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Abstract

The non-relativistic (scaling) limit of a particle-field Hamiltonian H, called a
Dirac-Maxwell operator, in relativistic quantum electrodynamics is considered. It
is proven that the non-relativistic limit of H yields a self-adjoint extension of the
Pauli-Fierz Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics.
This is done by establishing in an abstract framework a general limit theorem on
a family of self-adjoint operators partially formed out of strongly anticommuting
self-adjoint operators and then by applying it to H.

Keywords: quantum electrodynamics, Dirac operator, Dirac-Maxwell operator, Pauli-
Fierz Hamiltonian, non-relativistic limit, scalig limit, Fock space, strongly anticommuting
self-adjoint operators

1 Introduction

In a previous paper [3], the author analyzed fundamental properties of a particle-field
Hamiltonian H in relativistic quantum electrodynamics (QED), namely, the Hamiltonian
of a Dirac particle — a relativistic charged particle with spin 1/2 — interacting with the
quantum radiation field. For convenience in mentioning the particle-field Hamiltonian, we
call it a Dirac-Mazwell operator. In this paper, we consider the non-relativistic (scaling)
limit of H. We prove that the non-relativistic limit of H yields a self-adjoint extension
of the Pauli-Fierz Hamiltonian with spin 1/2 in non-relativistic QED. This establishes a
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mathematically rigorous connection of relativistic QED to non-relativistic QED, which
has not been proved so far.

The Dirac-Maxwell operator H is of the form H = Hp+ Hpaq-+ Hy, where Hp is a Dirac
opeartor describing the Dirac particle system only, H..4 is the free Hamiltonian of the
quantum radiation field (a quantum version of the Maxwell Hamiltonian in the Coulomb
gauge) and Hy is the interaction term beween the Dirac particle and the quantum radiation
field. As for the Dirac operator Hp, the non-relativistic limit has already been investigated
and well understood ([11, Chapter 6] and references therein). We extend the methods used
in the case of the Dirac operator Hp to the case of H. This can be done in an abstract
framework. We remark that the non-relativistic limit theory of Hp is included in the
theory of scaling limits on strongly anticommuting self-adjoint operators [2]. In view of
this structure, we further develop the theory of scaling limits on strongly anticommuting
self-adjoint operators in such a way that it can be applied to the non-relativistic limit of
H. This is an outline of our method taken in the present paper.

The present paper is organized as follows. In Section 2 we describe the Dirac-Maxwell
operator and the Pauli-Fierz Hamiltonian with spin 1/2. In Section 3 we state the main
results of the present paper. Section 4 is devoted to an abstract analysis of a family of self-
adjoint operators partially formed out of strongly anticommuting self-adjoint operators.
We prove a limit theorem and a resolvent formula. These results are generalizations of
previously known ones ([2], [11, Chapter 6]). In the last section, applying the general
limit theorem established in Section 4, we prove the main results. In Appendix A we
present a method to find a self-adjoint extension S of a Hermitian operator S defined as
a finite sum of self-adjoint operators bounded from below. The self-adjoint extension S
may be different from the Friedrichs extension and the one defined as a form sum if S is
symmetric, but not essentially self-adjoint. The method here has an advantage in that S
can be approximated by a family {S(k)}x~o of self-adjoint operators (as k — co) which
are defined by “cutting off” S and may be tractable. We apply this abstract method to
the construction of a self-adjoint extension of the Pauli-Fierz Hamiltonian without spin
(Appendix B) and that with spin 1/2 (Section 3.3).

2 The Dirac-Maxwell Operator and The Pauli-Fierz
Hamiltonian

For a linear operator T on a Hilbert space, we denote its domain by D(T), and its
adjoint by T* ( provided that T is densely defined). For two objects a = (a1, as,as) and
b = (b1, be, bs) such that products a;b; (j = 1,2,3) and their sum can be defined, we set
a-b:= Z?’:l anJ

We use the physical unit system in which c(the speed of light)= 1 and # = 1 (h :=
h/(2m); h is the Planck constant).

2.1 The Dirac operator

Let Dj (7 = 1,2,3) be the generalized partial differential operator in the variable z;, the
J-th component of = (z1,z3,z3) € R® and V := (Dy, Dy, Ds).



We denote the mass and the charge of the Dirac particle by m > 0 and ¢ € R\ {0}
respectively. We consider the situation where the Dirac particle is in a potential V' which
is a Hermitian-matriz-valued Borel measurable function on R3. Then the Hamiltonian of
the Dirac particle is given by the Dirac operator

Hp:=o-(—iV)+mgB+V (2.1)

acting in the Hilbert space
Hp = &*L*(R?) (2.2)

with domain D(Hp) = [@*H(R*)] N D(V) (H'(R?) is the Sobolev space of order 1),
where a; (j = 1,2,3) and § are 4 x 4 Hermitian matrices satisfying the anticommutation
relations

{aj, ax} =263, J,k=1,2,3, (2.3)
{ajv /6} = 07 » 182 - 17 .7 - 1a27 35 (24)

{4, B} == AB+ BA and §;;, is the Kronecker delta. We assume the following:

Hypothesis (A)

Each matrix element of V is almost everywhere (a.e.) finite with respect to the
three-dimensional Lebesgue measure dz and the subspace NS_;[D(D;) N D(V)] is
dense in Hp.

Under this hypothesis, Hp is a symmetric operator. Detailed analysis of the Dirac
operator is given in [11].

Example 2.1 A typical example for V is
Vem 1= ¢ — g - A

with ¢ : R® — R an external scalar potential and A™ := (A%, A, AF) : R® — R?® an
external vector potential, where AS* and ¢ are in the set

L% (R?) = { f : R® — C;Borel measurable

/WSR \f()[2dz < co, VR > 0} .

Then D(Verm) D @*C5°(R3), where C°(R?) is the set of C*°-functions on R? with compact
support. Hence M3_;[D(D;) N D(Vem)] is dense. Thus Ve obeys Hypothesis (A).

2.2 The quantum radiation field

The Hilbert space of one-photon states in momentum representation is given by

Hon := L*(R®) @ L*(R?), (2.5)



where R3 := {k = (k1, k2, k3)|k; € R, j = 1,2, 3} physically means the momentum space
of photons. Then a Hilbert space for the quantum radiation field in the Coulomb gauge
is given by

Frad = D520 & Hpn, (2.6)

the Boson Fock space over Hpp, where ®2Hpy denotes the n-fold symmetric tensor product
of Hpn and ®2Hp, := C. For basic facts on the theory of the Boson Fock space, we refer
the reader to [9, §X.7).

We denote by o F) (F € Hpn) the annihilation operator with test vector F' on Frad;
its adjoint is given by

(a(F) )™ = ynS,(F@¥™ V), n>0,¥={¥"}2,; e D(a(F)"),

where S, is the symmetrization operator on ®"Hpy and v—1.=0Q.
For each f € L*(R3), we define

a®(f) = a(£,0), a®(f) =a(0, ). (2.7)

The mapping : f — o (f*) restricted to S(R?) (the Schwartz space of rapidly decreasing
C>-functions on R?3) defines an operator-valued distribution (f* denotes the complex
conjugate of f). We denote its symbolical kernel by a®™ (k): o™ (f) = [a™ (k) f(k)*dE.

We take a nonnegative Borel measurable function w on R® to denote the one free
photon energy. We assume that, for a.e. k € R® with respect to the Lebesgue measure
on R3, 0 < w(k) < co. Then the function w defines uniquely a multiplication operator on
‘Hpn which is nonnegative, self-adjoint and injective. We denote it by the same symbol w.
The free Hamiltonian of the quantum radiation field is then defined by

Heag = dT(w), (2.8)

the second quantization of w [8, p.302, Example 2] and [9, §X.7]. The operator Hrag

is a nonnegative self-adjoint operator. The symbolical expression of Hyngq is Hraqa =
2., Jw(k)a® (k)*a® (k)dk.

Remark 2.1 Usually w is taken to be of the form wynys(k) := |k|, k € R?, but, in
this paper, for mathematical generality, we do not restrict ourselves to this case.

There exist R3-valued Borel measurable functions ™ (r = 1,2) on R3 such that, for
a.e. k

e (k) -e® (k) = b, (k) k=0, rs=1,2. (2.9)

These vector-valued functions e(™ are called the polarization vectors of a photon.
The time-zero quantum radiation field is given by A(z) := (A1(x), A2(x), As(x)) with

2 (r)
. § : ej (k) T « —ik. r ik-x s
AJ(IB) = T:l/dkw {a( )(k:) € T -+ a( )(k:)e } y ]= 1, 2,3, (210)

in the sense of operator-valued distribution.



Let o be a real tempered distribution on R?® such that

€ L*(R?), (2.11)

€ |r>

2

Jo
where § denotes the Fourier transform of ¢. The quantum radiation field

A? = (A}, A3, A%) (2.12)
with momentum cutoft g is defined by

2 Y ) )
Af(a:) = ;/dkﬁ {a(") (k)*e“’k'mé(k)* + a(r)(k)e“km@(k)}. (2.13)

Symbolically Aj(z) = [ Aj(x — y)eo(y)dy.

2.3 The Dirac-Maxwell operator

The Hilbert space of state vectors for the coupled system of the Dirac particle and the
quantum radiation field is taken to be

F = HD ® f}ad- (214)

This Hilbert space can be identified as
®
F = LR @' Fraa) = /RS &' Fraade (2.15)

the Hilbert space of @*Fraa-valued Lebesgue square integrable functions on R® (the con-
stant fibre direct integral with base space (R3,dz) and fibre ®*Fr.q [10, §XIIL.6]). We
freely use this identification. The total Hamiltonian of the coupled system — a particle-
field Hamiltonian — is defined by

H:=Hp+ Hpq —qoe - A® = - (—IV — qA®) + mfB+ V + Hiag. (2.16)

We call H a Dirac-Mazwell operator. The (essential) self-adjointness of H is discussed in

3].

2.4 The Pauli-Fierz Hamiltonian with spin 1/2

A Hamiltonian which describes a quantum system of non-relativistic charged particles
interacting with the quantum radiation filed is called a Pauli-Fierz Hamiltonian [7]. Here
we consider a non-relativistic charged particle with mass m, charge ¢ and spin 1/2. Sup-
pose that the particle is in an external electromagnetic vector potential A™ = (A™, ),
where A™ 1= (A¥, A%, AY) : R® — R® and ¢ : R® — R are Borel measurable and a.e.
finite with respect to dx. Let

01 0 — 1 0
01::(1 O)’ 02::(12 OZ>, 03::<0 _1>, (2.17)



the Pauli spin matrices, and set
o = (0y,09,03). (2.18)
Then the Pauli-Fierz Hamiltonian of this quantum system is defined by

{o- (=iV —qA® — qA™)}

HpF = + ¢ + Hrad (219)
2m
acting in the Hilbert space
®
For = L*(R3,C?) @ Fraa = L*(R3 &% Fraa) = A{ , " Fraadz. (2.20)

For the Pauli-Fierz Hamiltonian without spin, see Appendix B.

3 Main Results

3.1 A Dirac operator coupled to the quantum radiation field

We use the following representation of a; and 5 [11, p.3]:

aj::<(?j %j), ﬂ::(% —0I2>’ (3.1)

where I is the 2 x 2 identity matrix. Hence the eigenspaces Hi of 8 with eigenvalue 1
take the forms respectively

f 0
b= 0 |[foerr@t, =2} |lreerm®y}. 6
0 g
and we have
Hp = Hb & HE. (3.3)
Let P. be the orthogonal projections onto H3. Then we have
V=Ww+W (3.4)
with
Ww=P, VP +P VP, V=P VP +PVP,. (3.5)
Note that

Vo, 8] =0, {W,8}=0,

where [A, B] :== AB — BA. In operator-matrix form relative to the orthogonal decompo-

sition (3.3), we have
(U 0 [0 W

6



where U.. are 2 x 2 Hermitian matrix-valued functions on R3 and W is a 2 x 2 complex
matrix-valued function on R3.
Let

PV) == a- (—iV—qA%) + W (3.7)
Then, recalling that AZ is H2_bounded [3], we see that JP(V}) is densely defined and sym-

metric with D(P(V4)) D (F‘I?:l[D(Dj) N D(V)]) <§§;ﬂgD(Hrla/é2 ), where ®,); means algebraic
tensor product.
By (3.3), we have the following orthogonal decomposition of F:

F=F.oF, (3.8)
where
f‘i = H% ®f‘rad = -7:PF- (39)
Relative to this orthogonal decomposition, we can write
_ 0 Dy
where
Dy = o-(—iV —gA)+ W, (3.11)

acting in Fpr.

For a closable linear operator T on a Hilbert space, we denote its closure by T" unless
otherwise stated.

Note that Dy is densely defined as an operator on Fpp and (Dy)* O Dw-. Hence
(Dw)* is densely defined. Thus Dy is closable. Based on this fact, we can define

P(W) = <E0 (Dw) ) (3.13)

W 0

Lemma 3.1 Under Hypothesis (A), P(V1) is a self-adjoint extension of P(V1).

Proof. The first half of the lemma follows from a general theorem (e.g., [11, p.142,
Lemma 5.3]). It is obvious that (V})|D(Dw) @ D(Dw-) = IP(V1), where, for a linear
operator T' and a subspace D C D(T’), T|D denotes the restriction of 7" to D. Hence
P(\1) is a self-adjoint extension of P(V]). u

Remark 3.1 The operator
= 0 Dyy-
pW) = < (D-)" 6" ) (3.14)

is also a self-adjoint extension of J)(V1). But, for simplicity, we consider here only DV,
Discussions on JP(V}) presented below apply also to [2(V;) with suitable modifications.



3.2 A scaled Dirac-Maxwell operator |

For a self-adjoint operator A, we denote the spectrum and the spectral measure of A by
o(A) and E4(-) respectively. In the case where A is bounded from below, we set

E(A) =info(A), A :=A—-&(A) >0.

Let A : (0,00) — (0, 00) be a nondecreasing function such that A(k) — oo as Kk — o0
and A be a self-adjoint operator on a Hilbert space. Then, for each x > 0, we define A®
by

Eo([0, A(k))A'E 4 ([0, A(r)]) + &(A) if A is bounded from below
and &(A) <0

A =
E4([0, A(K)])AE; 4 ([0, A(K)]) if A is nonnegative
or A is not bounded from below
(3.15)
Then A% is a bounded self-adjoint operator with
I A®] < A(k). (3.16)

Proposition 3.2 The following hold:
(i) For all ¢y € D(A), s - lim,_,oo A®) = Ay, where s - lim means strong limit.
(ii) For all z€ C\ R, s - limg_,oo(A® —2)71 = (A —2)~L.

Proof. Part (i) follows from the functional calculus of A. Part (ii) follows from (i) and
a general convergence theorem [8, p.292, Theorem VIII.25(a)]. |

With this preliminary, we define for k > 0 a scaled Dirac-Maxwell operator

H(x) = kP(V)) + K>mfB — k*m + Vo + r‘;i}, (3.17)
where ”
Uy® 0
%,fi = ( g U.(—K‘) ) . (3.18)

Some remarks may be in order on this definition. The parameter s in H(x) means
the speed of light concerning the Dirac particle only. The speed of light related to the
external potential V' = V4 4+ V4 and the quantum radiation field A? is absorbed in them
respectively. The third term —x?m on the right hand side of (3.17) is a subtraction of
the rest energy of the Dirac particle. Hence taking the scaling limit k — oo in H(k) in a
suitable sense corresponds in fact to a partial non-relativistic limit of the quantum system
under consideration.

If one considers the non-relativistic limit in a way similar to the usual Dirac operator
Hp, then one may define

H(k) :== 6P(V4) + 6*mfB — k*m+ Vo + Hraq (3.19)

8



as a scaled Dirac-Maxwell operator, where no cutoffs on Vg and Hr.q are made. In this
form, however, we find that, besides the (essential) self-adjointness problem of H(«), the
methods used in the usual Dirac type operators ([11, Chapter 6] or those in [2]) seem not
to work. This is because of the existence of the operator H,q in H (k) which is singular
as a perturbation of Hy(k) := &P(V1) + k2mB — k*m +V; ( if one would try to apply
the methods on sacaling limits discussed in the cited literatures, then one would have to
treat Hp,q as a perturbation of Hy(k)). To avoid this difficulty, we replace Hp.q in H (k)
by a bounded self-adjoint operator which is obtained by cutting off Hyaq. This is one of
the basic ideas of the present paper. We apply the same idea to Vj which also may be
singular as a perturbation of ﬁﬁ(vl) + k2mfB — k*m In this way we arrive at Definition
(3.17) of a scaled Dirac-Maxwell operator.

Lemma 3.3 Under Hypothesis (A), H(k) is self-adjoint with D(H(k)) = D(P(V1)).

Proof: The operator k2mf3 — k?*m + Vp . + Hr(:(i is a bounded self-adjoint operator.
Hence, by the Kato-Rellich theorem, the assertion follows. |

3.3 Self-adjoint extension of the Pauli-Fierz Hamiltonian

Essential self-adjointness of the the Pauli-Fierz Hamiltonian Hpp given by (2.19) and its
generalizations is discussed in [4, 5]. These papers show that, under additional conditions
on 9,w, A% and ¢, the Pauli-Fierz Hamiltonians are essentially self-adjoint. In the present
paper, we do not intend to discuss essential self-adjointness problem of the Pauli-Fierz
type Hamiltonians. Instead, we define a self-adjoint extension of Hpg, which may not be

known before.
We define

(Bv) D

m

Hpp(r; W,Uy) = + Uin) + Hr(:g, k>0 (3.20)

acting in JFpp.

Lemma 3.4 Under Hypotheses (A), Hpp(k; W,U,) is self-adjoint and bounded from
below.

Proof. By von Neumann’s theorem (e.g., [9, p.180, Theorem X.25]), the operator
(2m)? (EW)* Dy is self-adjoint and nonnegative. The operator U + H') is bounded
and self-adjoint. Hence, by the Kato-Rellich theorem, Hpr(x; W, U,) is self-adjoint and
bounded from below. [ ]

A generalization of the Pauli-Fierz Hamiltonian Hpy is defined by

Dw-k DW
2m

4

HpF(VV, U+) = —+ U+ + Hra.d (321)

acting in Fpp.
We formulate additional conditions:



Hypothesis (B)

The function U, is bounded from below. In this case we set

ug = E(U).

Remark 3.2 Under Hypothesis (A), D(Hpr(W,U,)) is not necessarily dense in Fpr,
but, D(Dw) N D(U) N D(Heaq) is dense in Fpp. Hence D(Dyw) N D(|U4|M2) N D(HY?)

rad
also is dense in Fpr. Therefore we can define a densely defined symmetric form spr as

follows:

D(spr) := D(Dw) N D(ULY?) N D(HLZ) (form domain), (3.22)
1 . _

ser(¥, @) := 5 —(Dw ¥, Dw®) + (¥, U19) + (L0, H5P),  (3.23)

\Il, OIS D(SpF). (324)

Assume Hypothesis (B) in addition to Hypothesis (A). Then it is easy to see that spr is
closed. Let Hf(,f% be the self-adjoint operator associated with spr. Then H}(f% > ug and
HF(,? is a self-adjoint extension of Hpr(W,U,).

Theorem 3.5 Under Hypotheses (A) and (B), there exists a self-adjoint extension of
Hep(W,U,.) of Hep(W,U,) which have the following properties:

@) Her(W,Uy) > uo.
(i) D(|Hex(W,U,)|"?) € D(Dw) N D(U+Y?) N D(Hyg)]
(iii) For all z € (C\ R) U {£ € R|£ < up},
s - Jim (Hew(s; W,UL) = 2) 7 = (Hee(W,U,) — 2),
where s - lim means strong limit.
(iv) For all £ < ug and ¥ € D(|Hpp(W,U,)|V?),

s - Jlim (Her (5 W, Us) = §)/% = (Hew(W, Uy) — €)/*0.

Proof. We need only to apply Theorem A.1 in Appendix A to the following case:

(D) D

H=Fpr, N=2, A=
2m

, Bi=U,, By= Hpg, L= A.

Remark 3.3 As for conditions for § and w for Theorem 3.5 to hold, we only need
condition (2.11); no additional conditions is necessary.
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Remark 3.4 In the same manner as in Theorem 3.5, we can define a self-adjoint
extension of the Pauli-Fierz Hamiltonian without spin (see Appendix B).

Remark 3.5 Under Hypotheses (A), (B) and that D(Her(W, U,.)) is dense, Hpp(W, US)
is a symmetric operator bounded from below. Hence it has the Friedrichs extension
Hpp(W,U,). But it is not clear that, in the case where Hpp(W,U,) is not essentially
self-adjoint, Hpp(W, U,) = Hpp(W,Uy) or Hpp(W,U,) = Hg})v (Remark 3. 2) or both of
them do not hold.

3.4 Main theorems

We now state main results on the non-relativistic limit of H (k).

Theorem 3.6 Let Hypotheses (A) and (B) be satisfied. Suppose that

2
lim A(:) — 0. (3.25)

Then, all z€ C\ R,
—~ —1
s - lim (H(x) —2) " = ( (Hee (W, g+) ~2) 8 ) . (3.26)

In the case where U, is not necessarily bounded from below, we have the following.

Theorem 3.7 Let Hypothesis (A), (B) and (3.25) be satisfied. Suppose that Hpp(W,U,.)
is essentially self-adjoint. Then, all z € C\ R,

s - lim (H(x) —2)7 = ( (Hor (W, [é+) —2)" 8 ) . (3.27)

Remark 3.6 Under additional conditions on g,w, W and U,, one can prove that
Hpp(W,U,) is essentially self-adjoint for all values of the coupling constant q [4, 5].

We now apply Theorems 3.6 and 3.7 to the case where V = V,, = ¢ — g - A™

(Example 2. 1), i.e., the case where W = —qo - A*™ and U, = ¢l,. We assume the
following.

Hypothesis (C)
(C.1) The subspace M5_;[D(D;) N D(ij) N D(4)] is dense in L2(R3).

(C.2) ¢ is bounded from below. In this case we set ¢g := inf o ().

11



Under Hypothesis (C), we have a self-adjoint opeartor

Hpp = Hpr(—qo - A%, ), (3.28)
which is a self-adjoint extension of the original Pauli-Fierz Hamiltonian Hpg given by
(2.19).

Let

Hpm(k) = klp(—qoc - A™) + &*mB — km + ¢ + Y, (3.29)

Then Hpum(k) is the Dirac-Maxwell operator H(k) with V3 = —ga - A™ and Vj = ¢.
Theorems 3.6 and 3.7 immediately yield the following results on the non-relativistic
limit of HDM(H)-

Corollary 3.8 Let Hypothesis (C) and (3.25) be satisfied. Then, for oll z € C\ R,

. -1 EpF —Z - 0
s - lim (Hpm(k) —2)7 = ( ( 0 ) X ) (3.30)

Corollary 3.9 Assume (C.1) and (3.25). Suppose that Hpp is essentially self-adjoint.
Then, all z € C\ R,

. -1 HPF —Zz i 0
s - Kh_{{.lo(HDM(Ii) —2) = ( ( 0 ) 0 ) (3.31)

Thus a mathematically rigorous connection of relativistic QED to non-relativistic QED
is established.

4 Limit Theorem on Strongly Anticommuting Self-
adjoint Operators

In this section we prove a limit theorem concerning strongly anticommuting self-adjoint
operators. For a review of the fundamental abstract theory of strongly anticommuting
self-adjoint operators, see [1].

Definition 4.1 Let A and B be self-adjoint operators on a Hilbert space H.

(i) We say that A and B strongly commaute if their spectral measures F4 and Ep
commute (i.e., for all Borel sets J C R, EA(J)Eg(J) = Eg(J)EA(J)).

(ii) We say that A and B strongly anticommute if, for all v € D(A) and t € R,
e "By € D(A) and Ae 4By = P Ay (i.e. e®BA C Ae™4B).

Let A # 0 and B be strongly anticommuting self-adjoint operators on a Hilbert space
‘H. We assume that B is injective. For each k > 0, we define

To(k) == kA + K%(B — |B]). (4.1)

12



The operator kA + k*B is an abstract form of Dirac-type operators and —x?|B] is a
“renormalization” term. It is shown that Tg(x) is essentially self-adjoint (Lemma 3.1 in

[21)-
We consider a perturbation of Tg(x). Let C'(k) (x > 0) be a symmetric operator on H
and

T(x) := To(k) + C(k). (4.2)

The main purpose of this section is to consider the limit k — oo of T'(x) in the strong
resolvent sense under a general condition for C'(k). A basic assumption for C(x) is as
follows:

Hypothesis (I)

D(Ty(x)) € D(C(k)) and T(k) is self-adjoint with D(T'(k)) = D(To(k)).
To state the main result we need some preliminaries. Let B = Up|B| be the polar

decomposition. Then Ug is self-adjoint and unitary and o(Ug) = {1}, where, for a
linear operator T, o(T) denotes the spectrum of T (see p.141 in [2]). The operators

PP = %(I + Up), (4.3)
are respectively the orthogonal projections onto the eigenspaces
Hy :=ker(Ug FI) (4.4)
of Up with eigenvalues £1 and we have the orthogonal decomposition
H=H ®H_. (4.5)

It is known that A and | B| strongly commute (Lemma 2.2(v) in [2]). Hence the product
spectral measure I := E4® I g of A and |B] can be defined with spectral representations

A= A ME(\, p), |B] = /R HdE(\, ).
With the spectral measure I/, we can define a nonnegative self-adjoint operator
1 A2
Ko =3 /R2 — 4B, p) 20 (4.6)

Note that 2|5t
K - 1B

on D(A%|B|™Y) n D(|B|~14%2). (4.7

It is shown that Kj is reduced by H. (see Lemma 2.4 in [2]). We denote Ky .. the reduced
part of Ky to H, respectively. Thus we have

_ [ Ko O
KO - ( 0 KO,— ) > (48)

13



where the operator-matrix representation is relative to the orthogonal decomposition (4.5):
I 0 00
B B _
PJF_(OO)’ P_—<OI). (4.9)

K (k) := Ko+ PEC(x)PL. (4.10)

We define

Hypothesis (II)

Let kg > 0 be a constant.

(I1.1) For all k > kg, C(k) is reduced by H. so that it has the operator-matrix represen-

tation
Ck) = ( Celr Of)(ﬁ) ) (4.11)

where U4 (&) are the reduced parts of C'(k) to H. respectively.

(11.2) For all k > kg, D(K,;'®) C D(C(k)) and there exist nonnegative constants a(x)
and b(k) such that

IC(R)fIl < a(w) | Ko Fl + b fll,  f € D(K"). (4.12)
Lemma 4.2 Let Hypothesis (1) be satisfied and let
K, (k) == Ko+ + Ci (k). (4.13)

Then for all & > Ko, K (k) is self-adjoint with D(K (k)) = D(Ky) and bounded from below.
Moreover, K (k) is reduced by H.. with

K(K) = Ky(x) @ Ko = ( KB(E) Kg_ ) . (4.14)

Proof: By (11.2), D(K,) C D(C(x)) € D(PPEC(k)PE). Hence D(K(k)) = D(Ky).
Let f € D(Kj). Then we have for all € > 0

2
K327 < Aol < | + UL

Hence
183711 < eliof + 1L (4.15)
This estimate and (4.12) imply
10611 < atwyl ol + (52 4| 151 (@16

By the reducibility of C(k) by Hy, we have |PPC(x)PPf|| < ||C(k)f]|. Since e > 0'is
arbitrary, it follows from the Kato-Rellich theorem that K (k) is self-adjoint and bounded
from below. The last assertion is easy to prove. [ ]
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Hypothesis (III)

Under Hypothesis (IT) (so that, by Lemma 4. 2, for all K > kg, K (k) is self-adjoint),
there exists a self-adjoint operator K, on H, such that, for all z € C\ R,

s —'}LIQO(K+(K) -2 = (K, —2)7 . (4.17)
The main result of this section is the following:

Theorem 4.3 Assume Hypotheses (1)-(111). Suppose that

3 2 2b
T A (Y T . o (4.18)
K—00 Kk K—O0 K K—00 K
and
M = info(|B|) > 0. (4.19)
Then, for all z€ C\ R,
-1
s - lim (T(k) —2)" = ( (K ) ?) 8 ) (4.20)
We prove Theorem 4. 3 by a series of lernmas.
In what follows, we assume (4.19). Then |B|™! is bounded with
1
Bl < —=. 4.21
1B < 5 (@.21)
For z € C\ R, we define
K(s,2) = K(s) — 2 — 2] B (1.2
ki z) 1= K(K) — 2= o : .
and set
d(x, 2) Cn (4.23)
K,2) = ————— > 0. .
Y 2k2M|Im z|

Lemma 4.4 Assume Hypothesis (II) and (4.19). Let z € C\ R, k > kg and

2
2 _ _
L(k,z):=1-— ﬁlB[ HK(k) —2)7L. (4.24)
Let
d(k,z) < 1. (4.25)
Then the following hold:
(i) L(k,z2) is bijective with
o 2 \"
-1 z -1 —1\"
L) =3 () (B (K - 27 (4.26)
in operator norm topology and
1
M — 2
1265, < T (4.27)
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(i) K(k,z) is bijective and

K(k,2)™' = (K(k)—2)"'L(k,2)"" (4.28)
- z@—) (K(9) =27 (1B K -7 (429

in operator norm topology with

1K (5, 2) 7| < (5, 2), (4.30)

where
1
r(k,2) = 2|1 — d(r.2)) (4.31)

Proof. (i) We have by (4.21)

L |BI T (K () — 2) !

< d(k,z) < 1.

Hence, by C. Neumann’s theorem, the bijectivity of L(k, z) follows with Neumann expan-
sion (4.26). Inequality (4.27) follows from the general fact that, for all bounded linear
operators T with ||[T]] <1, |(1 =) < (1 = ||T])~ .

(ii) We have K (k, z) = L(k, 2)(K(x) — z), which implies that K(k, z) is bijective with
(4.28). Expansion (4.29) follows from (4.28) and (4.26). Using (4.27) and (4.28), we
obtain (4.30). |

The following fact is an important key to the analysis here.

Theorem 4.5 Assume Hypotheses (I), (II) and (4.19). Let z € C\ R and d(x,z) < 1

o
with kK > k9. Then the operator 1+ 2(5) (kA + 2)|B| ™ K (k,2)™" is bijective and

K2

(T(k) —2)"' = (Pf + %(/{A + z)|B|“1) K(k,2)™

Ol -1
x (1 + 2(’;) (kA -+ 2)| B K (, z)—l) . (4.32)
K

Proof Informal (heuristic) manupilations to obtain (4.32) are similar to the case of
an abstract Dirac operator [11, p.180, Theorem 6.4] or to a case previously discussed by
the present author [2, p.155, Theorem 4.3]. But, for completeness (since the assumption

here is slightly different from those in [2, 11]), we give an outline of proof. Introducing
an operator

W(k,2) =1+ C(k)(To(k) — 2)7%,
which is well-defined by Hypothesis (1), we have

T(k) — z = W(k, 2)(Tp(k) — 2).
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This implies that W(k, z) is bijective and
(T(k) = 2)7" = (To(k) — 2) "Wk, 2)7".
On the other hand, we have
(T50R) — ) = 5 5 (So() + DB Kols,2) (1.3
where
So(k) := kA + K*(B + |B)),
Ko(k,2) = Ky — 2 — Q—ZI;IBI_l = K(x,2) — P2C(k)PF,

see p.147, (3.17) and (3.18) in [2]. Hence

(T() — 2)7" = 55 (Sol) + 2)1B ™ Kolr, 2) "W, 2) " (4.34)
Let
X(k,z) := 1+ PPC(x) PP Ko(k,2)™".
Using (4.33), we have
Wik, z) = X(k,2) + CQE;) (kA + 2)|B| ' Ky(k,2) 7,

where we have used that B + |B| = 2Pf|B| and C(k)PE = PEC(x)PE. Note that

K(k,z) = X(k, 2) Ko(k, 2)-
This implies that X (k, z) is bijective with
X(k,2)™' = Ko(k, 2)K(k,2)"".

Hence we obtain
C(x)
2K2
C(x)
= {1
( + 2k2

Wi(k,z) = <1+ (kA + 2)|B| 7 Ko(k, 2) ' X (k, z)_l) X(k,z2)

(kA + 2)|B| " K (k, z)*1> X(k,z),

which implies that

C(x)

2K2

Y(k,2) :=1+ (kA + 2)|B|7 K (k,2)7?

is also bijective with
Wi(k,2)™' = X(k,2) 'Y (k,2) " = Ko(k, 2)K(k,2) 'Y (K, 2) 7"

Putting this equation into (4.34), we obtain (4.32). [ |
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Lemma 4.6 Assume Hypothesis (II) and (4.19). Let £ > 0. Then, for all f € D(Ky),

(0GB ) < 22

o)
7 (52 809 ) U7 (4.35

Proof We see by functional calculus that, for all f € D(Ky), |B|™!f € D(Kp) and
Ko|B|7'f = |B|"'Kyf. Using this fact, (4.16) and (4.21), we obtain (4.35). n

Lemma 4.7 Assume (4.19). Then D(Ky) C D(A|B|™') and
IAIBI7 Il < el Kofl| + i*llfﬂ, f € D(Ko), (4.36)
where € > 0 s arbitrary.
Proof. Let g € D := D(A?|B|~!) N D(|B|~A?), we have
JAIBIgl? = 2(BI"g, Kog) < 2190 kg

< & Kogl* +

1
ialal’,
where € > 0 is arbitrary. Hence

1AIBI gl < ellKagl + - lgl.
- eM

Since D is a core of Ky (p.143, Lemma 2.4 in [2]) and |B|~! is bounded, the assertion
follows from a limiting argument. ]

Lemma 4.8 Assume Hypothesis (II) and (4.19). Then D(K,) C D(C(k)A|B|™') and
\/-2'a(f£)
vM

IIC(%)AIBl‘lfIIS( ()) 15ofll + X0p1, fe DU, @3

where € > 0 is arbitrary.

Proof: Let f € D(Kp). Then it follows from the functional calculus on the product
spectral measure E and (4.12) that f € D(K, 1/214]B| 1Y € D(C(k)A|B|™!) and

ICWABI Il < a(r)| Ko *AIBI7 | + b(s)| AIBI 7 £
= a(r)|V2IBI" Ko f + b(s)[|AI B £
. Vaals)

- VM
This estimate and (4.36) give (4.37). u

1Ko f || + b(s) Al BI ™ £]].
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Lemma 4.9 Assume Hypothesis (II) and (4.19). Let 6 > 0 be a constant such that
a(k)6 < 1. Then, for all f € D(Ky) and k > ko,

1

1Kol < gl K (21
+~———1_i(ﬁ) (I |+ |2IM+¥+13(K,)> Il (A3®)

Proof. Using (4.16), we have
IKofll < K ®)fI+IIC(R)PEf]
a(k)

|E ()11 + a()8] Kof | + (—2—5— + b )) 151

where § > 0 is arbitrary. Taking 6 > 0 such that a(k)§ < 1, we obtain

[ Kof |

IR & R C) [T CED

On the other hand, we have
I < 1K)+ (1214 507 ) 11

Thus (4.38) follows. u

Lemma 4. 10 Assume Hypothesis (I1), (4.19) and (4.25). Let § > O be a constant such
that a(k)6 <1 and € > 0. Let

. ga(k) 122 a(k)
Gi(k, z,€,0) = M= a(0)d) {1 +r(k, 2) (|z[ + 520 T o8 (K,))}

i) (254 20). »

Then C(k)|B|™ 'K (k,2)™! is bounded with
|C(k)| BT K (K, 2) 1| < Ga(, 2,¢,6). (4.41)
Proof: This follows from Lemma 4.6 and Lemma 4. 9. [ |

Lemma 4. 11 Assume Hypothesis (I11), (4.19) and (4.25). Let § > 0 be a constant such
that a(k)6 <1 and € > 0. Let

Ga(k,z,€,6) = T—Tﬁ
(YT 1 2b09) {14 0. (14 5120+ ) 0 )
r(x, 2)b(x)

eM
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Then C(k)A|B| 1K (k,2)~! is bounded with
IC(%)AIB| T K (k, 2)7'|| < Ga(k, 2,€,6). (4.43)

Proof This follows from Lemma 4.8 and Lemma 4. 9.

Lemma 4.12 Assume Hypotheses (II), (1I1) and (4.19). Then

( (K —2)70 0 ) . (4.44)

s - lim PEK(k,2)"! = 0 0

K—»00

Proof. Let
K = K+ EB K0’+.

By Lemma 4. 4, we have
K(k,2)"' = (K(k) — 2) 7" + (K(K) — 2) 7'V (k)

with V(k) := 522, (%) (|B|"YK(x) — z)~})™. Hence
2"+ (K(K) — 2) "V (k).

K(k,2)7 = (K —2)7 = (K(r) —2)7 — (K -

It is easy to see that ||V (k)|| — 0 as k — co. By Hypothesis (I1I), we have

s- lim (K(k) —2)"' = (K —2)7.

K—00

Hence
s - im K(k,2)"' = (K —2)7!,

K—00

which implies that
(K+ — Z)~1 O )

s —Kli_{gonK(n, 2)'=PlK -z = ( 0 0
n

Thus (4.44) holds.

Proof of Theorem 4.3

By Lemmas 4. 10 and 4. 11, we have
C(k) -1 -1
l 5,2 (kA+ 2)|B|7 K(k, 2)

Let 0 < & < 1 be fixed and set § = a/a(k) so that a(k)6 = @ < 1. Let k1 > 0 be a
constant such that d(k;,z) < 1 and k; > max{xg, 1}. Let K > ;. Then

L Galnzed) I
- 2K 2K2

G1(k, z,€,0).

Gi(k,2,6,6) < Chla(k) + a(k)® + a(k)b(x) + b()],
Galk,2,2,8) < Chla(k) + a(k)® + a(k)b(k) + b(k) + b(k)a(k)? + b(k)?],

20



where C; and C; are constants independent of k¥ > x;. Hence, under condition (4.18), we
have

hm Gl(K7 z’ 8’ 6) — 0’ G2(K;’ Z? E? 6) — 0,

K-—CO K K
Hence C(x)

. K -1 1)

Jim “ 52 (kA4 2)|B|7'K(k,2)" || =0,

which implies that
-1
}}Lrgo (1 + (;f;) (kA + 2)|B| 7 Kk, z)“l) =1 (4.45)

in operator-norm topology.
By Lemmas 4.7 and 4. 9, we have

3 1 € r(k,2)e |z|2 a(k) (K, 2)
1AIBI K (s, 2) 7] < 1—a(k)d + 1—a(k)é (lzl + 2x2M + 95 + b(ﬁ)> + eM

Hence, in the same way as above, we can show that

lim —1—(1@4 + 2)|BI 'K (k,2) ' =0

K—00 Qg2

in operator-norm topology. These facts together with Theorem 4.5 and Lemma 4. 12
imply (4.20). ' l

Remark 4.1 Higher order corrections to the limiting formula (4.20) can be computed
by using Theorem 4. 5 and (4.29).

5 Proof of The Main Theorems

5.1 Proof of Theorem 3.6

We apply Theorem 4. 3. For this purpose, we first prove the following lemma.
Lemma 5.1 The self-adjoint operator P(V;) strongly anticommutes with mf3.

Proof We have for allt € R

gitm8 _ el 0
— 0 eitm 12 .

This implies that, for all ¥ € D (P(V4)) = D (Dw) & D ((EW)*), e~ tm8y e D(P(VL))
and P(V})e"#™8W = ¢#™8p(V;)¥. Hence JP(V}) strongly anticommutes with mg. u

Let
A=DW), B=mB, C(k) =Vo.+H%.
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Then |B| = m and we can write
H(k) = kA+ K*(B — |B|) + C(x).

By Lemma 5.1, A and B strongly anticommute. Hence H(x) is of the form T'(x) in
Section 4. We need only to check that T'(k) = H (k) satisfies the assumption of Theorem
4.3.

Since C(k) is bounded, Hypothesis (I) holds.

In the present case we have PP = P, and C(k) is reduced by F. with

U+ g% 0

rad

Hence Hypothesis (II.1) holds.
In the present case we have

oy [P o
Koy= "t = 2m : (5.2)
2m Dy (Dy)*
0 A el
2m
By (3.16), ||C(x)¥| < 2A(k)|| V| for all ¥ € F. Hence Hypothesis (11.2) holds with
a(k) =0, b(k) =2A(k). (5.3)

By (5.1) and (5.2), we have
K, (k) = Hpp(s; W, UL).

By Theorem 3. 5, Hypothesis (III) holds with K, = Hpp(W,U,). By (5.3) and (3.25),
(4.18) holds. Thus the assumption of Theorem 4.3 is satisfied. Hence we can apply
Theorem 4. 3 to obtain (3.26).

5.2 Proof of Theorem 3.6

Hypotheses (I) and (IT) hold in this case too. But it is not immediately obvious if Hy-
pothesis (III) holds, since, in this case, we can not use Theorem 3. 5. We note that

Jim Hep(k; W, U)W = Hep(W,UL)Y, ¥ € D(Hpp(W,UL)).

By the assumption on the essential self-adjointness of Hpp(W, U, ), we can apply a general
convergence theorem [8, p.292, Theorem VIII.25(a)] to conclude that, for all z € C\ R,

s- lim (Hor (i W,Uy) — 2) 7 = (Hpr(W,03) —2)

Hence Hypothesis (III) holds with K, = Hpp(W,U,). Then, in the same way as in the
proof of Theorem 3.5, we obtain Theorem 3.6.



Appendix

A A Class of Self-adjoint Extensions of Hermitian
Operators

We say that a linear operator S on a Hilbert space H is Hermitian if (1, S¢) = (Sv, ¢) for
all ¢, ¢ € D(S). In this definition, we do not assume the denseness of D(S). A densely
defined Hermitian operator is called a symmetric operator.

In this appendix we present a class of self-adjoint extensions of Hermitian operators.
To the author’s best knowledge, this class is new.

Let ‘H be a complex Hilbert space. Let A be a nonnegative self-adjoint operator on
H and B; (j = 1,2,---,N, N € N) be self-adjoint operators bounded from below with
B; > bj (bj € R is a constant) such that N}, [D (Al/z) ND (Ilel/z)] is dense in H.
Let

Then the operator
N

S = A + Z Bj
—

J
is Hermitian and bounded from below with S > cg.

Remark A.1 If S is densely defined (i.e., D(S) = N)_,[D(A) N D(B;)| is dense), then
S is a symmetric operator bounded from below and hence S has a self-adjoint extension
Sy, called the Friedrichs extension (e.g., [9, p.177, Theorem X.23]).

Remark A.2 The operator S has another type of self-fadjoint extension S; which is
given by the form sum S; :== A+ B+ ---+By, ie., the self-adjoint operator associated
with the densely defined symmetric closed form sy given by

D(so) = N, [D (A1/2) NnD (!Bj|l/2)] (form domain),

N
so(t,8) = (A3, AV2g) + 3 (B2, B'20) + co(v,9),  #,0 € Diso),

7j=1

where

Bj = Bj — bj
and (-, -) denotes the inner product of H.
Here we want to construct a self-adjoint extension of S which may be different from

Sr and 5S¢ if S is symmetric, but not essentially self-adjoint. For this purpose we first
introduce an approximate or a “cutoff” version of S.

Remark A.3 Ifeach B;is bounded, then, by the Kato-Rellich theorem, S is self-adjoint.
Thus the arguments below are nontrivial only if A and at least one of B; (j = 1,---, N)
are unbounded.
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Let L : (0,00) — (0, 00) be a nondecreasing function such that L(x) — oo as K — ©0
and

By() := E3,(10, L(x)]) B Bg (0, L(k))), & >0,

where Ez_is the spectral measure of B ;- 1t is easy to see that each Ej(li) is a nonnegative
J

bounded self-adjoint operator with || B;(k)|| < L(x).
Let

S(k) == A+ z_jéj(m) + cp.

J

Then, by the Kato-Rellich theorem, S(k) is self-adjoint with S(x) > c¢y. Moreover, for all
Y € NI, [D(A) N D(By)], we have

s —'}Lr{.lo S(k)yY = Sy.
In this sense S(x) may be regarded as an approximate version of S.

Theorem A.1 Let A, B;, S and S(k) be as above. Then there exists a unique self-
adjoint extension S of S such that the following properties hold:

i) S > c.
(i) D(IS|¥?) c niY, [D(AY?) N D(B})].
(iii) For all z€ (C\R)U {£ € RI¢ < o},

s - lim (S(k) — 21 =(5—2)"L

(iv) For all £ < cg and 3 € D(|S|'/?),
s - Jim (S(k) — )"y = (5 — &)y

Proof For each s > 0, we define a symmetric form s, with form domain D(s) =
D(AY?) by
N ~
u(19,6) == (420, 4V20) + 3", By()0) + ol ), .6 € D(AY?).

J=1

This is the densely defined closed symmetric form associated with the self-adjoint operator
S(x). Since (¢, Bj(k)y) is nondecreasing in « for all ¢ € H with

0< (¢ Bi(w9) < (B4, B;°9), ¢ DB},
it follows that, for all k, " > 0 with k < ¥/,
COSSK,SS}Q’ < sg.
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Hence we can apply a general convergence theorem on nondecreasing symmetric forms
(6, p-461, Theorem 3.13]) to conclude that there exists a self-adjoint operator S onH
such that (i), (iii) and (iv) hold with s, <'s, where s is the symmetric form associated
with S, so that D([S[1/2) C D(AY?),

To show that S is a self-adjoint extension of S, let ¥ € D(S) = NiL,[D(A) N D(By)]
and ¢ € D(S) = D(S — ¢y +1). Then

(%, (S — o+ 1)¢) = ((S(r) — co+ 1), (S(K) — o+ 1) (S — o+ 1)9).
Note that s - limx_.0o(S(K) — o+ 1)¥ = (S — ¢o + 1)¥ and, by property (iii),

s- lim(S(k) —co+1) =S —c+1)"

K00

Hence

(¥, (8 —co+ 1)) = ((S — co + 1)), (§ — o + 1) "H(S —co + 1)@) = ((S —ca + 1), ¢),

which implies that ¥ € D(S — ¢y + 1) = D(S) and (S — cg + )% = (S — o + 1)¥, i.e,
S = Sy. Thus S is a self-adjoint extension of S.

We next prove (ii). It follows from the inequality s, < s as shown above and the
nondecreasingness of s, in & that D(s) C D(s.) = D(AY?) and that, for all ¢ € D(s) =
D(|§]1/2), 1M, 00 Sk (10, %) exists. This implies that lim,_,o. (B;(x )sz B;(k)/?y) exists
(j=1,---,N). By using the spectral representation for (B;(k)"/?¢, B;(x )1/ 1)) and the
monotone convergence theorem, we see that 9 € D(Bl/ 2) j=1,---,N. Thus part (ii)
follows.

The uniqueness of S follows from property (ii). |

Remark A.4 The self-adjoint extension S may depend on the choice of the function L.
Unfortunately we have been unable to make clear whether Sy = S or not (# = F,f) in
the case where S is symmetric, but not essentially self-adjoint.

B Self-adjoint Extension of the Pauli-Fierz Hamil-
tonian Without Spin

Let A®™ and ¢ be as in Example 2. 1 in Section 2 and
Pj = —iD; — qAj — qA§".

We set P = (P, Py, P3). Then the Pauli-Fierz Hamiltonian without spin is given by

2

P
hpF = % + ¢+ Hrad

acting in the Hilbert space L?(R?) ® Froq = L*(R3; Frad) = fRa Fraadx. It is easy to see
that hpp is Hermitian.
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We assume Hypothesis (C) in Section 3. Then each P; is symmetric. Hence we can
define a nonnegative self-adjoint operator Kl(f% as the form sum

Ky = 5 {(R) Pk () Pt (R B3},

which is a self-adjoint extension of Kprp := (2m) ! P?. Hence Kpro has a self-adjoint
extension which is nonegative.

Let Kpr be any self-adjoint extension of Kpgg such that Kpr > 0 and D(K;é?) N
D(|4]'*) n D(HM?) is dense. Then we define

hor(k) := Kpp + HY) + ¢,

where

HE) = Ep,o, ([0, L(5)]) Hraa Brr,0a (10, L())),
¢ = (¢ — do)X[0,n0x) (@ — o) + o,

where Xo,(x) is the characteristic function of the interval [0, L(x)]. Since HY) 4+ ¢® is
bounded and symmetric, hpr(x) is self-adjoint and bounded from below with hpr (k) > ¢o.

Theorem B.1 Let A and B; be as above. Assume Hypothesis (C) in Section 3. Then
there exists a unique self-adjoint extension hpy of hpr such that the following properties
hold:

(i) her > ¢o.

(i) D(lhes?) € D(KpE) N D(I$]'*) N D(Hy).

(iii) For all z € (C\ R)U{£ € R|€ < ¢y},

S - ’}LI{.lo(hpF(K) - Z)_l == (FLPF — Z)_l.
(iv) For all £ < ¢ and U € D(|hpp|V/?),
s - lim (hpr(r) — €)W = (her — €)'/20.
Proof: We only need to apply Theorem A. 1 to the following case:

H= LZ(R3;‘7:;"ad)7 A= KPFa N = 25 Bl - ¢) B2 - Hrad-
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