<table>
<thead>
<tr>
<th>Title</th>
<th>LOCAL SOLVABILITY OF A CONSTRAINED GRADIENT SYSTEM OF TOTAL VARIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>GIGA, YOSHIKAZU; KASHIMA, YOHEI; YAMAZAKI, NORIAKI</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 609, 1-32</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-10-18</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83754</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69358</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre609.pdf</td>
</tr>
</tbody>
</table>
LOCAL SOLVABILITY OF A CONSTRAINED GRADIENT SYSTEM OF TOTAL VARIATION

YOSHIKAZU GIGA, YOHEI KASHIMA AND NORIAKI YAMAZAKI

A 1–harmonic map flow equation, a gradient system of total variation where values of unknowns are constrained in a compact manifold in \mathbb{R}^N is formulated by use of subdifferentials of a singular energy - the total variation. An abstract convergence result is established to show that solutions of approximate problem converge to a solution of the limit problem. As an application of our convergence result a local-in-time solution of 1–harmonic map flow equation is constructed as a limit of the solutions of p–harmonic ($p > 1$) map flow equation, when the initial data is smooth with small total variation under periodic boundary condition.

2000 Mathematics Subject Classification: 35R70, 35K90, 58E20, 26A45

1 Introduction

We consider a gradient system of total variation of mappings with constraint of their values. We are interested in the solvability of its initial value problem.

To see the difficulty let us write the equation at least formally. For a mapping $u : \Omega \rightarrow \mathbb{R}^N$ let $E_p(u)$ denote its energy

$$E_p(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx,$$

where Ω is a domain in \mathbb{R}^n and $p \geq 1$. The energy E_1 is the total variation of u. Let M be a smoothly embedded compact submanifold (without boundary) of \mathbb{R}^N. Then the gradient system for $u : \Omega \times (0,T) \rightarrow \mathbb{R}^N$ of E_p with constraint of values in M is of the form

$$u_t(x,t) = -\pi_{u(x,t)} \left(-\text{div} \left(|\nabla u|^{p-1} \nabla u \right)(x,t) \right); \quad (p-H)$$

here π_v denotes the orthogonal projection of \mathbb{R}^N to the tangent space T_vM of M at $v \in M$ and $u_t = \partial u/\partial t$. This equation is called the p–harmonic map flow equation since the case $p = 2$ is called the harmonic map flow equation. Because of π the values of a solution of $(p-H)$ are constrained in M if they are in M initially. If M is a unit sphere S^{N-1}, then
the explicit form of \((p-H)\) is of the form

\[
\frac{\partial u}{\partial t} = \text{div} \left(|\nabla u|^{p-2} \nabla u + |\nabla u|^p u \right)
\]

since \(\pi_v(w) = w - \langle w, v \rangle w\), where \(\langle \cdot, \cdot \rangle\) denotes the standard inner product in \(\mathbb{R}^N\). An explicit form for \((p-H)\) is given for example in [24]. Our constrained gradient system of total variation of mapping is the 1-harmonic flow of the form \((1-H)\), i.e.,

\[
\frac{\partial u}{\partial t} = -\pi_u \left(-\text{div} \left(\frac{\nabla u}{|\nabla u|} \right) \right).
\]

This equation has a strong singularity at \(\nabla u = 0\) so that the evolution speed is expected to be determined by a nonlocal quantity. Even if one considers the corresponding unconstrained problem

\[
\frac{\partial u}{\partial t} = \text{div} \left(\frac{\nabla u}{|\nabla u|} \right),
\]

the speed where \(u\) is constant is determined by a nonlocal quantity (like the length of spatial interval where \(u\) is a constant when \(n = 1\)) [19],[14],[11]. The equation \((E_{u})\) is a nonlocal diffusion equation so even the notion of a solution is a priori not clear. Fortunately for \((E_{u})\) a general nonlinear semigroup theory (initiated by Y. Kômura [21]) applies under appropriate boundary conditions since the energy is convex. The theory yields the unique global solvability of the initial value problem for \((E_{u})\) under Dirichlet boundary condition; see e.g. [8],[6] and also [19],[14],[17]; for a recent \(L^1\)-theory see [3],[1],[2],[7]. However, for \((E_{c})\) such a theory does not apply since it cannot view as a gradient system of a convex functional. For scalar function a more general form of \((E_{c})\) without gradient structure is studied when \(n = 1\) by extending the notion of viscosity solution [12],[13]. However, such a theory does not apply since \((E_{c})\) has no pointwise order preserving structure. For other examples of singular diffusion equations with nonlocal effects the reader is referred to a recent review article [11].

Our goal is to give a suitable notion of a solution of \((E_{c})\) and to solve its initial value problem under suitable boundary condition. We formulate \((E_{c})\) with Dirichlet boundary condition and periodic boundary condition by using the subdifferential of energy, which is an extended notion of differentials for nonsmooth functional like \(E_1\). A similar formulation is given in a recent work of [15]. In fact, they constructed a global solution for any piecewise constant initial data when \(n = 1\), \(N = 2\) and \(M = S^1\) under Dirichlet boundary condition. They also studied its behavior and provided a numerical simulation. However, their analysis is limited for one dimensional piecewise constant mappings although their formulation of the problem is general. Our formulation is close to theirs but slightly different since we use the subdifferential of space-time functional \(\int_0^T E_1(u) \, dt\) instead of \(E_1\) itself.

To solve \((E_{u})\) we prepare an abstract convergence result. Roughly speaking it asserts that if a sequence of approximate energy converges to our energy in the sense of Mosco, the corresponding sequence of the solutions of the approximate problem converges to our original problem. (For this purpose the interpretation of \(-\text{div}(\nabla u/|\nabla u|)\) by a subdifferential of \(\int_0^T E_1(u) \, dt\) is convenient.) We use this abstract result by approximating \(E_1\) by \(E_p\) \((1 < p < 2)\). Compared with the harmonic map flow equation less is known for \((p-H)\) for
$p \in (1, 2)$. M. Misawa [23] proved the global existence of weak solution of the initial value problem with a Dirichlet boundary condition when $M = S^{N-1}$. However, his existence result is not enough to apply our abstract theory since it is not clear that $\text{div} (|\nabla u_p|^{p-2}\nabla u_p)$ is in $L^2(\Omega \times (0, T))$ for his solution u_p of ($p-H$). Our formulation unfortunately requires such a structure. Moreover, we need the condition that $\text{div} (|\nabla u_p|^{p-2}\nabla u_p)$ is bounded in $L^2(\Omega \times (0, T))$ as $p \downarrow 1$ to apply our existence theorem. Recently, A. Fardoun and R. Regbaoui [9] constructed a unique global weak solution for a general target manifold when Ω is a compact manifold without boundary for smooth initial data of small E_p energy. Since we need to establish a bound of $\text{div} (|\nabla u_p|^{p-2}\nabla u_p) \in L^2(\Omega \times (0, T))$, we estimate the Lipschitz norm. Fortunately, we establish a uniform spatially Lipschitz bound for u_p in a small time interval, we are able to prove the local solvability of (EQc) under a periodic boundary condition when initial data is smooth with small total variation. The constructed solution is spatially Lipschitz continuous. Of course, since results in [9] are for a general source manifold, our results easily extend to such a general manifold by interpreting the gradient in an appropriate way. If u has a jump, the dynamics given by (EQc) depends not on the metric of M but also the metric of ambient space \mathbb{R}^N outside M. This is a serious difference between 1-harmonic flow equation and ($p-H$) for $p > 1$. Fortunately, our solution does not depend on that quantity since it has no jumps. We note that notion of BV for mapping in M is not clear as pointed out by [10].

The problem (EQc) for the case $n = 2$ and $M = S^{N-1}$ is proposed by [27] in image processing. If we let $I(x, y, 0) : \Omega \rightarrow \mathbb{R}^N$ represent the color data whose components stand for the brightness of each color pixel’s of the image at $(x, y) \in \Omega$, then its pixel’s chromaticity $u(x, y, 0) : \Omega \rightarrow S^{N-1}$ is expressed by the normalized vector $u(x, y, 0) := I(x, y, 0)/|I(x, y, 0)|$. The system (EQc) for the scaled chromaticity $u(x, y, t)$ describes the process to remove the noise from original $u(x, y, 0)$ maintaining the unit norm constraint and preserving chroma discontinuities. See the book [25] for background of our problem (EQc) and other PDEs from image processing. This type of the constrained problems also naturally arise in the modeling of multi-grain boundaries [20] where u represents a direction of grains embedded in a larger crystal of fixed orientation in the two-dimensional frame.

We will formulate (EQc) by using the notion of subdifferential in Chapter 2. In Chapter 3, we will state three main theorems, which are an Abstract theorem providing the framework of our convergence results, Convergence theorem obtained by applying Abstract theorem, and Local existence theorem following from Convergence theorem by applying the result of [9]. From Chapter 4 to Chapter 6, we will prove these main theorems. In addition, we will prove some properties of general convex functionals, which is used to show Convergence theorem, in Appendix.

2 Formulation of the problems

In this chapter we formulate the initial value problem with periodic boundary condition.

$$
\begin{align*}
\left\{ \begin{array}{l}
 u_t = -\pi_u \left(-\text{div} \left(\frac{\nabla u}{|\nabla u|} \right) \right) \quad \text{in} \; \mathbb{T}^n \times (0, T], \\
 u = u_0 \quad \text{on} \; \mathbb{T}^n \times \{0\},
\end{array} \right.
\end{align*}
$$

(EQpe)
where $\mathbb{T}^n := \prod_{i=1}^n(\mathbb{R}/\omega_i\mathbb{Z})$ for given $\omega_i > 0$ ($i = 1, 2, \cdots, n$) and the given initial data u_0 is a map from \mathbb{T}^n to M. We also formulate the initial boundary value problem

$$\begin{cases}
 u_t = -\pi_u \left(-\text{div} \left(\frac{\nabla u}{|\nabla u|}\right)\right) & \text{in } \Omega \times (0, T],

 u = u_0 & \text{on } \partial\Omega \times [0, T] \cup \Omega \times \{0\},
\end{cases}\quad (\text{EQ}_D)$$

where Ω denotes a bounded domain with a Lipschitz continuous boundary $\partial\Omega$ and the initial data $u_0 : \bar{\Omega} \rightarrow M$ is Lipschitz continuous.

We formulate (EQ$_{pe}$) and (EQ$_D$) as evolution equations on L^2-space. Since some notations are different from each case, we state the formulation of each problem individually. Let M denote a smoothly embedded compact manifold in \mathbb{R}^N and π_v denote the orthogonal projection from \mathbb{R}^N to the tangent space $T_v M$ of M at $v \in M$. Note that the inner product of $L^2(\Omega, \mathbb{R}^N)$ is defined by $\langle f, g \rangle_{L^2(\Omega, \mathbb{R}^N)} := \int_\Omega (f, g) dx$ where $\langle \cdot, \cdot \rangle$ represents the standard inner product of \mathbb{R}^N. The inner product of $L^2(0, T; L^2(\Omega, \mathbb{R}^N))$ is also defined by $\langle f, g \rangle_{L^2(0, T; L^2(\Omega, \mathbb{R}^N))} := \int_0^T \langle f, g \rangle_{L^2(\Omega, \mathbb{R}^N)} dt$.

2.1 Subdifferential formulation of the problem with a periodic boundary condition

We formulate the initial value problem of constrained total variation flow equation with a periodic boundary condition (EQ$_{pe}$). First, we define the energy functional ϕ_{pe} of total variation of each function $u \in L^2(\mathbb{T}^n, \mathbb{R}^N)$ by

$$\phi_{pe}(u) := \begin{cases}
 \int_{\mathbb{T}^n} |\nabla u(x)| dx & \text{if } u \in BV(\mathbb{T}^n, \mathbb{R}^N) \cap L^2(\mathbb{T}^n, \mathbb{R}^N),

 +\infty & \text{otherwise},
\end{cases}$$

where $BV(\mathbb{T}^n, \mathbb{R}^N)$ denotes the space of functions of bounded variation on \mathbb{T}^n with values in \mathbb{R}^N.

It is easy to see that ϕ_{pe} is a proper, convex, and lower semicontinuous functional on $L^2(\mathbb{T}^n, \mathbb{R}^N)$ (see [16]).

We also consider a functional Φ_{pe}^T on $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$ by

$$\Phi_{pe}^T(u) := \int_0^T \phi_{pe}(u(t)) dt.$$

Proposition 2.1 The functional Φ_{pe}^T is proper, convex, and lower semicontinuous on $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$.

Proof. The functional Φ_{pe}^T is obviously proper and convex on $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$. We will show that Φ_{pe}^T is lower semicontinuous.

Assume that $u_m \rightarrow u$ strongly in $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$ and $\Phi_{pe}^T(u_m) \leq \lambda$ for any $m \in \mathbb{N}$. Since $BV(\mathbb{T}^n, \mathbb{R}^N)$ is compactly embedded in $L^1(\mathbb{T}^n, \mathbb{R}^N)$ ([16]), by taking some subsequence of $\{u_m\}_{m=1}^{+\infty}$, we have that

$$u_m(t) \rightarrow u(t) \text{ strongly in } L^2(\mathbb{T}^n, \mathbb{R}^N) \text{ for a.e. } t \in (0, T).$$
Then, the lower semicontinuity of ϕ_{pe} and Fatou’s lemma yield,

$$
\lambda \geq \liminf_{m \to +\infty} \int_0^T \phi_{pe}(u_m(t))dt \\
\geq \int_0^T \liminf_{m \to +\infty} \phi_{pe}(u_m(t))dt \\
\geq \Phi_{pe}^T(u).
$$

This implies that Φ_{pe}^T is lower semicontinuous on $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$. \hfill \Box

Now let us formally calculate the variational derivative of this Φ_{pe}^T with respect to the metric of $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$. For any $h \in C_0^\infty(\mathbb{T}^n \times (0, T), \mathbb{R}^N)$ we see that

$$
\frac{d\Phi_{pe}^T(u + \varepsilon h)}{d\varepsilon} \bigg|_{\varepsilon=0} = \langle -\text{div} \left(\frac{\nabla u}{|\nabla u|} \right), h \rangle_{L^2(0, T; L^2(\Omega, \mathbb{R}^N))}.
$$

Therefore, the variational derivative $\delta\Phi_{pe}^T(u)/\delta u$ of Φ_{pe}^T in $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$ can be formally written as

$$
\frac{\delta\Phi_{pe}^T(u)}{\delta u} = -\text{div} \left(\frac{\nabla u}{|\nabla u|} \right) \text{ in } L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N)). \quad (2.1)
$$

We need several other notations to complete the formulation of (EQ$_{pe}$).

Let $L^2(\mathbb{T}^n, M)$ denote the closed subset of $L^2(\mathbb{T}^n, \mathbb{R}^N)$ defined by $L^2(\mathbb{T}^n, M) := \{ u \in L^2(\mathbb{T}^n, \mathbb{R}^N) \mid u(x) \in M \text{ a.e. } x \in \mathbb{T}^n \}$.

Let $L^2(0, T; L^2(\mathbb{T}^n, M))$ denote the set of all L^2-mappings from $[0, T]$ to $L^2(\mathbb{T}^n, M)$. For any $g \in L^2(0, T; L^2(\mathbb{T}^n, M))$ we define a map $P_g(\cdot) : L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N)) \to L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$ by

$$
P_g(f)(x, t) = \pi_{g(x,t)}(f(x,t)) \text{ for a.e. } (x, t) \in \mathbb{T}^n \times [0, T] \quad (2.2)
$$

for any $f \in L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$.

By these notations of the function space, (2.1), and (2.2), (EQ$_{pe}$) is formally of the form

$$
\begin{cases}
 u_t = -P_u \left(\frac{\delta\Phi_{pe}^T(u)}{\delta u} \right) & \text{in } L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N)), \\
 u|_{t=0} = u_0 & \text{in } L^2(\mathbb{T}^n, M).
\end{cases} \quad \text{(EQ1$_{pe}$)}
$$

The initial value problem (EQ1$_{pe}$) does not have a rigorous mathematical meaning since the energy functional Φ_{pe}^T is not always differentiable. We need the notion of subdifferential to handle the problem caused by this singularity of the gradient of our Φ_{pe}^T and to complete the mathematical formulation of (EQ1$_{pe}$). Let us recall the definition.

Definition 2.2 (Subdifferential) Let ψ be a proper, convex functional on a real Hilbert space H equipped with the inner product $\langle \cdot, \cdot \rangle_H$. We define the subdifferential of ψ denoted by $\partial\psi(u)$ as

$$
\partial\psi(u) := \{ v \in H \mid \psi(u + h) \geq \psi(u) + \langle v, h \rangle_H \text{ for any } h \in H \}.
$$
Using the subdifferential $\partial \Phi^T_{pe}$ of Φ^T, we are now able to formulate (EQ\textsubscript{1,pe}) as an evolution equation (EQ\textsubscript{2,pe}) in $L^2(0, T; L^2(\Omega^n, \mathbb{R}^N))$ of the form

$$
\begin{cases}
 u_t \in -P_u (\partial \Phi^T_{pe}(u)) & \text{in } L^2(0, T; L^2(\Omega^n, \mathbb{R}^N)), \\
 u|_{t=0} = u_0 & \text{in } L^2(\Omega^n, M),
\end{cases}
$$

(EQ\textsubscript{2,pe})

where $u_0 \in L^2(\Omega^n, M)$ is a given initial data. The initial value problem (EQ\textsubscript{2,pe}) can be regarded as a mathematical formulation of (EQ\textsubscript{pe}).

Our goal is to show the existence of a solution of (EQ\textsubscript{pe}); the definition of a solution is given below.

Definition 2.3 We call a function $u : \Omega^n \times [0, T] \rightarrow \mathbb{R}$ is a solution of (EQ\textsubscript{pe}) if u belongs to $L^2(0, T; L^2(\Omega^n, \mathbb{R}^N)) \cap C([0, T], L^2(\Omega^n, \mathbb{R}^N))$ and satisfies (EQ\textsubscript{2,pe}).

2.2 Subdifferential formulation of the problem with a Dirichlet boundary condition

In this section we formulate the initial value problem of constrained total variation flow equation with a Dirichlet boundary condition (EQ\textsubscript{D}). Let $L^2(\Omega, M)$ the closed subset of $L^2(\Omega, \mathbb{R}^N)$ of the form

$$
L^2(\Omega, M) := \{ v \in L^2(\Omega, \mathbb{R}^N) \mid v(x) \in M \text{ a.e. } x \in \Omega \}.
$$

We always choose an initial data v_0 which is a Lipschitz continuous map from Ω to M. Let \tilde{v}_0 denote a Lipschitz extension of v_0 to \mathbb{R}^n. We define the energy functional ϕ_D with a Dirichlet boundary condition on $L^2(\Omega, \mathbb{R}^N)$ as following.

$$
\phi_D(v) := \begin{cases}
 \int_{\Omega} |\nabla \tilde{v}(x)| dx & \text{if } \tilde{v} \in BV(\Omega, \mathbb{R}^N) \cap L^2(\Omega, \mathbb{R}^N), \\
 +\infty & \text{otherwise},
\end{cases}
$$

where \tilde{v} denotes an extension of $v \in L^2(\Omega, \mathbb{R}^N)$ to \mathbb{R}^n such that $\tilde{v}(x) = \tilde{v}_0(x)$ for $x \in \mathbb{R}^n \setminus \Omega$. The definition is independent of the way of extension.

It is easy to check that ϕ_D is a proper, convex, and lower semicontinuous functional on $L^2(\Omega, \mathbb{R}^N)$ (see [16]). Note that the energy ϕ_D also measures the discrepancy of v from v_0 on the boundary $\partial \Omega$.

If we define a functional Φ^T_D on $L^2(0, T; L^2(\Omega, \mathbb{R}^N))$ by $\Phi^T_D(v) = \int_0^T \phi_D(v) dt$, then like Φ^T_{pe} we obtain

Proposition 2.4 The functional Φ^T_D is proper, convex, and lower semicontinuous on $L^2(0, T; L^2(\Omega, \mathbb{R}^N))$.

Since the proof parallels that of Proposition 2.1, we do not respect it.

For $g \in L^2(0, T; L^2(\Omega, M))$ we define a map $P_g(\cdot) : L^2(0, T; L^2(\Omega, \mathbb{R}^N)) \rightarrow L^2(0, T; L^2(\Omega, \mathbb{R}^N))$ by

$$
P_g(f)(x, t) := \pi_g(x, t)(f(x, t)) \text{ for } f \in L^2(0, T; L^2(\Omega, \mathbb{R}^N)).
$$
Since the variational derivative \(\delta \Phi^T_D(v) / \delta v \) at \(v \in L^2(0, T; L^2(\Omega, \mathbb{R}^N)) \) is formally given by
\[
\frac{\delta \Phi^T_D(v)}{\delta v} = -\text{div} \left(\frac{\nabla v}{|\nabla v|} \right) \text{ in } L^2(0, T; L^2(\Omega, \mathbb{R}^N)),
\]
(EQ\(_D\)) is formally of the form
\[
\begin{aligned}
&v_t = -P_v \left(\frac{\delta \Phi^T_D}{\delta v}(v) \right) \text{ in } L^2(0, T; L^2(\Omega, \mathbb{R}^N)), \\
&v|_{t=0} = v_0 \text{ in } L^2(\Omega, M).
\end{aligned}
\]
(EQ\(_1_D\))

Note that each solution of (EQ\(_1_D\)) moves satisfying the Dirichlet boundary condition in order to keep minimizing the energy due to the discrepancy on the boundary. The notion of subdifferential of \(\Phi^T_D \) allows us to formulate the formal equation (EQ\(_1_D\)) as an evolution equation (EQ\(_2_D\)) in \(L^2(0, T; L^2(\Omega, \mathbb{R}^N)) \) of the form
\[
\begin{aligned}
&v_t \in -P_v \left(\partial \Phi^T_D(v) \right) \text{ in } L^2(0, T; L^2(\Omega, \mathbb{R}^N)), \\
&v|_{t=0} = v_0 \text{ in } L^2(\Omega, M).
\end{aligned}
\]
(EQ\(_2_D\))

Definition 2.5 We call a function \(v : \Omega \times [0, T] \rightarrow \mathbb{R}^N \) a solution of (EQ\(_D\)) if \(v \) belongs to \(L^2(0, T; L^2(\Omega, \mathbb{R}^N)) \cap C([0, T], L^2(\Omega, \mathbb{R}^N)) \) and solves (EQ\(_2_D\)).

3 Convergence results

In this chapter we state three main theorems. The first theorem shows the validity of our scheme to construct a solution of the equations formulated in the previous chapter. For applications we state the theorem in a general setting.

Let \(H \) be a real Hilbert space and \(G \) be a nonvoid closed subset of \(H \).

Let \(L^2(0, T; G) \) denote the closed subset of \(L^2(0, T; H) \) of the form \(L^2(0, T; G) := \{u \in L^2(0, T; H) | u(t) \in G \text{ a.e. } t \in [0, T] \} \). Let \(B_R \) denote a closed ball of \(L^2(0, T; H) \) defined by \(B_R := \{u \in L^2(0, T; H) | \|u\|_{L^2(0,T;H)} \leq R \} \) for \(R > 0 \).

Let \(P(\cdot)(\cdot) : L^2(0, T; G) \times L^2(0, T; H) \rightarrow L^2(0, T; H) \) be an operator satisfying following properties:

(i) For any \(u \in L^2(0, T; G) \), \(P(u)(\cdot) \) is a bounded linear operator from \(L^2(0, T; H) \) to \(L^2(0, T; H) \) (i.e. \(P(u)(\cdot) \in \mathcal{L}(L^2(0, T; H), L^2(0, T; H)) \)).

(ii) There exists a constant \(K > 0 \) such that \(\sup_{u \in L^2(0, T; G)} \|P(u)(\cdot)\|_{\mathcal{L}} \leq K \).

(iii) If a sequence \(\{u_k\}_{k=1}^{+\infty} \subseteq L^2(0, T; G) \) strongly converges to some \(u \) in \(L^2(0, T; H) \), then there exists a subsequence \(\{u_{k(l)}\}_{l=1}^{+\infty} \subseteq \{u_k\}_{k=1}^{+\infty} \) such that \(P(u_{k(l)})(v) \) strongly converges to \(P(u)(v) \) in \(L^2(0, T; H) \) for any \(v \in L^2(0, T; H) \), where \(P(u)(\cdot) \) denotes the adjoint operator of \(P(u)(\cdot) \).

Theorem 3.1 (Abstract theorem) Let \(\Psi_m (m = 1, 2, \cdots) \) and \(\Psi \) be proper, convex, lower semicontinuous functionals on \(L^2(0, T; H) \). Assume that \(\partial \Psi_m \) converges to \(\partial \Psi \) in
We again associate \(\Phi \) equation for note that these energy functionals are equivalent to
\[
\begin{align*}
\Omega \ni x \mapsto u(x) &= 1 + 1/p \\
\Omega \ni x \mapsto u(x) &= 1 + 1/p
\end{align*}
\]
where \(u_{0,m} \in G \).
In addition, assume that
\[
\lim_{m \to \infty} u_m = u \quad \text{in } C([0, T], H),
\]
\[
\lim_{m \to \infty} u_m = u_0 \quad \text{strongly in } H.
\]
Then, \(u \) satisfies that
\[
\begin{align*}
\phi_{D,m}(v) &:= \begin{cases} \\
\int_{\Omega} \frac{1}{1+1/m} |\nabla \bar{v}(x)|^{1+1/m} dx & \text{if } \bar{v} \in W^{1,1+1/m}(\Omega, \mathbb{R}^N) \cap L^2(\Omega, \mathbb{R}^N), \\
\int_{\Omega} \frac{1}{1+1/m} |\nabla \bar{v}(x)|^{1+1/m} dx & \text{otherwise},
\end{cases}
\end{align*}
\]
where \(\bar{v} \) denotes the extension of \(v \in L^2(\Omega, \mathbb{R}^N) \) to \(\mathbb{R}^n \) such that \(\bar{v}(x) = \bar{v}_{0,m}(x) \) for \(x \in \mathbb{R}^n \setminus \Omega \), for a Lipschitz map \(v_{0,m} : \Omega \to M \).
Note that these energy functionals are equivalent to \(p \)-energy in \(p \)-harmonic map flow equation for \(p = 1 + 1/m \).
We again associate \(\Phi^T \)'s with \(\phi \)'s.
\[
\Phi_{T,m}^T(u) := \int_0^T \phi_{T,m}(u) dt \quad \text{for } u \in L^2(0, T; L^2(\mathbb{R}^n, \mathbb{R}^N)),
\]
\[
\Phi_{T,m}^T(v) := \int_0^T \phi_{T,m}(v) dt \quad \text{for } v \in L^2(0, T; L^2(\Omega, \mathbb{R}^N)).
\]
It is not difficult to see that these functionals \(\Phi^T_{T,m} \) and \(\Phi^T_{T,m} \) are proper, convex, and lower semicontinuous.
We are now in position to state the second theorem.
Theorem 3.3 (Convergence theorem) The following statements hold.

(1) (the case with a periodic boundary condition) Assume that \(u_m \in L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N)) \) \((m = 1, 2, \ldots)\) satisfies

\[
\begin{cases}
 u_{m,t} \in -P_{\text{ue}} (\partial \Phi_{\text{pe},m}(u_m) \cap B_R) & \text{in } L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N)), \\
 u_m \big|_{t=0} = u_{0,m} & \text{in } L^2(\mathbb{T}^n, M)
\end{cases}
\]

with \(R > 0 \) independent of \(m \), where \(u_{0,m} \in L^2(\mathbb{T}^n, M) \). Moreover, assume that

\[
u_0, m \to u_0 \text{ strongly in } L^2(\mathbb{T}^n, \mathbb{R}^N) \text{ as } m \to +\infty, \text{ and}
\]

\[
\limsup_{m \to +\infty} \phi_{\text{pe},m}(u_{0,m}) \leq \phi_{\text{pe}}(u_0).
\]

Then, there exists a function \(u \in C([0, T], L^2(\mathbb{T}^n, \mathbb{R}^N)) \) such that

\[
\begin{cases}
 u_t \in -P_u (\partial \Phi_{\text{pe}}(u)) & \text{in } L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N)), \\
 u \big|_{t=0} = u_0 & \text{in } L^2(\mathbb{T}^n, M),
\end{cases}
\]

and \(u \) satisfies the energy equality

\[
\int_0^T \int_{\mathbb{T}^n} |u_t(x, \tau)|^2 \, dx \, d\tau + \phi_{\text{pe}}(u(t)) = \phi_{\text{pe}}(u_0) \text{ for any } t \in [0, T]. \tag{3.1}
\]

This means that \(u \) is a solution of (EQ_{\text{pe}}) in the sense of Definition 2.3.

(2) (the case with a Dirichlet boundary condition) Assume that \(v_m \in L^2(0, T; L^2(\Omega, \mathbb{R}^N)) \) \((m = 1, 2, \ldots)\) satisfies

\[
\begin{cases}
 v_{m,t} \in -P_{\text{ve}} (\partial \Phi_{\text{pe},m}(v_m) \cap \partial \Omega) & \text{in } L^2(0, T; L^2(\Omega, \mathbb{R}^N)), \\
 v_m \big|_{t=0} = v_{0,m} & \text{in } L^2(\Omega, M)
\end{cases}
\]

with \(R > 0 \) independent of \(m \), where the function \(v_{0,m} \) is a Lipschitz continuous map from \(\overline{\Omega} \) to \(M \). Moreover, assume that

\[
v_{0,m} \to v_0 \text{ strongly in } L^2(\Omega, \mathbb{R}^N) \text{ as } m \to +\infty, \text{ and}
\]

\[
\limsup_{m \to +\infty} \phi_{\text{pe},m}(v_{0,m}) \leq \phi_{\text{pe}}(v_0),
\]

where \(v_0 \) is a Lipschitz continuous map from \(\overline{\Omega} \) to \(M \).

Then there exists a function \(v \in C([0, T], L^2(\Omega, \mathbb{R}^N)) \) such that

\[
\begin{cases}
 v_t \in -P_v (\partial \Phi_{\text{pe}}(v)) & \text{in } L^2(0, T; L^2(\Omega, \mathbb{R}^N)), \\
 v \big|_{t=0} = v_0 & \text{in } L^2(\Omega, M),
\end{cases}
\]

and \(v \) satisfies the energy equality

\[
\int_0^T \int_{\Omega} |v_t(x, \tau)|^2 \, dx \, d\tau + \phi_{\text{pe}}(v(t)) = \phi_{\text{pe}}(v_0) \text{ for any } t \in [0, T].
\]

This means that \(v \) is a solution of (EQ_{\text{pe}}) in the sense of Definition 2.5.
In some situation our Theorem 3.3 actually yields a solution of our limit problem. Indeed, the solvability result of p-harmonic map flow equation in [9] $(1 < p < 2)$ with Theorem 3.3 and a priori estimate yield local existence of a solution of (EQ) in the sense of Definition 2.3.

Theorem 3.4 (Local Existence theorem) For any $K > 0$ there exists $\varepsilon_0 > 0$ depending only on $\mathbb{T}^n, M,$ and K such that if the initial data $u_0 : \mathbb{T}^n \rightarrow M$ satisfies following conditions;

(i) $u_0 \in C^{2+\alpha}(\mathbb{T}^n, \mathbb{R}^N)$ $(0 < \alpha < 1),$

(ii) $\|\nabla u_0\|_{L^\infty(\mathbb{T}^n)} \leq K,$

(iii) there exists $m_0 \in \mathbb{N}, \geq 3$ such that

$$\phi_{pe,m_0}(u_0) + \frac{1}{m_0} + 1 \prod_{i=1}^n \omega_i \leq \varepsilon_0.$$

Then, for any $T \in \left(0, \frac{2}{C\sqrt{\max\{1,K^2\}}} \right)$ where C is a positive constant depending only on $M,$ there exists a function $u \in C([0,T], L^2(\mathbb{T}^n, M))$ solving (EQ) for this T and satisfying the energy equality

$$\int_0^t \int_{\mathbb{T}^n} |u_t(x, \tau)|^2 \, dx \, d\tau + \phi_{pe}(u(t)) = \phi_{pe}(u_0) \text{ for any } t \in [0,T]. \quad (3.2)$$

Remark 3.5 It was proved in [23] that the global weak solution which solves the initial value problem of $p-$harmonic map flow equation $(1 < p < 2)$ with a Dirichlet boundary condition for the case that the target manifold is S^{N-1} is an element of $L^\infty((0, \infty); W^{1,p}(\Omega, S^{N-1})) \cap W^{1,2}((0, \infty); L^2(\Omega, \mathbb{R}^N)).$ This regularity of the solution is not sufficient to be a solution of our approximate problem $v_t \in -P_v(\partial \Phi_{D,m}(v)),$ since we are considering this evolution equation in $L^2(0,T; L^2(\Omega, \mathbb{R}^N)).$ We need the regularity of the solution as much as all the terms of the equation $v_t = \text{div}(|\nabla v|^{p-1} \nabla v) + |\nabla v|^{p+1}v$ are elements of $L^2(0,T; L^2(\Omega, \mathbb{R}^N))$ to be a solution of our approximate problem. Therefore, we are unable to apply our convergence theorem (Theorem 3.3) in this setting. So even local existence is unknown for the Dirichlet problem (EQ2).

4 Proof of Abstract theorem

We need a notion of convergence of sets in a Hilbert space to carry out the proof. We give the definition of the convergence first.

Definition 4.1 Let H be a real Hilbert space and $\{S_m\}_{m=1}^{\infty}$ be a sequence of subsets of $H.$ We define sequentially weak upper limit of $\{S_m\}_{m=1}^{\infty}$ denoted by $\text{sqw - Limsup}_{m \rightarrow +\infty} S_m$ as

$$\text{sqw - Limsup}_{m \rightarrow +\infty} S_m := \{x \in H \mid \text{there exist } \{m_k\}_{k=1}^{\infty} \subseteq \mathbb{N} \text{ and } x_k \in S_{m_k} (k = 1, 2, \cdots) \text{ such that } x_k \rightarrow x \text{ weakly in } H \text{ as } k \rightarrow +\infty\}.$$
Proposition 4.3 Let the sense of Graph as notion of first countable topological space and the weak topology is equivalent to \(\tau \). If \(\{ S_m \}_{m=1}^{+\infty} \) is bounded, our definition of \(\text{sqw} - \limsup_{m \to +\infty} S_m \) agrees with the usual notion of \(\tau \)-upper limit of \(\{ S_m \}_{m=1}^{+\infty} \) (see, for example, [5]).

We prepare two important propositions to prove the theorem.

Proposition 4.3 Let \(\{ A_m \}_{m=1}^{+\infty} \) be a sequence of monotone operators and \(A \) be a maximal monotone operator from a real Hilbert space \(H \) to \(2^H \). Assume that \(A_m \) converges to \(A \) in the sense of Graph as \(m \to +\infty \).

Take a sequence \(\{ u_m \}_{m=1}^{+\infty} \subset H \) with

\[
u_m \to u \text{ strongly in } H \text{ and } A_m(u_m) \neq \emptyset \text{ for any } m \in \mathbb{N}.
\]

Then \(\text{sqw} - \limsup_{m \to +\infty} A_m(u_m) \subset A(u) \).

Proof. By definition for any \(v \in \text{sqw} - \limsup_{m \to +\infty} A_m(u_m) \) there exists \(\{ m_k \}_{k=1}^{+\infty} \subset \mathbb{N} \) and \(v_k \in A_{m_k}(u_{m_k}) \ (k = 1, 2, \ldots) \) such that

\[
v_k \rightharpoonup v \text{ weakly in } H \text{ as } k \to +\infty. \tag{4.1}
\]

We take any \((f, g) \in A \) and fix it. Since \(A_{m_k} \) converges to \(A \) as Graph, we see that there exists a sequence \((f_k, g_k) \in A_{m_k} \ (k = 1, 2, \ldots) \) such that

\[
f_k \to f \text{ and } g_k \to g \text{ strongly in } H \text{ as } k \to +\infty. \tag{4.2}
\]

By the convergences (4.1), (4.2) and the fact that any weak convergent sequence is bounded in \(H \), we see that

\[
|\langle v - g, u - f \rangle_H - \langle v_k - g_k, u_{m_k} - f_k \rangle_H| \\
\leq |\langle v, u - f \rangle_H - \langle v_k, u - f \rangle_H| + |\langle v, u - f \rangle_H - \langle v_k, u_{m_k} - f_k \rangle_H| \\
+ |\langle - g, u - f \rangle_H - \langle - g_k, u - f \rangle_H| + |\langle - g, u_{m_k} - f_k \rangle_H| \\
\leq |\langle v - v_k, u - f \rangle_H| + |\langle v_k \|H\| (u - f) - (u_{m_k} - f_k) \|H| \\
+ \| g + g_k \|H\| (u - f) + \| g_k \|H\| (u - f) - (u_{m_k} - f_k) \|H| \\
\to 0 \ (k \to +\infty).
\]

Thus, we obtain

\[
\langle v - g, u - f \rangle_H = \lim_{k \to +\infty} \langle v_k - g_k, u_{m_k} - f_k \rangle_H \geq 0, \tag{4.3}
\]

since \(A_{m_k} \ (k = 1, 2, \ldots) \) are monotone operators.

Therefore, if we define an operator \(\tilde{A} : H \to 2^H \) by \(\tilde{A} := (u, v) \cup A \), then by (4.3) we see that \(\tilde{A} \) is a monotone operator which includes \(A \). The maximality of \(A \) yields that \(\tilde{A} = A \), thus \(v \in A(u) \). \(\square\)
COROLLARY 4.4 Let $\Psi_m \ (m = 1, 2, \cdots)$ and Ψ be proper, convex, and lower semicontinuous functionals on a real Hilbert space H. Assume that $\partial \Psi_m$ converges to $\partial \Psi$ in the sense of Graph. Let $\{u_m\}_{m=1}^{+\infty}$ be a sequence of H satisfying that $u_m \to u$ strongly in H as $m \to +\infty$ with $\partial \Psi_m(u_m) \neq \emptyset \ (m = 1, 2, \cdots)$. Then

$$\text{sqw} - \operatorname{Limsup}_{m \to +\infty} \partial \Psi_m(u_m) \subset \partial \Psi(u).$$

Proof. Since $\partial \Psi_m$ and $\partial \Psi$ are maximal monotone operators in H, this is a direct consequence of the previous proposition. \(\square\)

PROPOSITION 4.5 Under the notations of Theorem 3.1 let $\{u_m\}_{m=1}^{+\infty} \subset L^2(0, T; G)$ be a sequence such that $u_m \to u$ strongly in $L^2(0, T; H)$ as $m \to +\infty$ and that $\partial \Psi_m(u_m) \cap B_R \neq \emptyset \ (m = 1, 2, \cdots)$. Then

$$\text{sqw} - \operatorname{Limsup}_{m \to +\infty} P(u_m)(\partial \Psi_m(u_m) \cap B_R) \subset P(u)(\partial \Psi(u)).$$

Proof. By definition for $f \in \text{sqw} - \operatorname{Limsup}_{m \to +\infty} P(u_m)(\partial \Psi_m(u_m) \cap B_R)$ there exist $\{m_k\} \subset \mathbb{N}$ and $f_k \in P(u_{m_k})(\partial \Psi_{m_k}(u_{m_k}) \cap B_R)$ such that

$$f_k \rightharpoonup f \text{ weakly in } L^2(0, T; H) \text{ as } k \to +\infty. \quad (4.4)$$

Moreover, for any $k \in \mathbb{N}$ there exists $v_k \in \partial \Psi_{m_k}(u_{m_k}) \cap B_R$ such that $f_k = P(u_{m_k})(v_k)$. Since $\{v_k\}_{k=1}^{+\infty}$ is bounded, by choosing some subsequence if necessary, we see that there exists $v \in L^2(0, T; H)$ such that

$$v_k \rightharpoonup v \text{ weakly in } L^2(0, T; H) \text{ as } k \to +\infty. \quad (4.5)$$

Then by the definition of sequentially weak upper limit and Corollary 4.4, we obtain that

$$v \in \text{sqw} - \operatorname{Limsup}_{k \to +\infty}(\partial \Psi_{m_k}(u_{m_k}) \cap B_R) \subset \partial \Psi(u). \quad (4.6)$$

We shall show that

$$P(u_{m_k})(v_k) \rightharpoonup P(u)(v) \text{ weakly in } L^2(0, T; H) \text{ as } k \to +\infty, \quad (4.7)$$

by taking a suitable subsequence of $\{P(u_{m_k})(v_k)\}_{k=1}^{+\infty}$ (still denoted by $\{P(u_{m_k})(v_k)\}_{k=1}^{+\infty}$). Indeed, if we choose some subsequence of $\{u_{m_k}\}_{k=1}^{+\infty}$ so that the condition (iii) for $P(\cdot)(\cdot)$ holds, then we see that for any $h \in L^2(0, T; H)$

$$|P(u_{m_k})(v_k) - P(u)(v), h|_{L^2(0, T; H)} \leq |(v_k, P(u_{m_k})^*(h) - P(u)^*(h))|_{L^2(0, T; H)} + |(v_k - v, P(u)^*(h))|_{L^2(0, T; H)} \leq R\|P(u_{m_k})^*(h) - P(u)^*(h)\|_{L^2(0, T; H)} + |(v_k - v, P(u)^*(h))|_{L^2(0, T; H)} \to 0 \text{ as } k \to +\infty.$$

Here we have used the convergences that $P(u_{m_k})^*(h) \to P(u)^*(h)$ strongly in $L^2(0, T; H)$ by the condition (iii) and (4.5).
Therefore, by sending $k \to +\infty$ in the both side of $f_k = P(u_{m_k})(v_k)$, we have $f = P(u)(v)$ by (4.4) and (4.7). Moreover, the inclusion (4.6) yields that $f \in P(u)(\partial \Psi(u))$ holds. Then the desired inclusion has been proved.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By the condition (ii), we see that $\{u_{m,t}\}_{m=1}^{+\infty}$ is bounded. Thus, one can choose a subsequence $\{u_{m_k,t}\}_{k=1}^{+\infty} \subset \{u_{m,t}\}_{m=1}^{+\infty}$ so that $u_{m_k,t}$ converges weakly to some $\bar{u} \in L^2(0,T;H)$. Moreover, the convergence $u_{m_k} \to u$ in $L^2(0,T;H)$ yields that $\bar{u} = u_t$ and $u_{m_k,t} \to u_t$ weakly in $L^2(0,T;H)$. Since $u_{m_k,t} \in P(u_{m_k})(\partial \Psi_{m_k}(u_{m_k}) \cap B_R)$, the definition of sequentially weak upper limit and Proposition 4.5 assure that
\[
\begin{align*}
\bar{u} &\in \text{sqw-Limsup}_{k \to +\infty}(-P(u_{m_k})(\partial \Psi_{m_k}(u_{m_k}) \cap B_R)) \\
&\subset -P(u)(\partial \Psi(u) \cap B_R).
\end{align*}
\]

The properties $u \in L^2(0,T;G)$ and $u|_{t=0} = u_0$ obviously follow from the assumptions. The proof is now complete.

5 Proof of Convergence theorem

In this chapter we prove Theorem 3.3 as an application of Theorem 3.1. We shall check that the situation of Theorem 3.3 satisfies the assumptions of Theorem 3.1. Some convergence results of the convex functionals assure that Theorem 3.1 is available for our problem. Especially, we show that the functionals $\Phi_{pe,m}, \Phi_{D,m}, \Phi_{pe,m}^T,$ and $\Phi_{D,m}^T$ defined in Chapter 3 converge to our original energy functionals in the sense of Mosco. The following lemma proved in [26] is the first step. We give its proof for the completeness only under Dirichlet boundary condition, since the proof under periodic boundary condition is easier.

Proposition 5.1 (See [26]) The functional $\Phi_{D,m}(\Phi_{pe,m})$ converges to $\Phi_D(\Phi_{pe,m})$ in the sense of Mosco as $m \to +\infty$.

Remark 5.2 For proper, convex, and lower semicontinuous functionals Ψ_m ($m = 1, 2, \cdots$) and Ψ on a real Hilbert space H, we say that Ψ_m converges to Ψ in the sense of Mosco as $m \to +\infty$, if the following statements hold.

(i) If $u_m \rightharpoonup u$ weakly in H, then $\Psi(u) \leq \liminf_{m \to +\infty} \Psi_m(u_m)$.

(ii) For any $u \in D(\Psi)$ there exists $\{u_m\}_{m=1}^{+\infty} \subset H$ such that $u_m \to u$ strongly and $\Psi_m(u_m) \to \Psi(u)$ as $m \to +\infty$.

Proof. We first show the condition (i) of Mosco convergence. Assume that $u_m \rightharpoonup u$ weakly in $L^2(\Omega, \mathbb{R}^N)$.
It is sufficient to show in the case that \(u_m \in D(\phi_{D,m}) \). Thus, we may assume that \(\tilde{u}_m \in W^{1,1+1/m}(\Omega, \mathbb{R}^N) \). By Hölder’s inequality we see that \(\tilde{u}_m \in BV(\Omega, \mathbb{R}^N) \) and
\[
\phi_D(u_m) = \int_\Omega |\nabla \tilde{u}_m| \, dx \\
\leq \left(\int_\Omega |\nabla \tilde{u}_m|^{1+1/m} \, dx \right)^{1/(1+1/m)} \cdot |\Omega|^{1-1/(1+1/m)} \\
\leq \phi_{D,m}(u_m) + \frac{1}{m+1} |\Omega|.
\]
Thus, by the lower semicontinuity of \(\phi_D \), we obtain
\[
\phi_D(u) \leq \liminf_{m \to +\infty} \phi_D(u_m) \leq \liminf_{m \to +\infty} \phi_{D,m}(u_m).
\]
This implies that (i) holds.

Next we show the condition (ii) of Mosco convergence is satisfied.

Take any \(u \in D(\phi_D) \) and fix it. Since \(\tilde{u} \in BV(\Omega, \mathbb{R}^N) \), by [16, Remark 2.12] we see that there exists \(\{u_j\}_{j=1}^{+\infty} \subset C^\infty(\Omega, \mathbb{R}^N) \) such that
\[
\begin{align*}
&u_j \to u \text{ strongly in } L^2(\Omega, \mathbb{R}^N), \\
&\int_\Omega |\nabla u_j| \, dx \to \int_\Omega |\nabla u| \, dx \text{ as } j \to +\infty,
\end{align*}
\]
and the trace of \(u_j \) on \(\partial \Omega \) is equivalent to the trace of \(u \).

The properties (5.1) yield that \(u_j \in D(\phi_D) \) and
\[
\phi_D(u_j) \to \phi_D(u) \text{ as } j \to +\infty.
\]

Moreover, we observe that \(u_j \in D(\phi_{D,m}) \) for any \(m \in \mathbb{N} \) and
\[
\phi_{D,m}(u_j) = \frac{1}{1+1/m} \int_\Omega |\nabla \tilde{u}_j|^{1+1/m} \, dx \\
\to \int_\Omega |\nabla \tilde{u}_j| \, dx = \phi_D(u_j) \text{ as } m \to +\infty.
\]
Thus, we can choose a subsequence \(\{i^*_j\}_{j=1}^{+\infty} \subset \mathbb{N} \) so that
\[
i^*_j \geq j, \quad i^*_{j+1} \geq i^*_j, \quad \text{and } |\phi_{D,i}(u_j) - \phi_D(u_j)| \leq \frac{1}{j}
\]
for any \(i \in \{i^*_j, \cdots, i^*_{j+1}\} \) and any \(j \in \mathbb{N} \).

We take
\[
\varepsilon_i := \frac{1}{j}, \quad \hat{u}_i := u_j \text{ for any } i \in \{i^*_j, \cdots, i^*_{j+1}\} \text{ and any } j \in \mathbb{N},
\]
and \(\hat{u}_i := u_1 \) for \(i \in \{1, \cdots, i^*_1 - 1\} \),
and observe that
\[\hat{u}_i \in D(\phi_{D,i}) \text{ for any } i \in \mathbb{N} \text{ and} \]
\[\hat{u}_i \rightarrow u \text{ in } L^2(\Omega, \mathbb{R}^N) \text{ as } i \rightarrow +\infty. \]

Moreover, for \(i \geq i^*_1 \)
\[|\phi_{D,i}(\hat{u}_i) - \phi_D(u)| \leq |\phi_{D,i}(\hat{u}_i) - \phi_D(\hat{u}_i)| + |\phi_D(\hat{u}_i) - \phi_D(u)| \]
\[\leq \varepsilon_i + |\phi_D(\hat{u}_i) - \phi_D(u)| \]
\[\rightarrow 0 \text{ (} i \rightarrow +\infty). \]

This implies that the condition (ii) of Mosco convergence holds. \(\square \)

Proposition 5.3 The operator \(\Phi^T_{D,m} (\text{resp. } \Phi^T_{pe,m}) \) converges to \(\Phi^T_D (\text{resp. } \Phi^T_{pe}) \) in the sense of Mosco. Moreover, \(\partial \Phi^T_{D,m} (\text{resp. } \partial \Phi^T_{pe,m}) \) converges to \(\partial \Phi^T_D (\text{resp. } \partial \Phi^T_{pe}) \) in the sense of Graph as \(m \rightarrow +\infty. \)

It needs some technical arguments to prove this proposition. We will give the proof in a general setting in Appendix. The consequence follows from Proposition 5.1, Proposition A.2, and Proposition A.4 which will be proved in Appendix (also see [4], [5]).

We can derive energy equalities which are necessary to prove Theorem 3.3 by applying Proposition A.1 also shown in Appendix later.

Proposition 5.4 Assume the same hypotheses of Theorem 3.3.

1. (the case with a periodic boundary condition) \(u_m \in L^2(0, T; L^2(\mathbb{T}, \mathbb{R}^N)) \)
\((m = 1, 2, \ldots) \) satisfies
\[\int_0^T \int_{\mathbb{T}} \left| u_{m,t}(x, \tau) \right|^2 + \phi_{pe,m}(u_m(t)) = \phi_{pe,m}(u_{0,m}) \text{ for any } t \in [0, T]. \]

2. (the case with a Dirichlet boundary condition) \(v_m \in L^2(0, T; L^2(\Omega, \mathbb{R}^N)) \)
\((m = 1, 2, \ldots) \) satisfies
\[\int_0^T \int_{\Omega} |v_{m,t}(x, \tau)|^2 \, dx \, d\tau + \phi_{D,m}(v_m(t)) = \phi_{D,m}(v_{0,m}) \text{ for any } t \in [0, T]. \]

Proof. We only prove (5.3). We can show (5.2) by the same argument as below. There exists \(w_m \in \partial \Phi^T_{D,m}(v_m) \) such that \(v_{m,t}(x, t) = -\pi_{v_m(x,t)}(w_m(x, t)) \).

Noting \(v_{m,t}(x, t) \in T_{v_m(x,t)}M \) for a.e. \((x, t) \in \Omega \times [0, T] \), we see that
\[\int_{\Omega} |v_{m,t}(x, t)|^2 \, dx = \int_{\Omega} \langle v_{m,t}(x, t), -\pi_{v_m(x,t)}(w_m(x, t)) \rangle \, dx \]
\[= -\langle v_{m,t}(x, t), w_m(x, t) \rangle_{L^2(\Omega, \mathbb{R}^N)} \text{ for a.e. } t \in [0, T]. \]

Since the inclusion \(w_m \in \partial \phi_{D,m}(v_m) \) yields that \(w_m(t) \in \partial \phi_{D,m}(v_m(t)) \) for a.e. \(t \in [0, T] \), Proposition A.1 which will be proved in Appendix assures that
\[\langle v_{m,t}(x, t), w_m(x, t) \rangle_{L^2(\Omega, \mathbb{R}^N)} = \frac{d}{dt} \phi_{D,m}(v_m(t)) \text{ for a.e. } t \in [0, T]. \]
Combining (5.5) with (5.4) and integrating the both side in \((0, T)\), we obtain the equality (5.3).

Now we show Theorem 3.3.

Proof of Theorem 3.3. We present the proof only under Dirichlet boundary condition, since the proof is similar for periodic boundary value problem.

First we note that Proposition 5.3 actually gives the assumption for the Graph convergence of the subdifferential of energy functionals in Theorem 3.1.

We shall check that our projection \(P(\cdot)\) satisfies the conditions of Theorem 3.1. Since it is easy to check that the conditions (i),(ii) hold, we only show that the condition (iii) holds.

Assume that \(u_k \to u\) strongly in \(L^2(0, T; L^2(\Omega, \mathbb{R}^N))\) and \(u_k \in L^2(0, T; L^2(\Omega, M))\) \((k = 1, 2, \cdots)\). Then one can choose some subsequence \(\{u_{k(l)}\}_{l=1}^{\infty} \subset \{u_k\}_{k=1}^{\infty}\) such that

\[u_{k(l)}(x, t) \to u(x, t) \quad \text{as } l \to +\infty \text{ for a.e. } (x, t) \in \Omega \times [0, T]. \tag{5.6} \]

For any \(v \in L^2(0, T; L^2(\Omega, \mathbb{R}^N))\) we observe that

\[|P_{u_{k(l)}}(v)(x, t) - P_u(v)(x, t)|^2 \leq 4 \left(\sup_{w \in M} \sup_{y \in \mathbb{R}^N, |y| \leq 1} |\pi_w(y)| \right)^2 |v(x, t)|^2 \in L^1(\Omega \times [0, T], \mathbb{R}^N). \tag{5.7} \]

By (5.6) and (5.7) one is able to apply Lebesgue’s theorem to get

\[P_{u_{k(l)}}(v) \to P_u(v) \text{ strongly in } L^2(0, T; L^2(\Omega, \mathbb{R}^N)) \text{ as } l \to +\infty. \tag{5.8} \]

In addition, since \(\pi_u(\cdot)\) is a symmetric matrix for any \(u \in M\), we easily see that the bounded linear operator \(P_w\) is self adjoint, i.e., \(P_w^* = P_w\) for any \(w \in L^2(0, T; L^2(\Omega, M))\). Thus, the convergence (5.8) assures that the condition (iii) holds.

We next show that there exists a subsequence of \(\{v_m\}_{m=1}^{\infty}\) such that it converges in \(C([0, T], L^2(\Omega, \mathbb{R}^N))\).

By the assumption that \(\limsup_{m \to +\infty} \phi_{D,m}(v_{0,m}) \leq \phi_D(v_0)\) and the inequality (5.3), there exists \(k \in \mathbb{N}\) such that

\[\int_0^t \int_{\Omega} |v_{m,t}(x, \tau)|^2dx d\tau + \phi_{D,m}(v_m(t)) \leq \phi_D(v_0) + 1 \text{ for any } m \geq k \text{ and any } t \in [0, T]. \tag{5.9} \]

Moreover, we observe that

\[|v_m(t) - v_m(s)| \leq \int_s^t |v_{m,t}(\tau)|d\tau \leq \left(\int_s^t |v_{m,t}(\tau)|^2d\tau \right)^{1/2} |t - s|^{1/2} \leq (\phi_D(v_0) + 1)^{1/2} |t - s|^{1/2} \text{ for any } m \geq k. \]
This inequality together with (5.9) yields
\[
\|v_m(t) - v_m(s)\|_{L^2(\Omega, \mathbb{R}^N)} \leq (\phi_D(v_0) + 1)^{1/2} |t - s|^{1/2}
\]
for any \(s, t \in [0, T]\) with \(s \leq t\) and any \(m \geq k\).

This implies that \(\{v_m(t)\}^+_{m=k} \subset C([0, T], L^2(\Omega, \mathbb{R}^N))\) is equicontinuous.

In addition, since each \(v_m\) takes its values in \(M\), it is obvious that \(\{v_m(t)\}^+_{m=k} \subset C([0, T], L^2(\Omega, \mathbb{R}^N))\) is uniformly bounded.

By using the inequality (5.9) again, we can calculate as follows.
\[
\int_{\Omega} |\nabla v_m(t)| dx \leq \left(\int_{\Omega} |\nabla v_m|^{1+1/m}(t)dx \right)^{m/(m+1)} |\Omega|^{1/(m+1)}
\]
\[
\leq (\phi_D(v_0) + 1)(|\Omega| + 1) \text{ for any } m \geq k \text{ and } t \in [0, T].
\]

Thus, by compactness [16, Theorem 1.19] this \(BV\) bound implies that the sequence \(\{v_m(t)\}^+_{m=k}\) is relatively compact in \(L^1(\Omega, \mathbb{R}^N)\) for any \(t \in [0, T]\). Since \(\{v_m(t)\}^+_{m=k}\) is bounded in \(L^\infty(\Omega, \mathbb{R}^N)\), it is easy to see that \(\{v_m(t)\}^+_{m=k}\) is also relatively compact in \(L^2(\Omega, \mathbb{R}^N)\) for any \(t \in [0, T]\).

We are now able to use Ascoli-Arzelà’s theorem (for \(C([0, T], L^2(\Omega, \mathbb{R}^N))\)) and conclude that there exists a subsequence \(\{v_m(t)\}^+_{l=1} \subset \{v_m\}^+_{m=1}\) and \(v \in C([0, T], \mathbb{R}^N)\) such that \(v_m(t)\) converges to \(v\) in \(C([0, T], \mathbb{R}^N)\).

We now observe that all the assumptions of Theorem 3.1 are fulfilled. Thus, Theorem 3.1 yields the desired result. \(\square\)

6 Proof of Local Existence theorem

Since we have already established Convergence theorem, it is sufficient to find approximate solutions of \(p\)–harmonic map flow equation which satisfies the assumptions of Convergence theorem.

First of all, let us calculate \(\partial \Phi^T_{pe,m}\) to see that solutions of \(p\)–harmonic map flow equation solve our approximate problem in our notation with \(\partial \Phi^T_{pe,m}\).

Lemma 6.1 The subdifferential \(\partial \Phi^T_{pe,m}\) is of the form
\[
\partial \Phi^T_{pe,m}(u) = \{- \text{div}(|\nabla u|^{1/m-1} \nabla u)\} \text{ for } u \in D(\partial \Phi^T_{pe,m}).
\]

Proof. Let \(v \in \partial \Phi^T_{pe,m}(u)\). Then by the definition of subdifferential, for any \(f \in C_0^\infty(T^n \times [0, T], \mathbb{R}^N)\) and \(\varepsilon > 0\)
\[
\frac{1}{1 + 1/m} \int_0^T \int_{T^n} |\nabla u + \varepsilon \nabla f|^{1+1/m} dx dt \geq \frac{1}{1 + 1/m} \int_0^T \int_{T^n} |\nabla u|^{1+1/m} dx dt + \int_0^T \int_{T^n} \langle \varepsilon f, v \rangle dx dt. \tag{6.1}
\]
Moreover,

\[
(\text{The left side of (6.1)})
\]

\[
= \frac{1}{1+1/m} \int_0^T \int_{T^n} |\nabla u|^{1+1/m} \, dx \, dt + \varepsilon \int_0^T \int_{T^n} |\nabla u|^{1/m-1} (\nabla u, \nabla f) \, dx \, dt + o(\varepsilon).
\]

Thus, we have

\[
\varepsilon \int_0^T \int_{T^n} |\nabla u|^{1/m-1} (\nabla u, \nabla f) \, dx \, dt + o(\varepsilon) \geq \varepsilon \int_0^T \int_{T^n} \langle f, v \rangle \, dx \, dt.
\]

By dividing both sides by \(\varepsilon\), sending \(\varepsilon \downarrow 0\), and integrating by parts, we obtain that

\[
\int_0^T \int_{T^n} \langle v, f \rangle \, dx \, dt \leq \int_0^T \int_{T^n} \langle -\text{div} (|\nabla u|^{1/m-1} \nabla u), f \rangle \, dx \, dt.
\] \(\text{(6.2)}\)

By taking negative \(\varepsilon < 0\) and sending \(\varepsilon \uparrow 0\) in the same way, we also obtain

\[
\int_0^T \int_{T^n} \langle -\text{div} (|\nabla u|^{1/m-1} \nabla u), f \rangle \, dx \, dt \leq \int_0^T \int_{T^n} \langle v, f \rangle \, dx \, dt.
\] \(\text{(6.3)}\)

Combining (6.2) with (6.3), we have

\[
\int_0^T \int_{T^n} \langle v + \text{div} (|\nabla u|^{1/m-1} \nabla u), f \rangle \, dx \, dt = 0 \text{ for any } f \in C_0^\infty(\Omega \times [0, T], \mathbb{R}^N).
\]

This implies that \(v = -\text{div} (|\nabla u|^{1/m-1} \nabla u)\). The proof is now complete. \(\square\)

We need to know the solvability result of \(p\)-harmonic map flow equation as an approximate problem for our problem. By Lemma 6.1 we safely transfer result of [9] into our setting.

Proposition 6.2 (Global solvability of \(p\)-harmonic map flow equation [9])

For \(m \in \mathbb{N}\) and \(K > 0\) there exists \(\varepsilon_0 > 0\) depending only on \(K, M, T^n\) and \(m\) such that for the initial data \(u_{0,m} : T^n \rightarrow M\) satisfying conditions:

(i) \(u_{0,m} \in C^{2+\alpha}(T^n, \mathbb{R}^N)\) \((0 < \alpha < 1)\),

(ii) \(\phi_m(u_{0,m}) \leq \varepsilon_0\),

(iii) \(\|\nabla u_{0,m}\|_{L^\infty(M)} \leq K\).

Then, there uniquely exists a function \(u_m : T^n \times [0, \infty) \rightarrow M\) satisfying

\[
\begin{cases}
 u_{m,t} \in -P_{u_m} (\partial \Phi_{pe,m}(u_m)) & \text{in } L^2(0, T; L^2(T^n, \mathbb{R}^N)), \\
 u_m |_{t=0} = u_{0,m} & \text{in } L^2(T^n, M),
\end{cases}
\]

and the energy inequality

\[
\int_0^T \int_{T^n} |u_{m,t}(x, \tau)|^2 \, dx \, d\tau + \phi_{pe,m}(u_m(T)) \leq \phi_{pe,m}(u_{0,m})
\] \(\text{(6.4)}\)
for any \(T > 0 \). In addition,
\[
\begin{align*}
 u_{m,t} & \in L^2(\mathbb{T}^n \times [0, \infty), \mathbb{R}^N) \\
u_{m} & \in C^3(\mathbb{T}^n \times [0, \infty), \mathbb{R}^N), \\
\nabla u_m & \in C^3(\mathbb{T}^n \times [0, \infty), \mathbb{R}^{nN}) \text{ where } 0 < \beta < 1.
\end{align*}
\]

Remark 6.3 In [9] this theorem was proved not only for our manifold \(\mathbb{T}^n \) but also for a general compact Riemannian manifold without boundary. The dependence of \(\varepsilon_0 \) with respect to \(m \) is not explicitly stated in [9]. However, if one examines the proof, one can conclude that \(\varepsilon_0 \) can be chosen independently of \(m \geq 3 \) as stated below.

Corollary 6.4 For any \(K > 0 \) there exists \(\varepsilon_0 > 0 \) which depends only on \(K, \mathbb{T}^n \) and \(M \) such that for any \(m \geq 3 \), if the initial data \(u_{0,m} \) satisfies the condition (i),(ii),(iii) of Proposition 6.2, then there uniquely exists a function \(u_m : \mathbb{T}^n \times [0, \infty) \rightarrow M \) satisfying all the consequence of Proposition 6.2.

Proof. Let us follow the arguments in [9] briefly. In [9] the global solution was obtained as a limit of a function \(u_{\delta,m} : \mathbb{T}^n \times [0, T_0) \rightarrow M \), which is a solution of following regularized problem (6.5) as \(\delta \downarrow 0 \).

\[
\begin{align*}
 u_{\delta,m,t} & = -\pi u_{\delta,m} \left(-\text{div}((|\nabla u|^2 + \delta)^{\frac{1}{2}} \nabla u) \right) \quad \text{in } \mathbb{T}^n \times [0, T_0), \\
u_{\delta,m}|_{t=0} & = u_0 \quad \text{in } \mathbb{T}^n.
\end{align*}
\]

Set \(f_{\delta,m} := |du_{\delta,m}|^2 + \delta \), where \(|du|^2 \) is written in local coordinate \(u = (u^1, u^2, \cdots, u^n) \) and by the metric \(g \) of \(M \) as \(|du|^2 = \sum_{i,j=1} h_{\alpha\beta}(u) \partial u^i/\partial x_i \partial u^j/\partial x_j \). The following regularity property was proved in [9, Lemma 2].

Let \(K \) be any positive constant such that \(||\nabla u_0||_{L^\infty(\mathbb{T}^n)} \leq K \). There exists a positive constant \(\varepsilon_1 \) depending on \(K, \mathbb{T}^n, M, \) and \(m \) such that if \(\sup_{t \leq T_0} ||f_{\delta,m}(t, \cdot)||_{L^{n/2}(\mathbb{T}^n)} \leq \varepsilon_1 \), then \(||f_{\delta,m}||_{L^{\infty}(\mathbb{T}^n \times [0, T_0))} \leq C \), where \(C \) is a constant depending on \(K, \mathbb{T}^n, M, \) and \(m \).

By using these constants \(\varepsilon_1 \) and \(C \), the constant \(\varepsilon_0 > 0 \) of Proposition 6.2 can be taken as
\[
\varepsilon_0 := C(1+1/m-n)\varepsilon_1^{n/2}.
\]

Now by calculation we can check that \(\varepsilon_1' := \inf_{m \geq 3} \varepsilon_1 \) is still positive and there exists \(C' > 0 \) independent of \(m \geq 3 \) such that for any \(m \geq 3 \) if \(\sup_{t \leq T_0} ||f_{\delta,m}(t, \cdot)||_{L^{n/2}(\mathbb{T}^n)} \leq \varepsilon_1' \) then
\[
||f_{\delta,m}||_{L^{\infty}(\mathbb{T}^n \times [0, T_0))} \leq C'.
\]

Using these \(\varepsilon_1' > 0 \) and \(C' > 0 \), we define \(\varepsilon_0' > 0 \) by
\[
\varepsilon_0' := \inf_{m \geq 3} C'(1+1/m-n)\varepsilon_1^{n/2}.
\]

Then by the proof of [9, Theorem 1], one is able to prove that \(u_0 \in C^{2+\alpha}(\mathbb{T}^n, \mathbb{R}^N), \phi_m(u_0) \leq \varepsilon_0' \) and \(||\nabla u_0||_{L^\infty(M)} \leq K \) yield the consequences of Proposition 6.2. \(\Box \)
Corollary 6.5 For any $K > 0$ there exists $\varepsilon_0 > 0$ depending only on $T^n, M,$ and K such that if the initial data $u_0 : T^n \to M$ satisfies following conditions;

(i) $u_0 \in C^{2+\alpha}(T^n, \mathbb{R}^N)$ $(0 < \alpha < 1)$,
(ii) $\|\nabla u_0\|_{L^\infty(T^n)} \leq K$,
(iii) there exists $m_0 \in \mathbb{N}, \geq 3$ such that

$$\phi_{pe,m_0}(u_0) + \frac{1}{m_0 + 1} \prod_{i=1}^{n} \omega_i \leq \varepsilon_0.$$

Then, for any $m \geq m_0$ there uniquely exists a function $u_m : T^n \times [0, \infty) \to M$ which satisfies all the consequences of Proposition 6.2 for the initial data u_0.

Proof. For $K > 0$ let $\varepsilon_0 > 0$ be the positive constant defined in Corollary 6.4. Suppose that $u_0 : T^n \to M$ satisfies the conditions (i),(ii),(iii). For any $m \geq m_0$ we see that

$$\phi_{pe,m_0}(u_0) + \frac{1}{m_0 + 1} \prod_{i=1}^{n} \omega_i \leq \varepsilon_0.$$

Thus, Corollary 6.4 assures the existence of $u_m : T^n \times [0, \infty) \to M$ with the desired properties. □

We are now in position to prove local existence theorem.

Proof of Theorem 3.4. It is sufficient to show that there exist $R > 0$ and $T > 0$ such that for approximate solutions u_m whose existence is assured by Corollary 6.5, the inclusion

$$\partial \Phi_{pe,m}^T(u_m) \subset B_R$$

holds for any $m \geq m_0$. (6.7)

Then, all the assumptions of Theorem 3.3 are satisfied and Theorem 3.3 yields the existence of a solution of (EQ2 pe) for this $T > 0$.

We see that the approximate equation $u_{m,t} \in -P_{um} \left(\partial \Phi_{pe,m}^T(u_m) \right)$ is equivalent to the following equation.

$$u_{m,t} = \text{div} \left(|\nabla u_m|^{1/m-1} \nabla u_m \right) + |\nabla u_m|^{1/m-1} A(u_m)(\nabla u_m, \nabla u_m),$$

where $A(u)$ denotes the second fundamental form of M at $u \in M$.

Since the coefficients of $A(u)(\nabla u, \nabla u)$ smoothly depend on the value u on M, one can estimate that

$$|\nabla u_m(x,t)|^{1/m-1} |A(u_m(x,t))(\nabla u_m(x,t), \nabla u_m(x,t))| \leq C |\nabla u_m(x,t)|^{1/m+1}$$

for any $(x,t) \in T^n \times (0, +\infty)$, (6.9)
where C is a positive constant depending only on M. By the inequality (6.4) and the assumption (iii) of Theorem 3.3, we know that there exists $R > 0$ such that $u_{m,t} \in B_R$ for any $m \geq m_0$. Thus, if we prove that there exists $K' > 0$ and $T > 0$ such that
\[
\|\nabla u_m\|_{L^\infty(T^* \times [0,T])} \leq K' \text{ for all } m \geq m_0,
\] (6.10)
then, by (6.8) and (6.9) we have that
\[
\text{div } (|\nabla u_m|^{1/m-1}\nabla u_m) \in B_{R_0} \text{ for all } m \geq m_0,
\]
for some $R' > 0$ independent of m. This inclusion implies that (6.7) holds. We shall show the inequality (6.10).

Fix $m \geq m_0$. We set $U := \{(x,t) \in T^* \mid \nabla u_m(x,t) \neq 0\}$. Since $\nabla u_m \in C^3(T^* \times [0,\infty), \mathbb{R}^{nN})$, by a standard argument for system of uniform parabolic equation (see [22]), we conclude that $u_m \in C^\infty(U)$.

We put $w_m(x,t) := |\nabla u_m(x,t)|^2$ and differentiate the both side in time. Noting the equality (6.8), we see that
\[
w_{m,t} = 2\langle \nabla u_m, \nabla u_{m,t} \rangle = 2\langle \nabla u_m, \nabla \text{div } (|\nabla u_m|^{1/m-1}\nabla u_m) \rangle
\]
\[+ 2\sum_{l=1}^N \langle \nabla u_m, \nabla (|\nabla u_m|^{1/m-1})A_l(u_m)(\nabla u_m, \nabla u_m) \rangle
\]
\[+ 2\langle \nabla u_m, \nabla A(u_m)(\nabla u_m, \nabla u_m) \rangle |\nabla u_m|^{1/m-1}.
\] (6.11)

Moreover by calculation we obtain
\[
\text{(the first term of (6.11))} = \sum_{i,j=1}^n a_{ij}(x,t) \frac{\partial^2}{\partial x_i \partial x_j} w_m + \sum_{i=1}^n b^1_i(x,t) \frac{\partial}{\partial x_i} w_m
\]
\[- 2|\nabla u_m|^{1/m-1} \sum_{l=1}^N \sum_{i,j=1}^n \left(\frac{\partial^2}{\partial x_i \partial x_j} u_m^l \right)^2,
\] (6.12)
\[
\text{(the second term of (6.11))} = \sum_{i=1}^n b^2_i(x,t) \frac{\partial}{\partial x_i} w_m,
\]
\[
\text{(the third term of (6.11))} \leq \sum_{i=1}^n b^3_i(x,t) \frac{\partial}{\partial x_i} w_m + C' w_m^{(3+1/m)/2},
\]

where $a_{ij}, b^1_i, b^2_i, b^3_i$ are continuous functions in U and C' is a positive constant depending only on M. More precisely, we see that a_{ij} is written as
\[
a_{ij} = \left(\frac{1}{m} - 1 \right) |\nabla u_m|^{1/m-3} \sum_{l=1}^N \frac{\partial}{\partial x_i} u_m^l \frac{\partial}{\partial x_j} u_m^l + |\nabla u_m|^{1/m-1} \delta_{ij},
\]
where \(\delta_{ij} \) is Kronecker’s delta. We can check that \((a_{ij}) > 0\) in \(U\). Indeed, by Schwarz’s inequality

\[
\sum_{i,j=1}^{n} a_{ij} \xi_i \xi_j = \left(\frac{1}{m} - 1 \right) |\nabla u_m|^{1/m-3} \sum_{l=1}^{N} ((\nabla u_m^l, \xi_i))^2 + |\nabla u_m|^{1/m-1} |\xi|^2 \\
\geq \left(\frac{1}{m} - 1 \right) |\nabla u_m|^{1/m-3} |\nabla u_m|^2 |\xi|^2 + |\nabla u_m|^{1/m-1} |\xi|^2 \\
= \frac{1}{m} |\nabla u_m|^{1/m-1} |\xi|^2 > 0 \text{ for any } \xi \in \mathbb{R}^N \setminus \{0\}.
\]

Substituting the (in)equalities (6.12) into (6.11) we obtain the inequality that

\[
w_{m,t} \leq \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2}{\partial x_i \partial x_j} w_m + \sum_{i=1}^{n} b_i(x,t) \frac{\partial}{\partial x_i} w_m + C' w_m^{(3+1/m)/2} \text{ for any } (x,t) \in U.
\]

Here we have set \(b_i := b_1^i + b_2^i + b_3^i\).

Let \(f_m(t)\) be a solution of the following initial value problem.

\[
\begin{align*}
\{ f_{m,t} &= C' f_m^{(3+1/m)/2}, \\
\quad f_m|_{t=0} &= \max\{1, K^2\}.
\end{align*}
\]

Then \(f_m\) is of the form

\[
f_m(t) = \left(\left(\max\{1, K^2\} \right)^{(1+1/m)/2} - \frac{C'}{2} \left(1 + \frac{1}{m} \right) t \right)^{-2/(1+1/m)}.
\]

Evidently, \(f_m\) is strictly increasing and blows up when \(t = t_m\), where \(t_m\) is given by

\[
t_m := \frac{2}{C' (1 + 1/m) \left(\max\{1, K^2\} \right)^{(1+1/m)/2}}.
\]

Set \(v_m := w_m - f_m\). Since \(w_m \in C(\mathbb{T}^n \times [0, +\infty))\), there exists \(\delta > 0\) such that

\[
v_m \leq 0 \text{ in } \mathbb{T}^n \times [t_m - \delta, t_m).
\]

Plug \(v_m\) into (6.11) and we obtain that

\[
v_{m,t} \leq \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2}{\partial x_i \partial x_j} v_m + \sum_{i=1}^{n} b_i(x,t) \frac{\partial}{\partial x_i} v_m + d(x,t) v_m \text{ in } U \cap (\mathbb{T}^n \times [0, t_m - \delta)),
\]

where \(d(x,t)\) is a continuous function in \(U \cap (\mathbb{T}^n \times [0, t_m - \delta))\).

For a positive constant \(\lambda > 0\) we set \(v_{m,\lambda} := e^{-\lambda t} v_m\) and differentiate the both side in time. Then by (6.17) we observe that

\[
v_{m,\lambda,t} \leq \sum_{i,j=1}^{n} a_{ij}(x,t) \frac{\partial^2}{\partial x_i \partial x_j} v_{m,\lambda} + \sum_{i=1}^{n} b_i(x,t) \frac{\partial}{\partial x_i} v_{m,\lambda} + (d(x,t) - \lambda) v_{m,\lambda}
\]

in \(U \cap (\mathbb{T}^n \times [0, t_m - \delta)).\)
By taking λ sufficiently large we may assume that $d(x,t) - \lambda < 0$ in $U \cap (\mathbb{T}^n \times [0, t_m - \delta))$. Thus, the standard maximum principle for parabolic equations assures that there exists a boundary point $(\hat{x}, \hat{t}) \in \partial(U \cap (\mathbb{T}^n \times [0, t_m - \delta)))$ such that

$$v_{m,\lambda}(\hat{x}, \hat{t}) = \sup_{(x,t) \in U \cap (\mathbb{T}^n \times [0, t_m - \delta))} v_{m,\lambda}(x,t).$$

We obviously observe that at least one of the following properties holds.

1. $\hat{t} = 0$,
2. $\hat{t} = t_m - \delta$,
3. $(\hat{x}, \hat{t}) \notin U.$

For each case it is easy to check that $v_{m,\lambda}(\hat{x}, \hat{t}) \leq 0$. As the conclusion, the inequality $w_m \leq f_m$ holds in $\mathbb{T}^n \times [0, t_m - \delta)$. Moreover, the definition of U and (6.16) yield that

$$w_m \leq f_m \text{ in } \mathbb{T}^n \times [0, t_m) \text{ for all } m \geq m_0. \tag{6.18}$$

By (6.14) and (6.15) we obtain that if $m_1 \leq m_2$, then

$$t_{m_1} \leq t_{m_2} \text{ and } f_{m_1}(t) \geq f_{m_2}(t) \text{ in } [0, t_{m_1}]. \tag{6.19}$$

Let $f(t)$ be a solution of

$$\begin{align*}
 \begin{cases}
 f_t = C' f^{1+1/2}, \\
 f|_{t=0} = \max\{1, K^2\},
 \end{cases}
\end{align*}$$

Then f blows up when $t_0 = 2/ \left(C' \sqrt{\max\{1, K^2\}} \right)$ and we observe that $t_m < t_0$ for any $m \in \mathbb{N}$ and $t_m \not\rightarrow t_0$ as $m \rightarrow +\infty$.

Now take any $T \in (0, t_0)$ and fix it. Then there exists a natural number $m_T \geq m_0$ such that the blow up time t_{m_T} of f_{m_T} is larger than T. Noting (6.18) and (6.19), we see that for any $m \geq m_T$

$$w_m \leq f_m \leq f_{m_T} \text{ in } \mathbb{T}^n \times [0, T].$$

In other word,

$$|\nabla u_m(x,t)| \leq \sqrt{f_{m_T}(T)} \text{ for any } (x,t) \in \mathbb{T}^n \times [0, T] \text{ and any } m \geq m_T.$$

If we set

$$K' := \max_{m_0 \leq m \leq m_T - 1} \left\{ \| \nabla u_m \|_{L^\infty(\mathbb{T}^n \times [0,T])}, \sqrt{f_{m_T}(T)} \right\},$$

then we finally obtain (6.10).

Thus, Theorem 3.3 yields the existence of a solution of (EQ2_pe) in $L^2(0, T; L^2(\mathbb{T}^n, \mathbb{R}^N))$. The energy equality (3.2) follows by the same argument as Proposition 5.4.

\[\square\]

A Appendix

Here we state several propositions, which are used to prove Proposition 5.3 and Proposition 5.4 in Chapter 5 and need some technical arguments to be shown, for convex functionals in a general setting. First we give one proposition which is necessary to show Proposition 5.4. The result was proved in [8]. But we give the proof for the completeness.
Proposition A.1 (See [8, Lemma 3.3]) Let \(\phi \) be a proper lower semicontinuous convex functional on \(H \) and \(v \in W^{1,2}(0,T;H) \) with \(v(t) \in D(\partial \phi) \) a.e. \(t \in (0,T) \). Then, the function \(t \mapsto \phi(v(t)) \) is absolutely continuous on \([0,T]\). Moreover

\[
\frac{d}{dt} \phi(v(t)) = \langle h, \frac{dv}{dt}(t) \rangle_H, \quad \forall h \in \partial \phi(v(t)), \text{ a.e. } t \in (0,T).
\]

Proof. For each \(\lambda > 0 \) we put \(g_\lambda(t) = \partial \phi^\lambda(v(t)) \), where \(\phi^\lambda(v(t)) = \frac{1}{2\lambda} \| x - J^\lambda v(t) \|_H^2 + \phi(J^\lambda v(t)) \) and \(J^\lambda v(t) := (I + \lambda \partial \phi)^{-1} v(t) \). Here we note that by using the canonical extension of \(\partial \phi \) to \(L^2(0,T;H) \), we can take \(l \in L^2(0,T;H) \) such that \(l(t) \in \partial \phi(v(t)) \) a.e. \(t \in (0,T) \). Then, we easily see that

\[
\| g_\lambda(t) \|_H \leq \| \partial \phi^\lambda(v(t)) \|_H \leq \| l(t) \|_H, \quad \forall t \in (0,T),
\]

(A.1)

and

\[
g_\lambda(t) \to \partial \phi^\lambda(v(t)) \text{ a.e. } t \in (0,T) \text{ as } \lambda \to 0,
\]

(A.2)

where \(\partial \phi^\lambda(v(t)) \) denotes the minimal section of \(\partial \phi(v(t)) \). It follows from (A.1) and (A.2) that

\[
g_\lambda \to \partial \phi^\lambda(v) \text{ in } L^2(0,T;H) \text{ as } \lambda \to 0.
\]

Since \(d\phi^\lambda(v(t))/dt = \langle \partial \phi^\lambda(v(t)), dv(t)/dt \rangle_H \) a.e. \(t \in (0,T) \), we see that

\[
\phi^\lambda(v(t_2)) - \phi^\lambda(v(t_1)) = \int_{t_1}^{t_2} \langle \partial \phi^\lambda(v(t)), \frac{dv}{dt}(t) \rangle_H dt, \quad \forall t_1, t_2 \in [0,T].
\]

(A.3)

Passing in (A.3) to the limit with \(\lambda \to 0 \), we get

\[
\phi(v(t_2)) - \phi(v(t_1)) = \int_{t_1}^{t_2} \langle \partial \phi(v(t)), \frac{dv}{dt}(t) \rangle_H dt,
\]

which implies that the function \(t \mapsto \phi(v(t)) \) is absolutely continuous on \([0,T]\).

Now we define the set

\[
E := \{ t \in (0,T) \mid v(t) \text{ and } \phi(v(t)) \text{ are differentiable at } t, \ v(t) \in D(\partial \phi) \}.
\]

For any \(t \in E \) and \(h \in \partial \phi(v(t)) \) we have

\[
\phi(z) - \phi(v(t)) \geq \langle h, z - v(t) \rangle_H, \quad \forall z \in H.
\]

(A.4)

By taking in (A.4) \(z = v(t + \varepsilon) \) with \(\varepsilon > 0 \), dividing by \(\varepsilon \) and passing to the limit with \(\varepsilon \to 0 \), we get

\[
\frac{d}{dt} \phi(v(t)) \geq \langle h, \frac{dv}{dt}(t) \rangle_H.
\]

(A.5)

Similarly, by taking in (A.4) \(z = v(t - \varepsilon) \) with \(\varepsilon > 0 \), we get

\[
\frac{d}{dt} \phi(v(t)) \leq \langle h, \frac{dv}{dt}(t) \rangle_H.
\]

(A.6)
Therefore, it follows from (A.5) and (A.6) that

$$\frac{d}{dt} \phi(v(t)) = \langle h, \frac{dv}{dt}(t) \rangle_H, \forall h \in \partial \phi(v(t)), \forall t \in E.$$

□

Next we show one proposition for Mosco convergence of convex functional which assures the statement of Proposition 5.3. We follow the arguments in [4]. Let us set some notations used below in advance. Let H denote a real Hilbert space and $\phi_m (m = 1, 2, \cdots)$ and ϕ be proper, convex, and lower semicontinuous functionals on H. Define functionals $\Phi_m (m = 1, 2, \cdots)$ and Φ on $L^2(0, T; H)$ by $\Phi_m(u) := \int_0^T \phi_m(u) dt$ and $\Phi(u) := \int_0^T \phi(u) dt$ for $u \in L^2(0, T; H)$.

The proposition we are going to prove can be stated as follows.

Proposition A.2 If ϕ_m converges to ϕ on H in the sense of Mosco as $m \to +\infty$, then Φ_m also converges to Φ on $L^2(0, T; H)$ in the sense of Mosco.

Remark A.3 This is generalized to time dependent ϕ_m^t, ϕ^t by N. Kenmochi [18] under suitable assumptions.

We recall a property for Mosco converging energy functional.

Proposition A.4 (See [4] or [5]) The following properties are equivalent.

(a) $\phi_m \to \phi$ in the sense of Mosco.

(b) $\partial \phi_m \to \partial \phi$ in the sense of resolvent, i.e.

$$(I + \lambda \partial \phi_m)^{-1}x \to (I + \lambda \partial \phi)^{-1}x \text{ in } H \text{ for any } \lambda > 0 \text{ and any } x \in H,$$

and there exist $(u, v) \in \partial \phi$ and $(u_m, v_m) \in \partial \phi_m$ such that $u_m \to u, v_m \to v$ strongly and $\phi_m(u_m) \to \phi(u)$.

Remark A.5 Note that the convergence that $\partial \phi_m \to \partial \phi$ in the sense of resolvent is equivalent to the convergence $\partial \phi_m \to \partial \phi$ in the sense of Graph (see [4] or [5]).

The previous proposition means that to show the property (b) for Φ_m and Φ is sufficient to attain our purpose. We prepare some lemmas to show the property (b).

Lemma A.6 Assume that ϕ_m converges to ϕ on H in the sense of Mosco. Then the following properties hold.

(i) there exist constants $c_1, c_2 > 0$ such that

$$\phi_m(x) + c_1\|x\|_H + c_2 \geq 0 \text{ for any } x \in H \text{ and any } m \in \mathbb{N}.$$
(ii) For any $\lambda > 0$ and $x \in H$

$$\phi_m^\lambda(x) \to \phi^\lambda(x) \text{ as } m \to +\infty,$$ \hspace{1cm} (A.7)

where

$$
\phi_m^\lambda(x) := \frac{1}{2\lambda} ||x - J_m^\lambda x||_H^2 + \phi_m(J_m^\lambda x), \\
\phi^\lambda(x) := \frac{1}{2\lambda} ||x - J^\lambda x||_H^2 + \phi(J^\lambda x), \\
J_m^\lambda x := (I + \lambda \partial \phi_m)^{-1} x, \text{ and } J^\lambda x := (I + \lambda \partial \phi)^{-1} x.
$$

Proof. (i) Suppose that the conclusions were false. Then there would exist a subsequence \{\phi_m \}_{k=1}^{+\infty} \subset \{\phi_m \}_{m=1}^{+\infty} and a sequence \{y_k \}_{k=1}^{+\infty} \subset H such that

$$
\phi_m^k(y_k) + k^2 ||y_k|| + k^2 < 0 \text{ for any } k \in \mathbb{N}. \hspace{1cm} (A.8)
$$

Fix $x_0 \in D(\phi)$. The definition of Mosco convergence yields that there exists \{x_m \}_{m=1}^{+\infty} \subset H such that

$$
x_m \to x_0 \text{ strongly in } H \text{ and } \phi_m(x_m) \to \phi(x_0) \text{ as } m \to +\infty. \hspace{1cm} (A.9)
$$

For each $k \in \mathbb{N}$ set

$$
z_k := \varepsilon_k y_k + (1 - \varepsilon_k) x_m, \hspace{0.5cm} \varepsilon_k := \frac{1}{k(1 + ||y_k||_H)}. \hspace{1cm} (A.10)
$$

By (A.9) and (A.10) we obviously see that

$$
\varepsilon_k \to 0 \text{ as } k \to +\infty, \\
0 < \varepsilon_k < 1 \text{ for any } k \in \mathbb{N}, \hspace{1cm} (A.11)
$$

and $z_k \to x_0$ strongly in H as $k \to +\infty$.

Moreover, the convexity of ϕ_m, (A.8), and (A.10) yield that

$$
\phi_m(z_k) \leq \varepsilon_k \phi_m(y_k) + (1 - \varepsilon_k) \phi_m(x_m) \\
< -k^2 \varepsilon_k (||y_k||_H + 1) + (1 - \varepsilon_k) \phi_m(x_m) \hspace{1cm} (A.12)
$$

Sending $k \to +\infty$ in (A.12), by (A.9) and (A.11) we observe that

$$
\limsup_{k \to +\infty} \phi_m(z_k) = -\infty. \hspace{1cm} (A.13)
$$

On the other hand, the second convergence of (A.11) and the definition of Mosco convergence assure that

$$
\liminf_{k \to +\infty} \phi_m(z_k) \geq \phi(x_0). \hspace{1cm} (A.14)
$$
We have by (A.13) and (A.14) that $\phi(x_0) = -\infty$. This is a contradiction since we took $x_0 \in D(\phi)$.

(ii) Since $\phi_m \rightharpoonup \phi$ on H in the sense of Mosco, Proposition A.4 implies that

$$(I + \lambda \partial \phi_m)^{-1} x \rightharpoonup (I + \lambda \partial \phi)^{-1} x \text{ in } H,$$

and there are $(\xi_m, \eta_m) \in \partial \phi_m$ and $(\xi, \eta) \in \partial \phi$ such that

$$\xi_m \rightharpoonup \xi, \eta_m \rightharpoonup \eta, \text{ and } \phi_m(\xi_m) \rightharpoonup \phi(\xi) \text{ as } m \to +\infty.$$

Now for a fixed $\lambda > 0$ we put $z_m = \xi_m + \lambda \eta_m$ and $z = \xi + \lambda \eta$. Then we easily see that

$$z_m \to z \text{ in } H \text{ as } m \to +\infty.$$

In addition, since $z_m \in (I + \lambda \phi_m)(\xi_m)$, we have $\xi_m = J_{\lambda} z_m$. Similarly we can get $\xi = J_{\lambda} z$. Thus we see that

$$\phi_m(J_{\lambda} z_m) \rightharpoonup \phi(J_{\lambda} z) \text{ as } m \to +\infty,$$

which implies that $\phi_{m,\lambda}(z_m) \rightharpoonup \phi(\lambda) \text{ as } m \to +\infty$. Therefore we observe that

$$\phi_{m,\lambda}(x) = \phi_{m}(z_m) + \int_{0}^{1} \langle \partial \phi_{m}(z_m + \tau(x - z_m)), x - z_m \rangle_H d\tau$$

$$\to \phi_{\lambda}(x) = \phi_{\lambda}(z) + \int_{0}^{1} \langle \partial \phi_{\lambda}(z + \tau(x - z)), x - z \rangle_H d\tau.$$

\[\square \]

Lemma A.7 Assume that ϕ_m converges to ϕ in the sense of Mosco. Then there exists a sequence $\{b_m\}_{m=1}^{+\infty} \subset W^{1,2}(0, T; H)$ such that

$$\|b_m(t)\|_H \leq M, \phi_m(b_m(t)) \leq M,$$

and $\|b'_m\|_{L^2(0,T;H)} \leq M$ for any $m \in \mathbb{N}$ and a.e. $t \in [0, T]$, where M is a positive constant independent of m and t.

Proof. Fix any $b_0 \in D(\phi)$. Then, by the definition of Mosco convergence, we obtain $\{b_{0,m}\}_{m=1}^{+\infty} \subset H$ such that $b_{0,m} \to b_0$ strongly and $\phi_m(b_{0,m}) \to \phi(b_0)$ as $m \to +\infty$.

Let $b_m(t) \in C([0, T], H)$ be a solution of

$$\begin{cases}
 b_{m,t} \in -\partial \phi_m(b_m(t)) \quad \text{in } H, \\
 b_m(0) = b_{0,m}.
\end{cases}$$

Then, $\{b_m\}_{m=1}^{+\infty}$ is the desired sequence. \[\square \]

Lemma A.8 Assume $\phi_m \rightharpoonup \phi$ in the sense of Mosco. Then, $\partial \Phi_m \rightharpoonup \partial \Phi$ in the sense of resolvent.
Proof. Take any $f \in L^2(0, T; H)$ and set $u_m := (I + \lambda \partial \Phi_m)^{-1} f$ and $u := (I + \lambda \partial \Phi)^{-1} f$. We show that $u_m \to u$ strongly in $L^2(0, T; H)$ as $m \to +\infty$.

Note that

$$u_m(t) = (I + \lambda \partial \phi_m)^{-1} f(t) \quad \text{and} \quad u(t) = (I + \lambda \partial \phi)^{-1} f(t) \quad \text{a.e.} \quad t \in [0, T].$$

Since ϕ_m converges to ϕ in the sense of Mosco, Proposition A.4 yields that $\partial \phi_m$ converges to $\partial \phi$ in the sense of resolvent. Thus, we obtain that

$$u_m(t) \to u(t) \quad \text{strongly in} \quad H \quad \text{for a.e.} \quad t \in [0, T]. \quad (A.15)$$

Since $(f(t) - u_m(t))/\lambda \in \partial \phi_m(u_m(t))$ a.e. $t \in [0, T]$, we obtain by the definition of subdifferential that

$$\phi_m(b_m(t)) \geq \phi_m(u_m(t)) + \langle (f(t) - u_m(t))/\lambda, b_m(t) - u_m(t) \rangle_H \quad \text{for a.e.} \quad t \in [0, T], \quad (A.16)$$

where $\{b_m\}^{+\infty}_{m=1}$ is the sequence given in Lemma A.7.

Combining the inequality of Lemma A.6 with (A.16), we see that

$$\phi_m(b_m(t)) \geq -c_1 \|u_m(t)\|_H - c_2 + \frac{1}{\lambda} (f(t), b_m(t))_H - \frac{1}{\lambda} (f(t), u_m(t))_H$$

$$- \frac{1}{\lambda} (u_m(t), b_m(t))_H + \frac{1}{\lambda} \|u_m(t)\|^2_H$$

$$\geq -\varepsilon \|u_m(t)\|^2_H - \frac{1}{4\varepsilon} c_1^2 - c_2 - \frac{1}{\lambda} \|f(t)\|_H \|b_m(t)\|_H - \varepsilon \|u_m(t)\|_H - \frac{1}{4\varepsilon \lambda^2} \|f(t)\|^2_H$$

$$- \varepsilon \|u_m(t)\|^2_H - \frac{1}{4\varepsilon \lambda^2} \|b_m(t)\|^2_H + \frac{1}{\lambda} \|u_m(t)\|^2_H$$

$$= \left(\frac{1}{\lambda} - 3\varepsilon\right) \|u_m(t)\|^2_H - \frac{1}{4\varepsilon} c_1^2 - c_2 - \frac{1}{\lambda} \|f(t)\|_H \|b_m(t)\|_H$$

$$- \frac{1}{4\varepsilon \lambda^2} \|f(t)\|^2_H - \frac{1}{4\varepsilon \lambda^2} \|b_m(t)\|^2_H. \quad (A.17)$$

Now putting $\varepsilon = \frac{1}{6\lambda}$ into (A.17) and by Lemma A.7, we obtain that

$$\|u_m(t)\|^2_H \leq 2\lambda \phi_m(b_m(t))$$

$$+ 2\lambda \left(\frac{3\lambda}{2} c_1^2 + c_2 + \frac{1}{\lambda} \|f(t)\|_H \|b_m(t)\|_H + \frac{3}{2\lambda} \|f(t)\|^2_H + \frac{3}{2\lambda} \|b_m(t)\|^2_H\right)$$

$$\leq 2\lambda M + 3\lambda^2 c_1^2 + 2\lambda c_2 + 2M \|f(t)\|_H + 3\|f(t)\|^2_H + 3M^2 := g(t)$$

$$\in L^1(0, T)$$

for any $m \in \mathbb{N}$. \quad (A.18)

Thus, by (A.15), Lebesgue’s convergence theorem yields that $u_m \to u$ in $L^2(0, T; H)$ as $m \to +\infty$.

We have shown that $\partial \Phi_m \to \partial \Phi$ in the sense of resolvent. \hfill \Box

Lemma A.9 Assume that $\phi_m \to \phi$ in the sense of Mosco. Then there exist $(u, v) \in \partial \Phi$ and $(u_m, v_m) \in \partial \Phi_m$ such that $u_m \to u, v_m \to v$ strongly in $L^2(0, T; H)$ and $\Phi_m(u_m) \to \Phi(u)$ as $m \to +\infty$.

28
Proof. Take any $f \in L^2(0, T; H)$ and fix it.
If we set $u_m := (I + \lambda \partial \Phi_m)^{-1}f$ and $u := (I + \lambda \Phi)^{-1}f$, then Lemma A.8 yields that

$$u_m \to u \text{ strongly in } L^2(0, T; H) \text{ as } m \to +\infty. \quad \text{(A.19)}$$

Therefore, if we set $v_m := (f - u_m)/\lambda$ and $v := (f - u)/\lambda$, then we easily observe that $v_m \in \partial \Phi_m(u_m), v \in \partial \Phi(u)$, and $v_m \to v$ strongly in $L^2(0, T; H)$ as $m \to +\infty$.

It is sufficient to show that $\Phi_m(u_m) \to \Phi(u)$ in $L^2(0, T; H)$ as $m \to +\infty$ to attain our purpose.

Lemma A.6.(ii) assures that for any $\lambda > 0$ and $x \in H$

$$\phi_m(x) \to \phi(x) \text{ as } m \to +\infty. \quad \text{(A.20)}$$

Now, by (A.19) we also see that

$$\partial \Phi_m^\lambda(f) = \frac{f - J_m^\lambda f}{\lambda} = \frac{f - u_m}{\lambda} \quad \text{in } L^2(0, T; H) \text{ as } m \to +\infty. \quad \text{(A.21)}$$

Therefore (by taking a subsequence of $\{m\}$ if necessary),

$$\partial \phi_m^\lambda(f(t)) \to \partial \phi^\lambda(f(t)) \text{ strongly in } H \text{ a.e. } t \in [0, T] \quad \text{(A.22)}$$

Note that

$$\phi_m^\lambda(f(t)) = \frac{1}{2\lambda} \|f(t) - J_m^\lambda f(t)\|_H^2 + \phi(J_m^\lambda f(x)) \quad \text{(A.23)}$$

Then by the convergences (A.20), (A.22), and the equality (A.23), we see that

$$\phi_m(u_m(t)) = \phi_m^\lambda(f(t)) - \frac{\lambda}{2} \|\partial \phi_m^\lambda(f(t))\|_H^2 \quad \text{(A.24)}$$

as $m \to +\infty$ for a.e. $t \in [0, T]$ and any $\lambda > 0$.

Now the inequalities (A.16), (A.18), and Lemma A.7 yield that

$$\phi_m(u_m(t)) \leq \phi_m(b_m(t)) + \left\| \frac{f(t) - u_m(t)}{\lambda} \right\|_H \|b_m(t) - u_m(t)\|_H$$

$$\leq M + \frac{1}{\lambda} \left(\|f(t)\|_H + \sqrt{g(t)} \right) \left(M + \sqrt{g(t)} \right)$$

$$\leq M + \frac{M}{\lambda} \|f(t)\|_H + \frac{1}{2\lambda} \|f(t)\|_H^2 + \frac{1}{2\lambda} g(t) + \frac{M^2}{2\lambda} + \frac{1}{2\lambda} g(t) + \frac{1}{2\lambda} g(t)$$

$$:= l(t). \quad \text{(A.25)}$$
Note that \(l(t) \in L^1(0,T) \).
Moreover, Lemma A.6, (A.18), and (A.25) yield that
\[
|\phi_m(u_m(t))| \leq \phi_m(u_m(t)) + 2(c_1\|u_m(t)\|_H + c_2)
\leq l(t) + 2c_1 \sqrt{g(t)} + 2c_2
\leq l(t) + c_1^2 + g(t) + 2c_2 \in L^1(0,T).
\] (A.26)

By (A.24) and (A.26), we can apply Lebesgue’s convergence theorem and obtain that
\(\Phi_m(u_m) \to \Phi(u) \) as \(m \to +\infty \). □

All the necessary lemmas have been prepared to show Proposition A.2.

Proof of Proposition A.2. Lemma A.8 and Lemma A.9 imply that the condition (b) of Proposition A.4 holds about \(\Phi_m \) \((m = 1, 2, \ldots) \) and \(\Phi \). Thus, the Mosco convergence \(\Phi_m \to \Phi \) follows by Proposition A.4. □

Acknowledgments
The work of Y. Giga was partially supported by the Grant-in-Aid for Scientific Research, No.15634008, No.14204011, the Japan Society for the Promotion of Science. The research of N. Yamazaki was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), No.14740109.

References

Y. Giga: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: giga@math.sci.hokudai.ac.jp

Y. Kashima: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: s023217@math.sci.hokudai.ac.jp

Current address: Department of Mathematics, University of Sussex, Brighton BN1 9QH, England

N. Yamazaki: Department of Mathematical Science, Common Subject Division, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, 050-8585, Japan
E-mail address: noriaki@mmm.muroran-it.ac.jp