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Abstract

A detailed description is given on the large time behavior of scattering solutions
to the Cauchy problem for nonlinear Schrodinger equations with repulsive interac-
tions in the short-range case without smallness condition on the data.

1 Introduction

We study the large time behavior of solutions to the Cauchy problem for the nonlinear

Schrodinger equations of the form
1
i@tu+§Au: f(u), (1.1)

where u is a complex-valued function of (¢,z) € R x R®, 9, = 9/9t, A is the Laplacian
in R", and f denotes a nonlinear interaction given by a complex-valued function f on
C. In this paper we assume that f is a single-power nonlinearity and satisfies the gauge

invariance and repulsivity conditions and therefore we assume that f takes the form
flu) = AulP~"u (1.2)

with A > 0 and p > 1.
There is a large literature on the global Cauchy problem and the scattering theory for
(1.1), see for instance [2-18, 20] and references therein. The usual scattering theory for

(1.1) compares the full dynamics {u(t)} given by solutions to (1.1) and the free dynamics
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described by the free propagator U(t) = exp(i(t/2)A). In the case of repulsive interactions
the existence and asymptotic completeness of wave operators for (1.1) has been proved
in the space X;; = H' N F(H') for any p with y(n) < p < a(n), where H' is the
Sobolev space of order one on R® defined by H! = (1 — A)~"Y/2L%(R™), F is the Fourier
transform, y(n) = (n+2++v/n? +12n + 4)/(2n), and a(n) = (n+2)/(n—2) if n > 3 and
a(n) = 0o if n < 2. See [10,20] for p > v(n) and [2,3,15] for p > 7y(n). The exponent a(n)
is usually referred to as the Sobolev critical exponent, while y(n) is sometimes referred
to as the Strauss critical exponent [4,16,17]. The condition p > 7(n) is equivalent to
the integrability in time at infinity of the quantity ||u(t); LP*!||P of asymptotically free
solutions u(t) of (1.1), namely pd(p+ 1) > 1 with 6(r) = n/2 —n/r. The last norm arises
naturally in the energy for (1.1) and in the mapping property of U(t) : L' — L” that has a
conformity to the nonlinear mapping u +— |u|P~'u, where t # 0,7 > 2, and 1/r+1/r' = 1.
Accordingly, equivalent conditions to pd(p + 1) > 1 appear in other equations such as
wave and Klein-Gordon equations in various contexts [16,17,18].

Methods of the proofs for the asymptotic completeness of wave operators depend on
whether p > y(n) and p = y(n). The critical case p = y(n) requires special treatments.
The method of [2,3] uses a contradiction argument with pseudo-conformal transformation
which is unlikely to work for n = 2, while the method of [15] is free from the pseudo-
conformal transformation and uses the Lorentz space in time where the borderline case
pd(p+ 1) = 1 is treated efficiently by means of homogeneity.

The purpose in this paper is to add further information on the large time asymptotics
of scattering solutions for p > y(n). We present the second approximate term for scatter-
ing solutions. The term has first appeared in [13] (see also [14]) with several restrictive
assumptions, such as smallness assumption on the data and restrictions on space dimen-
sions as well as on the admissible range of powers in the nonlinearity. Here we remove
those assumptions to some extent. Our proof uses Strichartz type inequalities and explicit
integrability in time at infinity of scattering solutions. In this sense the method here has
a close connection with the techinique for the case p > «y(n).

To state our main theorem precisely, we introduce the following notation. For any r
with 1 <r < 0o, L™ = L"(R") denotes the Lebesgue space on R®. For any s € R and any
rwith 1 <r < oo, HS = (1 — A)™2L" and H? = (—A)~*/2L" denote the Sobolev space
defined in terms of Bassel potentials and the homogeneous Sobolev space defined in terms
of Riesz potentials, respectively. For any s € R and any r with 1 < r < oo, Bf = Bﬁj
denotes the homogeneous Besov space [1,7,19]. For any interval I C R and any Banach
space X we denote by LI(I; X) or by L{X for simplicity the space of measurable functions
u form I to X such that ||u(-); X|| € L9(I). For a,b € R we denote by a Vb and a A b



the maximum and minimum, respectively. For the free propagator U(t) = exp(¢(t/2)A)

we use the factorization for ¢ # 0
U(t) = M(t)D(¢)FM(t),

where M (t) = exp(i|z|?/(2t))- is the modulation operator defined by the multiplication
by exp(i|z|?/(2t)), D(t) is the dilation operator defined by (D(t)y)(z) = (it) "™y (t 1z),
and F is the Fourier transform defined by

(FU)(E) = B(©) = (2m) ™ [ exp(—ia - E)b(a)da.

For any p,p € R, X,, = H” N F(H’) denotes the weighted Sobolev space and X,

denotes the associated function space for solutions to (1.1) defined by

Xy ={u€ C(R; X,p); ue Ll (R;L"NBY), M~'ue L (R;B)
for any ¢,r with 0<2/q=46(r) <1}.

See [7] for basic facts and and related estimates on X, .

Theorem 1. Let p and n satisfy y(n) < p < a(n) and 1 <n < 5. Let ro =p+ 1 and
6 =n(p—1)/2. Let qo satisfy 2/qo = §(ro).

(1) Suppose n < 2. Assume further that p < 3 if n = 2. Let ¢ € X;;. Let u € X,
be the unique solution of (1.1) and (1.2) with u(0) = ¢. Let ¢ € Xy, be the

corresponding asymptotic states at t = +00, respectively. Then
||u(t) — Ut)p+ — Va(t); L2|] = o(Jt]'~*) (1.3)

lu(t) = U()gx — Va; L (I35 L)|| = o(T*%) (1.4)

ast — oo and T — +o0o, where I} = [T, 00), It = (—o0, =T,

~

Va(t) = £i(0 — 1) M(8)D(t) f (J).

(2) Suppose 2 < n < 5. Let p satisfy §(2rq) V d(pro) V (28(ro)) V1 < p < pA 2. Let
¢ € X,1. Let u € X,1 be the unique solution of (1.1) and (1.2) with u(0) = ¢. Let
¢+ € X,1 be the corresponding asymptotic states at t = oo, respectively. Then
(1.3) and (1.4) hold.

Remark 1. (1) # > 1if and only if p > 1+2/n. Note that 14+2/n < y(n) < 1+4/n <

a(n).



(2) The condition §(2rg) < pA2 holds if n < 5. The condition 2§(ry) < p holds if p < a(n)
and n < 6, while 26(r) < 2 if and only if p < a(n). The condition d(pro) < p A 2 holds if
p < a(n) and n <6.

Remark 2. The existence of u and ¢+ in Part (1) has been proved in [10, 20]. The
existence of u in Part (2) has been proved in [7]. The existence of ¢4 in X,; shall be

proved below.
Theorem 1 follows from the following two propositions.

Proposition 1. Let p and n satisfy 7(n) < p < a(n) and n > 1. Let ro, qo, and 8 be as
in Theorem 1. Let ¢ € X1, and let u € X 1 be the unique solution of (1.1) and (1.2) with
u(0) = ¢. Let ¢ € X1 be the corresponding asymptotic states at t = oo, respectively.
Then (1.3) and (1.4) hold provided that

Qgi e Hi(2p)

i s 1.5
F(8s) € L B0, (9

with € > 0 sufficiently small.

Proposition 2. Let p,n, g, qo, 0 be as in Proposition 1. Let ¢ € X;; and letu € &} be
the unique solution of (1.1) and (1.2) with u(0) = ¢. Let ¢+ € X1 be the corresponding
asymptotic states at t = to00, respectively. Let p satisfy 1 < p < p A 2. Assume further
that ¢ € X,1. Then ¢, € X, and U(—t)u(t) — ¢+ in X,; ast — £oo.

Remark 3.  As for the restriction p < 2, see[7].

We prove Proposition 1 in Section 2. The proof depends on an explicit representation
of u— U(-)p+ — Vi, the Strischartz estimates, and the L™ decay estimate of scattering
solutions. We prove Proposition 2 in Section 3. The method of proof depends on the
argument in [7]. We prove Theorem 1 in Section 4. In the proofs below, we consider only

the case t > 0 since the case t < 0 is treated similarly.

2 Proof of Proposition 1.

In this section we use the results in [2,5,10,20] concerning scattering theory in X for
p > v(n). Let u € X1 ; be the unique solution of (1.1) and (1.2) with u(0) = ¢. Then
there exists a unique ¢, € X;; such that U(—t)u(t) — ¢4 in X;; as t — oco. Moreover,

u satisfies the integral equation
u(t) = Ut)py +i /t Ut — s) f(u(s))ds (2.1)

4



and the L™ decay estimate
||[u(t); L] < Ct=3(0), (2.2)

We use (2.1) and the formula U = MDFM to represent u — U(-)¢p+ — V; as a sum of

four integrals as

2

(t) = U+ — Vi(t) A
=i [T U= ) f(u(s)ds — (6~ 1) UOM(-)F 1 £(3.)

=i [ Ut = 9)(f(u(s) ~ FU()84))ds
+i [T U= 5)(F(U(s)g4) = 5™ M(s)D(s)F(34))ds
+iU(t) (/t°° s M(—s)ds — (6 — 1)1 M(~ ))}“ Lt ()

(2.3)
=i [TUte— ) ([ £uls) + (0 - WUGs)8)n) (uls b1 — Vi(s))ds

w [T -9) ([ £t + - wo ()¢+)du) Vi (s)ds

+i [T U= ) UE8) - f( (5)D(s)-))ds

+iM(t)D(t)F? /t s (U1 /s — 1/t) — DF2f(dy)ds

where we have used the relations

U(t)M(—t) (/tw sTOM(£)M(—s)ds — (6 — 1)—1t1—") FL(dy)
=MD ([ FMOM=5)F T f@)ds - [ 570dsf(@2)
= MODOF [~ s (F M/(1/t = 1/s)F = DF 2f(§1)ds

— M(t)D(t)F? /t T SO s — 1/8) — DF2f(d,)ds

We denote by I, II, III, IV the first, second, third, fourth terms on the RHS of the last
equality in (2.3). We estimate I, II, III in L%(T,00; L) = L¥L™ by the Strichartz
and Holder inequalities. We first prove decay estimates similar to (2.2). Let r satisfy
2 <r < oo. Then

006w LIl = IDOFM W)y ]
= 50| FM (10, L
< O30 FM (16,3 HOO)|
= =50l F a0 M (1) L7
= G50 [g g 17|
= Ot s O

where we have used the Sobolev embedding H*™ < L". By the Strichartz and Holder



inequalities, we obtain

I LEL™|| < ClJws LEL™[P7H + |U (s L L7|P ) lu = U() by — Vi L L]
< CT'PU0lu — U()ps — Viy LEL™]],

(2.5)
where ¢; = (p — 1)/(1 — é(ro)) and we have used (2.2) and (2.4) with r = r.
Similarly, we have
. J9 7170 1-pé(ro) .J9 71710
1L LPL™|| <CT IV L L™|| (2.6)

< OT1-Pé(ro) . T1—0—6(r0)/2|’f(q3+); L.
Another use of the Strichartz inequalities implies

L LELe|| < Cllf(Uey) — f(MDéy); LiL||
< C [ UV DI +1MDGes ) |Ugs — MDy; L™ dt

(2.7)
with 1/2=(p—1)/r +1/m. Asin (2.4), we have
IMDg.; || = =0y L7 (2.8)
< Ot 0|6 HOO,
|[U¢+ — MDéy; L™|| = ||[DF(M —1)¢; L™|| (2.9)

< Ct=*MI[(M = D)]a|" ™. L2]].
We note here that 1/2 = (p—1)/r+1/m is equivalent to (p—1)d(r)+d(m) = n(p—1)/2 = 6.
Therefore, by (2.7), (2.8), and (2.9), we have

UL LEL|| < Ol HONP [ 000 = D]l g L2t

(2.10)
= o(T*)

as T' — 0o. We now choose 6(r) = §(m), which is equivalent to r = m = 2p. This in turn
requires that ¢, € H*?P).

We consider IV, where F? acts on functions as reflection. We take the L{° L™ norm of
IV. Since qod(r9) = 2, We have

ITV; L Lo||
< o[ ([T s wass -1 - nF-2 @ poas)”a) " B
We now use the estimate
1(U(£) = 1)gh; L7|| < Cm(t)* 0/ F2/000) (2.12)

where m(t) = t"/2 forn = 1, m(t) =t forn > 2, 6(ry) = 1/2forn = 1,0 < §(ry) < 1
for n > 2, and any r with 0 < 6(r) < 6(r1). The estimate (2.12) follows by interpolating
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between the following two estimates:
I - Vi 22 < 20l 221
U@ vzl < [ 1U(s)av; L7jas
t , .
< C [ s |Ag; L |ds = Cm()] s B
0 1

For n > 2, we take §(r;) sufficiently close to 1 and r =rg =p+ 1. We put e =1 — 6(r).
Then (2.12) yields

I(U() = 1)w; L[| < CHefrod/ A=)y, fr2000)/ 09| (2.13)

By (2.11) and (2.13), we continue the estimate on IV as
[TV Li°L™||
> * 9o 1/q0 ) .
<C (/ t_2 (/ 5_0|1/8 . 1/t|eé(m)/(1—e)d8 dt) ||f_2f(¢+); H26(r0)/(1_5)H
T t

o
< CTl—o-a(ro)/z—ea(ro)/(l—e)||f(q3+); Hffs(”’)/(l_e)ll,
- 0

(2.14)

where we have used

() 1/t
/ s701/s — 1/t[7ds :/ o92(1/t — o|7do
t 0

1
= (1/t)"—1+5/ s972(1 — s)"ds = B(6 — 1, + 1)t17%7¢,
0

where 6 > 1,7 > —1, and B is the beta function. By (2.3), (2.5), (2.6), (2.10), and (2.14),

we obtain ]
llu = U(-)ps — Viy; LPL™||
< CTP0)|jy — U(-)dy — Vi; LPL™|| + o(T*9),

from which we obtain

(2.15)

lu = U()¢s = Vas LPL™|| = o(T*°). (2.16)

By the Strichartz estimates, we may replace the norm on the RHS of (2.15) by any norm

with admissible pair. In particular,
llu—U()py — Vi; L®(T, 00; L?)|| = o(T*7°). (2.17)

The proposition follows from (2.16) and (2.17).

3 Proof of Proposition 2.

We already know that for any ¢ € X, the equation (1.1) with (1.2) has a unique global
solution u € X, with u(0) = ¢ (see [7]). It suffices to prove that ¢, € X, and that
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U(—t)u(t) — ¢+ in X,o as t — oo, since the asymptotic completeness holds in X ;
[2,5,10,20].

Let I = [T, T'] with 0 < T < T'. We estimate the function I 3t — [t|?M(—t)u(t) €
B in L(I) in the same way as in [7] with (2.2) as

|| [t M ~tu; Lo (I; B2 )||
< C||é; H?|| + Clju; L (I; L) | [P~ [t M~ u; L (1; BL)|| (3.1)
< CO||g; HP|| + CT=P00)|| |t|p M~ 1u; Lo (1; B2,

where ¢; is as in (2.5) and we have used (2.2). By taking T sufficiently large, we obtain
| [t/ M~ u; L (I; BR)|| < Ol H|l, (3.2)

where C is independent of 7" as in (3.1). This implies that |t|?M ~'u € L%(T, oo; Bfo).
Let t > s > T. Applying the Strichartz estimates again, we obtain
1U(=t)u(t) - U(—s)u(s); F(H)|
= (I1IP [ Ut =) fu(e))de; L2
s . '
M [0 = ¢)f(u(t))a; 1)

t .
< CllltrM [ Ut =) fu(t))at; L (s, 00 B
< CJf M f(w); Lo (s, 003 B |
< Cllw; L (5,00 L7) P [ M ™" us (s, 005 B )|
< O PO M LT, o0; B )|
- 0

as t > s — o0o. This implies that ¢ € X, and that U(—t)u(t) — ¢4+ in X, as t — oco.
QED

4 Proof of Theorem 1.

The Casen =1. Let ¢, € X1 ;. Then in particular qA5+ € H'. Then (1.5) follows by the
Sobolev emdebedding H' — L* and by taking £ > 0 to ensure that 26(ry) + & < 1.

The Casen =2, p < 3. In this case 20(r9) < 1 if and only if p < 3. We use the estimate

1£($+); B3l < ClIf(64); BE|
< |y L2 || 6 BSH| (4.1)
< Ollgy; HOC|[P=H| ¢y Ho*||
with 0 < s < s+6 <2Apandn > 1, where we have used the usual embeddings between
Besov and Triebel-Lizorkin spaces and nonlinear estimates in homogeneous Besov spaces
[7]. We now take £,6 > 0 to ensure that 26(ry) +e+d =5+ < 1.
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The Case 2 < n <5. By Part (1) of Remark 1, we choose p such that §(2r) V d(pro) V
(26(ro)) V1 < p < pA2. Then ¢, € H since §(2p) < 6(2ro). Moreover, f(¢,) € L
since ¢, € H®ro) — [Pro In the same way as in (4.1), f(¢) € Hff(TO)"Le by taking
g,0 > 0 to ensure that 25(rg) +e+d=s+09 < p.
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