-1} \mu(ds) > 0.$$

Theorem 6.4. Let $0 and <math>\ell(\cdot)$ be a slowly varying function at ∞ . Let μ be a measure satisfying (S), and set $\nu := \theta_0(\mu)$. Let $(U_{\nu}(t) : t \in \mathbf{R})$ be the stationary process in (6.1) with autocovariance function $\gamma_{\nu}(\cdot)$. Then (6.2) implies (6.3) and

(6.4)
$$\gamma_{\nu}(t) \sim t^{-(p+1)} \ell(t) \frac{p \int_{0}^{\infty} k_{\mu}(u) du}{\{1 - \int_{0}^{\infty} k_{\mu}(u) du\}^{3}} \qquad (t \to \infty).$$

Proof. That (6.2) implies (6.3) is a direct consequence of Lemma 6.2. Now we have

$$\gamma_
u(t) = \int_0^\infty k_
u(t+s) k_
u(s) ds \sim k_
u(t) \left(\int_0^\infty k_
u(s) ds
ight) \qquad (t o \infty)$$

(see [8, Lemma 3.8]). Since

$$\int_{0}^{\infty} k_{\nu}(s)ds = \frac{\int_{0}^{\infty} k_{\mu}(s)ds}{1 - \int_{0}^{\infty} k_{\mu}(s)ds}$$

(6.4) follows.

Example 6.5. For 0 and <math>0 < c < 1, we put

$$\mu(ds)=rac{c}{\Gamma(p)}s^pe^{-s}ds.$$

Then $k_{\mu}(t) = pc(1+t)^{-p-1}$ for t > 0. We see that μ satisfies (S) and (6.2) with $\ell(\cdot) = c$.

We now investigate the asymptotics for $k_{\nu}(t)$ and $\gamma_{\nu}(t)$ when $k_{\mu}(t)$ decays exponentially as $t \to \infty$. For a finite Borel measure ρ on $(0, \infty)$, we define $s_0(\rho) \in [0, \infty)$ by

$$s_0(\rho) := \inf\{s : s \in \text{supp } \rho\}.$$

Then it holds that

$$\lim_{t \to \infty} \frac{\log k_{\rho}(t)}{t} = -s_0(\rho)$$

(see [15, Proposition 3.2]). This implies that $k_{\rho}(t)$ decays exponentially if and only if $s_0(\rho) > 0$.

Lemma 6.6. Let $\mu \in \mathcal{M}_0$, and let $\nu := \theta_0(\mu) \in \mathcal{N}_0$. Then the following are equivalent:

$$(6.5) s_0(\mu) > 0,$$

$$(6.6) s_0(\nu) > 0.$$

Proof. We prove only the implication $(6.5) \Rightarrow (6.6)$. The converse $(6.6) \Rightarrow (6.5)$ can be proved in a similar fashion. Assume (6.5). Then, in part (I) of the proof of Theorem 3.1, we can choose the sequence of simple measures μ_n so that supp $\mu_n \subset [s_0(\mu), \infty)$ for $n = 1, 2, \ldots$ Moreover, by taking $\mu_n + (1/n)\delta_{s_0(\mu)}$, we may (and shall) assume that $s_0(\mu_n) = s_0(\mu)$ for $n = 1, 2, \ldots$ Then, by (2.8), we find that the simple measures $\tilde{\nu}_n$ are of the form

$$ilde{
u}_n = b(n)\delta_{p(n)} + ilde{\eta}_n \qquad (n = 1, 2, \ldots),$$

where $b(n) \in (0, \infty)$, $p(n) \in (0, s_0(\mu))$, and $\tilde{\eta}_n$ are simple measures such that supp $\tilde{\eta}_n \subset (s_0(\mu), \infty)$. Since

$$b(n) \le \tilde{\nu}_n(0, \infty) \le \sup_{m} \tilde{\nu}_m(0, \infty) < \infty,$$

$$\tilde{\eta}_n(s_0(\mu), \infty) \le \tilde{\nu}_n(0, \infty) \le \sup_{m} \tilde{\nu}_m(0, \infty) < \infty,$$

we can choose the subsequence n' there so that, for some $b \in [0, \infty)$, $p \in [0, s_0(\mu)]$ and finite Borel measure $\tilde{\eta}$ on $[s_0(\mu), \infty]$, we have $b(n') \to b$, $p(n') \to p$, and $\tilde{\eta}_n \to \tilde{\eta}$ weakly on $[s_0(\mu), \infty]$. By the arguments in the part (I) of the proof of Theorem 3.1, we find that $\nu := \theta_0(\mu)$ is of the form

$$u = \begin{cases} b\delta_p + \eta & \text{if } p > 0, \\ \eta & \text{if } p = 0, \end{cases}$$

where η is the measure on $(0, \infty)$ defined by

$$\eta(ds) := I_{[s_0(\mu),\infty)}(s)s\tilde{\eta}(ds).$$

Thus (6.6) follows.

Remark 6.7. For $\mu \in \mathcal{M}_0$ and $\nu := \theta_0(\mu) \in \mathcal{N}_0$, we can prove $s_0(\nu) \leq s_0(\mu)$.

Theorem 6.8. Let μ be a measure satisfying (S), and set $\nu := \theta_0(\mu)$. Let $(U_{\nu}(t) : t \in \mathbf{R})$ be the stationary process in (6.1) with autocovariance function $\gamma_{\nu}(\cdot)$. If $k_{\mu}(t)$ decays exponentially as $t \to \infty$, then both $k_{\nu}(t)$ and $\gamma_{\nu}(t)$ decay exponentially as $t \to \infty$.

Proof. The exponential decay of $k_{\nu}(t)$ follows from Lemma 6.6. Now

$$\gamma_
u(t) = \int_0^\infty e^{-ts} \sigma(ds) \qquad (t \in {f R})$$

with

$$\sigma(ds) := \left\{ \int_0^\infty rac{1}{s+u}
u(du)
ight\}
u(ds).$$

Clearly $s_0(\sigma) = s_0(\nu)$, and so $\gamma_{\nu}(t)$ also decays exponentially.

Example 6.9. Let μ be as in Example 2.4. Clearly μ satisfies (S). In this case, $k_{\mu}(t) = ae^{-rt}$ for t > 0 and $k_{\nu}(t) = ae^{-(r-a)t}$. The autocovariance function $\gamma_{\nu}(t)$ of U_{ν} in (6.1) is given by

$$\gamma_{
u}(t) = a^2 \int_0^\infty e^{-(r-a)(|t|+s)} e^{-(r-a)s} ds = rac{a^2 e^{-(r-a)|t|}}{2(r-a)} \qquad (t \in \mathbf{R}).$$

7. RISKY ASSET MODEL

Let $\sigma \in (0, \infty)$, $m \in \mathbb{R}$, and $(W(t) : t \in \mathbb{R})$ be a one-dimensional standard Brownian motion such that W(0) = 0, defined on (Ω, \mathcal{F}, P) . We consider a risky asset with price S(t) at time t. We suppose that S(t) is of the form (1.1) with

$$Z(t) = mt + Y(t) \qquad (t \in \mathbf{R}),$$

where $(Y(t): t \in \mathbf{R})$ is a zero-mean, mean-square continuous process with stationary increments such that Y(0) = 0. We also suppose that the derivative X := DY is the (purely nondeterministic) solution to (5.1) for μ satisfying (S) (resp. (L)). Then, by Theorem 5.1 (resp. Theorem 6.1) and [11, Theorem 6.1], Z(t) is of the form (1.6) with $\nu = \theta_0(\mu)$ (resp. $\nu = \theta_1(\mu)$), whence

(7.1)
$$S(t) = S(0) \exp\left\{mt + \sigma \int_0^t U_{\nu}(s)ds + \sigma W(t)\right\} \qquad (t \ge 0)$$

As before, we write $\gamma_{\nu}(\cdot)$ for the autocovariance function of the stationary process $(U_{\nu}(t):t\in\mathbf{R})$.

Let \mathcal{N} be the class of all P-negligible sets from \mathcal{F} . We use the following P-augmented filtration $(\mathcal{F}_t)_{t>0}$:

$$\mathcal{F}_t := \bigcap_{\epsilon > 0} \sigma(\mathcal{G}_{t+\epsilon} \cup \mathcal{N}) \qquad (t \ge 0),$$

where

$$\mathcal{G}_t := \sigma\{W(s) : -\infty < s \le t\} \qquad (t \ge 0)$$

Then, with respect to $(\mathcal{F}_t)_{t\geq 0}$, the Brownian motion $(W(t):t\geq 0)$ is a (\mathcal{F}_t) -Brownian motion, and the process $(U_{\nu}(t):t\geq 0)$ is (\mathcal{F}_t) -adapted, as is desired here.

Suppose that we are in a market in which the riskless asset price $S_0(t)$ follows $S_0(t) = \exp(rt)$ for $t \geq 0$, where r is a nonnegative constant. We write $\tilde{S}(t)$ for the discounted price of the risky asset: $\tilde{S}(t) := e^{-rt}S(t)$. We put

$$a:=rac{m-r+rac{1}{2}\sigma^2}{\sigma}, \ W^*(t):=W(t)+\int_0^t \{a+U_
u(s)\}ds \qquad (t\geq 0).$$

Then we have

(7.2)
$$\tilde{S}(t) = S(0) \exp\left(\sigma W^*(t) - \frac{1}{2}\sigma^2 t\right).$$

Lemma 7.1. Let $0 < t < \infty$ and $0 < \delta < \gamma_{\nu}(0)^{-1}$. Then

(7.3)
$$E\left[\exp\left\{\frac{1}{2}\int_{t}^{t+\delta}(a+U_{\nu}(s))^{2}ds\right\}\right]<\infty.$$

Proof. By Jensen's inequality, we have

$$\exp\left\{\frac{1}{2}\int_t^{t+\delta}(a+U_{\nu}(s))^2ds\right\} \le \frac{1}{\delta}\int_t^{t+\delta}\exp\left\{\frac{\delta}{2}(a+U_{\nu}(s))^2\right\}ds.$$

Since $(U_{\nu}(s))$ is a stationary Gaussian process, it follows that

$$E\left[\exp\left\{\frac{1}{2}\int_{t}^{t+\delta}(a+U_{\nu}(s))^{2}ds\right\}\right] \leq \frac{1}{\delta}\int_{t}^{t+\delta}E\left[\exp\left\{\frac{\delta}{2}(a+U_{\nu}(s))^{2}\right\}\right]ds$$

$$= E\left[\exp\left\{\frac{\delta}{2}(a+U_{\nu}(0))^{2}\right\}\right]$$

$$= \frac{1}{\sqrt{2\pi\gamma_{\nu}(0)}}\int_{-\infty}^{\infty}\exp\left\{\frac{\delta}{2}(a+x)^{2}\right\}\exp\left\{-\frac{x^{2}}{2\gamma_{\nu}(0)}\right\}dx.$$

Thus the lemma follows.

Remark 7.2. Let $\{t_n\}_{n=0}^{\infty}$ be a sequence of real numbers with $0 = t_0 < \cdots < t_n \uparrow \infty$, such that $t_n - t_{n-1} < \gamma_{\nu}(0)^{-1}$ for $n = 1, 2, \ldots$ Then, by Lemma 7.1, we have

$$E\left[\exp\left\{\frac{1}{2}\int_{t_{n-1}}^{t_n}(a+U_{\nu}(s))^2ds\right\}\right]<\infty \qquad (n=1,2,\ldots).$$

Therefore, by [12, Corollary 5.14] and Girsanov's theorem (cf. [12, §3.5]), there exists a probability measure P^* , equivalent to P, under which $(W^*(t):0 \le t < \infty)$ is a standard Brownian motion . From (7.2), we see that the behaviour of $(\tilde{S}(t):0 \le t < \infty)$ under P^* is equal to that in the Black-Scholes environment with volatility σ . In particular, for any T>0, the prices of European calls and puts with maturity T are given by the Black-Scholes formulas with implied volatility σ .

We now turn to the variance of $\log(S(t)/S(s))$ for $t > s \ge 0$.

Lemma 7.3. Let $t > s \ge 0$. Then

(7.4)
$$\operatorname{Var}\{\log(S(t)/S(s))\} = \left\{ (t-s) + 2 \int_0^{t-s} du \int_0^u k_{\nu}(v) dv + 2 \int_0^{t-s} du \int_0^u \gamma_{\nu}(v) dv \right\} \sigma^2.$$

Proof. We have

$$\begin{split} &\operatorname{Var}\{\log(S(t)/S(s))\} = E\left[\left\{W(t) - W(s) + \int_{s}^{t} U_{\nu}(u) du\right\}^{2}\right] \sigma^{2} \\ &= \left\{(t-s) + 2E\left[\left(W(t) - W(s)\right) \int_{s}^{t} U_{\nu}(u) du\right] + \int_{s}^{t} \int_{s}^{t} \gamma_{\nu}(u-v) du dv\right\} \sigma^{2}. \end{split}$$

By simple calculation, we get

$$\int_{s}^{t} \int_{s}^{t} \gamma_{\nu}(u-v) du dv = 2 \int_{0}^{t-s} du \int_{0}^{u} \gamma_{\nu}(v) dv.$$

Now, for $s \leq u \leq t$,

$$E[(W(t) - W(s))U_{
u}(u)] = E[(W(u) - W(s))U_{
u}(u)] = \int_{s}^{u} k_{
u}(u - v)dv,$$

whence

$$E\left[\left(W(t)-W(s)
ight)\int_s^t U_
u(u)du
ight]=\int_s^t\int_s^u k_
u(u-v)dudv=\int_0^{t-s}du\int_0^u k_
u(v)dv.$$

Thus the lemma follows.

From (7.3), we find that, in our model,

$$Var\{\log(S(t)/S(s))\} \ge (t-s)\sigma^2 \qquad (t>s\ge 0).$$

In other words, the historical volatility \geq the implied volatility. The equality holds only when the model is Black-Scholes.

Now we investigate the asymptotic behavior of $Var\{log(S(t)/S(s))\}\$ as $t-s\to\infty$. First we consider the short-memory case.

Proposition 7.4. We assume (S). Then

(7.5)
$$\operatorname{Var}\{\log(S(t)/S(s))\} \sim (t-s) \left\{ 1 + \int_0^\infty k_{\nu}(u) du \right\}^2 \sigma^2 \\ = (t-s) \left\{ 1 - \int_0^\infty k_{\mu}(u) du \right\}^{-2} \sigma^2 \qquad (t-s \to \infty).$$

Proof. The assumption (S) implies that $\int_0^\infty k_{\nu}(t)dt < \infty$. Now

$$\int_0^\infty \gamma_
u(t) dt = rac{1}{2} \left\{ \int_0^\infty k_
u(u) du
ight\}^2.$$

Thus (7.5) follows from (7.4).

Next we consider the long-memory case.

Proposition 7.5. Let $0 and let <math>\ell(\cdot)$ be a slowly varying function at infinity. We assume (L) and (5.8), hence (5.9). Then

$$(7.6) \operatorname{Var}\{\log(S(t)/S(s))\} \sim \frac{(t-s)^{2p+1}}{\ell(t-s)^2} \left(\frac{\sin(p\pi)}{\pi}\right)^2 \frac{B(1-2p,p)}{p(2p+1)} \sigma^2 \quad (t-s\to\infty).$$

Proof. By Theorem 5.3, (5.9) and (5.10) hold. We then find that, among the three terms on the right-hand side of (7.4), the first and second terms are negligible relative to the third. Thus

$$\operatorname{Var}\{\log(S(t)/S(s))\} \sim 2\sigma^{2} \int_{0}^{t-s} du \int_{0}^{u} \gamma_{\nu}(v) dv$$
$$\sim \frac{(t-s)^{2p+1}}{\ell(t-s)^{2}} \left(\frac{\sin(p\pi)}{\pi}\right)^{2} \frac{B(1-2p,p)}{p(2p+1)} \sigma^{2}$$

as $t - s \to \infty$, hence (7.6).

It should be noted that, in (7.6), the index of (t-s) is 2p+1 unlike the short-memory case (7.5).

If ϕ is a positive measurable function on **R** such that $(1+t^2)^{-1}\log\phi(t)\in L^1(\mathbf{R},dt)$, and if

(8.1)
$$f(z) := \exp\left\{\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{1+tz}{t-z} \cdot \frac{\log \phi(t)}{1+t^2} dt\right\} \qquad (\Im z > 0),$$

then we call f an *outer function*. For completeness, we prove the following (seemingly well-known) theorem.

Theorem A. Let f(z) be analytic and $\Re\{f(z)\} > 0$ in $\{z \in \mathbb{C} : \Im z > 0\}$. Then f is an outer function.

Proof. As in Duren [7, p. 189], we consider the following mappings from $\{z \in \mathbb{C} : \Im z > 0\}$ onto $\{w \in \mathbb{C} : |w| < 1\}$:

$$w=p(z)=rac{z-i}{z+i}, \qquad z=q(w)=rac{i(1+w)}{1-w}.$$

Set

$$g(w) := f(q(w))$$
 $(|w| < 1).$

Since $\Re\{F(w)\} > 0$, F is an outer function on $\{|w| < 1\}$ (see, e.g., Duren [7, p. 51]). Hence

$$\psi(e^{i heta}) \coloneqq \lim_{r\uparrow 1} |F(re^{i heta})|$$

exists for almost every $\theta \in (-\pi, \pi)$ and it holds that

$$g(w) := \exp\left\{rac{1}{2\pi}\int_{-\pi}^{\pi}rac{e^{i heta}+w}{e^{i heta}-w}\log|\psi(e^{i heta})|d heta
ight\} \qquad (|w|<1)$$

(cf. Rudin [17, 17.16 Theorem]). Now with the change of variables $e^{i\theta}=p(t)$ and w=p(z), it follows that

$$\frac{e^{i\theta} + w}{e^{i\theta} - w} = \frac{1 + tz}{i(t - z)}$$

and

$$d heta = rac{2t}{1+t^2}dt.$$

Thus ϕ defined by $\phi(t) := \psi(q(t))$ satisfies $(1+t^2)^{-1} \log \phi(t) \in L^1(\mathbf{R}, dt)$ and (8.1). \square

From the proof above, we find that, for f and ϕ in (8.1),

$$\lim_{y\downarrow 0} |f(x+iy)| = \phi(x)$$
 a.e. on ${f R}$

REFERENCES

- V. V. Anh and C. C. Heyde (Eds.), Special Issue on Long-Range Dependence, J. Statist. Plann. Infer. 80, 1999.
- [2] J. Beran, Statistics of Long-Memory Processes, Chapman & Hall, 1994.
- [3] N. H. Bingham, C. M. Goldie and J. L. Teugels, *Regular Variation*, 2nd edn, Cambridge University Press, 1989.
- [4] N. J. Cutland, P. E. Kopp and W. Willinger, Stock price returns and the Joseph effect: a fractional version of the Black-Scholes model, Progress in Probability, Vol. 36, 1995, 327-351.
- [5] F. Comte and E. Renault, Long memory continuous-time models, J. Econometrics 73 (1996), 101-149.
- [6] F. Comte and E. Renault, Long memory in continuous-time stochastic volatility models, Mathematical Finance 8 (1998), 291-323.
- [7] P. L. Duren, Theory of H^p-spaces, Academic Press, New York, 1970.
- [8] A. Inoue, The Alder-Wainwright effect for stationary processes with reflection positivity,
 J. Math. Soc. Japan 43 (1991), 515-526.

- [9] A. Inoue, On the equations of stationary processes with divergent diffusion coefficients, J. Fac. Sci. Uviv. Tokyo Sec. IA 40 (1993), 307-336.
- $[10] \ A. \ In oue, \ \textit{Regularly varying correlation functions and KMO-Langevin equations}, \ Hokkaido$ Math. J. 26 (1997), 1-26.
- [11] K. Itô, Stationary random distributions, Mem. Coll. Sci. Univ. Kyoto 28 (1954), 209-223.
- [12] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, 2nd edn, Springer, New York, 1991.
- [13] S. J. Lin, Stochastic analysis of fractional Brownian motions, Stochastics and Stochastics Reports, 55 (1995), 121-140.
- [14] R. S. Liptser and A. N. Shiryayev, Theory of Martingales, Springer-Verlag, 1989.
- [15] Y. Okabe and A. Inoue, On the exponential decay of the the correlation functions for KMO-Langevin equations, Japan. J. Math. 18 (1992), 13-24.
- [16] L. C. C. Rogers, Arbitrage with fractional Brownian motion, Mathematical Finance 7 (1997), 95-105.
- [17] W. Rudin, Real and Complex Analysis, 3rd edn, McGraw-Hill, New York, 1987.
- [18] W. Willinger, M. S. Taqqu and V. Teverovsky, Stock market prices and long-range dependence, Finance and Stochastics 3 (99), 1-13.

E-mail address: v.anh@fsc.qut.edu.au

E-mail address: inoue@math.sci.hokudai.ac.jp

SCHOOL OF MATHEMATICAL SCIENCES, QUEENSLAND UNIVERSITY OF TECHNOLOGY, GPO BOX 2434, BRISBANE, QUEENSLAND 4001, AUSTRALIA

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HOKKAIDO UNIVERSITY, SAPPORO 060-0810, Japan