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Introduction

Geometric information of Frenet curves in the Euclidean 3-space are described by
two invariants up to congruence. However we cannot investigate non-regular curves
and straight lines by using the invariants because such cureves are not Frenet curves.
Moreover we remark that the invariants are not invariants as "movement" but in-
variants as "shape". Notwithstanding, we have many objects which have singular
points in classical differential geometry. On the other hand, there are many articles
concerning flat surfaces associated with space curves (in particular, Frenet curves) in
the Euclidean 3-space which are called developable surfaces. Developable surfaces
are surfaces with vanishing Gaussian curvature in the Euclidean 3-space. Applica-
tions of developable surfaces cover several areas - from ship-building to manufac-
turing of clothing - as they are suitable to the modeling of surfaces which can be
made out of leather , paper, fiber, and sheet metal (cf. [39]). We have important 3-
kinds of developable surfaces associated with a space curve. These are the tangent
developable surface (i.e. the envelope of osculating planes), the focal developable
surface (i.e. the envelope of normal planes) and the rectifying developable surface
(i.e. the envelope of rectifying planes). Their singularities and geometric properties
are investigated in [5, 7, 17, 23–26, 33, 34, 36, 37, 40]. However the author could not
find any articles concerning singularities of the focal developable surfaces and of
the rectifying developable surfaces associated with non-regular curves.

In this thesis we investigate singularities of flat surfaces associated with non-
regular curves in Euclidean 3-space and Euclidean 3-sphere as an application of the
singularity theory. In order to consider non-regular curves, we first introduce the
following notion of framed curves in the direct product of the Euclidean n-space Rn

and the (n, n− 1)-type frame field Vn,n−1:

Definition (Framed curve, [22]) We say that (γ, N) : I → Rn × Vn,n−1 is a framed
curve if γ̇(t) · ni(t) = 0 for all t ∈ I and i = 1, . . . , n− 1, where N(t) = (n1(t), n2(t),
..., nn−1(t)). If (γ, N) is an immersion, we call (γ, N) a framed immersion.

Definition (Framed base curve, [22]) We say that γ : I → Rn is a framed base curve
if there exists N : I → Vn,n−1 such that (γ, N) is a framed curve.

The author and Masatomo Takahashi introduced the notion of framed curves and
framed base curves in [22]. Framed curves are natural generalizations not only of
Frenet curves, but also of Legendre curves in the unit tangent bundle over R2. For
a framed curve, we define invariants which are called the curvatures of the framed
curve, similar to the curvatures of a Frenet curve and of a Legendre curve. The cur-
vatures of the framed curve is quite useful to analyze the framed curve and its singu-
larities. In fact, we have existence and uniqueness for the framed curve by using its
curvatures (cf. Theorems 1.1.4 and 1.1.5). We must consider how to take a parameter
and a moving frame for a framed base curve. Therefore we investigate properties of
parameter changes and of frame changes in Section 1.3.1. As applications, we con-
sider a contact between framed curves (cf. Section 1.3.2), and relationships between
projections of framed curves and Legendre curves (cf. Section 1.3.3).
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Secondly we apply the theory of framed curves to study of geometric properties
of flat surfaces associated with non-regular curves in the Euclidean 3-space R3. In
Chapter 2, we investigate the focal developable surface (i.e. the envelope of normal
planes) and the rectifying developable surface (i.e. the envelope of rectifying planes)
of a Frenet type framed base curve. A Frenet type framed base curve is defined to
be a non-regular space curve which has the regular unit tangent vector field. It is a
natural generalization of a Frenet curve. In order to define each developable surface,
we apply the notion of support functions (cf. [28]). We introduce new invariants
which related to characterizations as developable surfaces and singularities of each
developable surface associated with a Frenet type framed base curve. The torsion of
a Frenet type framed base curve is constantly equal to zero if and only if the focal
surface is a cylindrical surface (cf. Theorem 2.2.2, (1)). The one of new invariants is
constantly equal to zero under a certain condition if and only if the focal surface is a
conical surface (cf. Theorem 2.2.2, (2)). We give characterizations of singularities of
the focal developable surface of a Frenet framed base curve by using those invariants
and criteria for the recognitions of wave fronts (cf. Theorem 2.2.3 and [32]). The set
of singular values of the focal developable surface of a Frenet type framed base curve
is called the evolute. The evolute of a Frenet framed base curve is given as the locus
of the centers of osculating spheres and is also a Frenet type framed base curve (cf.
Proposition 2.2.5). We give relationships between singularities of the evolute and
of the focal developable surface (cf. Corollary 2.2.6). For the rectifying developable
surface of a Frenet type framed base curve, we have theorems which correspond
with the above (cf. Theorems 2.3.2 and 2.3.3). In Section 2.3.2, we define a framed
helix and consider relationships between the rectifying developable surface.

Thirdly we consider two kinds of developable surfaces along a frontal curve on
an embedded surface in the Euclidean 3-space. One is called the osculating devel-
opable surface, and the other is called the normal developable surface. The notions
of these developable surfaces are generalizations the notions in [18, 28]. We dis-
covered new invariants of the frontal curve which characterize singularities of the
developable surfaces (cf. Theorems 3.2.4 and 3.3.4). In particular, a frontal curve is a
contour generator with respect to an orthogonal projection or a central projection if
and only if one of these invariants constantly equal to zero (cf. Theorem 3.2.2). We
have some interesting examples of each developable surface in Section 3.4.

At last we apply the theory of framed curves to spherical geometry. Izumiya,
Nagai and Saji introduced extrinsic flat great circular surfaces and their singularities
in [27]. Extrinsic flat great circular surfaces are surfaces with vanishing extrinsic
Gaussian curvature in the Euclidean 3-sphere. By using criteria in [27], we consider
dual, tangent and focal extrinsic flat great circular surfaces associated to spherical
framed base curves and their singularities. Moreover we investigate dual extrinsic
flat great circular surfaces of evolutes.

Throughout this thesis, all mappings and manifolds are differentiable of class
C∞.

Acknowledgment. I would like to thank my supervisor IZUMIYA, Shyuichi for his
helps and encouragements during the Ph.D studies. I also thanks to TAKAHASHI,
Masatomo for fruitful discussion. I am grateful to all people in Department of Math-
ematics, Hokkaido University for their every support.
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Chapter 1

Basic concepts of framed curves

The study of curves in the Euclidean space is a classical and important subject in
differential geometry. Classical approach by using the Frenet frame associated with
a Frenet curve (i.e. a regular curve with a certain regularity condition) is quite useful
to analyze the Frenet curve and its geometric properties. However, most of curves
appearing in applications have singularities. Therefore, it is important to establish
a method to handle curves with singularities. We introduce how to consider curves
with singularities in this chapter. This chapter is based on [22].

A framed curve in the Euclidean space is a curve with a moving frame. It is a
natural generalization not only of a Frenet curve, but also of a Legendre curve in
the unit tangent bundle over a plane. We define functions for a framed curve which
are called the curvature of the framed curve, similar to the curvature of a Frenet
curve and of a Legendre curve. The curvature of the framed curve are quite useful
to analyze the framed curve and its singularities. In fact, we have the existence
theorem (cf. Theorem 1.1.4) and the uniqueness theorem (cf. Theorem 1.1.5) for the
framed curve by using its curvature. We must consider how to take a parameter
and a moving frame for a given framed curve. Therefore, we investigate properties
of parameter changes and of frame changes in Section 1.3.1. As applications, we
consider a contact between framed curves (cf. Section 1.3.2), and give a relationship
between projections of framed curves and Legendre curves (cf. Section 1.3.3).

Let Rn be the n-dimensional Euclidean space equipped with the canonical in-
ner product a · b = ∑n

i=1 aibi for any a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. Let
a1, . . . , an−1 ∈ Rn be vectors ai = (ai,1, . . . , ai,n) for i = 1, . . . , n− 1. We define the
vector product

a1 × . . .× an−1 =

∣∣∣∣∣∣∣∣∣
a1,1 · · · a1,n

...
. . .

...
an−1,1 · · · an−1,n

e1 · · · en

∣∣∣∣∣∣∣∣∣ =
n

∑
i=1

det (a1, . . . , an−1, ei) ei,

where {e1, . . . , en} is the canonical basis of Rn. Then (a1 × . . . × an−1) · ai = 0 for
i = 1, . . . , n− 1. We remark that for the case of n = 3,

a1 × a2 =

∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
e1 e2 e3

∣∣∣∣∣∣ =
∣∣∣∣∣∣

e1 e2 e3
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

∣∣∣∣∣∣ .

The set

Vn,n−1 = {N = (n1, . . . , nn−1) ∈ Rn × . . .×Rn | ni · nj = δi,j, i, j = 1, . . . , n− 1}
= {N = (n1, . . . , nn−1) ∈ Sn−1 × . . .× Sn−1 | ni · nj = 0, i ̸= j, i, j = 1, . . . , n− 1}
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is called the (n, n − 1)-type Stiefel manifold (or, the set of all orthonormal (n − 1)-
frames in Rn). This is an n(n− 1)/2-dimensional smooth manifold.

If N = (n1, . . . , nn−1) ∈ Vn,n−1, we define a unit vector t = n1 × . . . nn−1 of Rn. It
follow that (N, t) ∈ SO(n), where SO(n) is the set of all special orthogonal matrices.

1.1 Framed curves in Rn ×Vn,n−1

Definition 1.1.1 (Framed curve, [22]) We say that (γ, N) : I → Rn × Vn,n−1 is a
framed curve if γ̇(t) · ni(t) = 0 for all t ∈ I and i = 1, . . . , n − 1, where N(t) =
(n1(t), n2(t), . . . , nn−1(t)). If (γ, N) is an immersion, we call (γ, N) a framed immer-
sion.

Definition 1.1.2 (Framed base curve, [22]) We say that γ : I → Rn is a framed base
curve if there exists N : I → Vn,n−1 such that (γ, N) is a framed curve.

We define smooth functions for a framed curve similar to the curvature of a
Frenet curve and of a Legendre curve. Let (γ, N) : I → Rn × Vn,n−1 be a framed
curve. We define t : I → Sn−1 by t(t) = n1(t) × . . . × nn−1(t). By definition,
(N(t), t(t)) ∈ SO(n) for each t ∈ I and we call {N(t), t(t)} a moving frame along
the framed base curve γ(t). Then we have the Frenet-Serret type formula(

Ṅ(t)
ṫ(t)

)
= A(t)

(
N(t)
t(t)

)
,

where A(t) = (αi,j(t)) ∈ o(n) for i, j = 1, . . . , n and o(n) is the set of all skew-
symmetric matrices. Moreover, there exists a smooth mapping α : I → R such that

γ̇(t) = α(t)t(t).

We call the mapping (A, α) : I → o(n)×R the curvature of the framed curve (with
respect to the parameter t). Clearly, t0 is a singular point of γ if and only if α(t0) = 0.
The curvature is quite useful to analyze the framed curve and its singularities (cf.
Theorems 1.1.4 and 1.1.5).

Definition 1.1.3 ( [22]) Let (γ, N) and (γ̃, Ñ) : I → Rn × Vn,n−1 be framed curves.
We say that (γ, N) and (γ̃, Ñ) are (positive) congruent as framed curves if there exists
a matrix X ∈ SO(n) and a vector x ∈ Rn such that

γ̃(t) = X(γ(t)) + x, Ñ(t) = X(N(t))

for all t ∈ I.

We have the following theorems.

Theorem 1.1.4 (The Existence Theorem, [22]) Let (A, α) : I → o(n)×R be a smooth
mapping. Then there exists a framed curve (γ, N) : I → Rn × Vn,n−1 whose associated
curvature is (A, α).

Theorem 1.1.5 (The Uniqueness Theorem, [22]) Let (γ, N) and (γ̃, Ñ) : I → Rn ×
Vn,n−1 be framed curves whose curvatures (A, α) and (Ã, α̃) coincide. Then (γ, N) and
(γ̃, Ñ) are congruent as framed curves.

We shall prove these theorems in Section 1.2.
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1.2 Proofs for the theorems existence and uniqueness

First we prove the existence theorem by using the existence theorem of a solution of
a system of linear ordinary differential equations.

Proof of Theorem 1.1.4. Choose any fixed value t = t0 of the parameter. We consider
the initial value problem

d
dt

F(t) = A(t)F(t), F(t0) = In,

where F(t) ∈ M(n); here M(n) is the set of all n × n matrices and In is the iden-
tity matrix. By the existence theorem of a solution of a system of linear ordinary
differential equations, there exists a solution F(t). Since A(t) ∈ o(n),

d
dt
(tF(t)F(t)) =

(
d
dt

tF(t)
)

F(t) + tF(t)
(

d
dt

F(t)
)
= tF(t)

(t A(t) + A(t)
)

F(t) = O.

It follows that tF(t)F(t) is constant. Thus tF(t)F(t) = tF(t0)F(t0) = In, and F(t) is an
orthogonal matrix. Set F(t) = t(n1(t), . . . , nn−1(t), t(t)). Since (d/dt)(detF(t)) = 0,
we have

detF(t) = detF(t0) = detIn = 1

and t(t) = n1(t)× . . .× nn−1(t). Next we consider the initial value problem

γ̇(t) = α(t)t(t), γ(t0) = x,

where x is a point in Rn. By the existence theorem of a solution of a system of linear
ordinary differential equations, there exists a solution γ(t). Therefore, there exists a
framed curve (γ, N) : I → Rn ×Vn,n−1 whose associated curvature is (A, α). 2

In order to prove the uniqueness theorem, we prepare two lemmas.

Lemma 1.2.1 ( [22]) Let (γ, N) and (γ̃, Ñ) are congruent as framed curves. Then their
curvatures coincide.

Proof. Since (γ, N) and (γ̃, Ñ) are congruent as framed curves, there exist a matrix
X ∈ SO(n) and a vector x ∈ Rn which satisfy

γ̃(t) = X(γ(t)) + x, Ñ(t) = X(N(t)).

By the definition of t, we have t̃(t) = X(t(t)) for all t ∈ I. By straightforward
calculations, we have

α̃i,j(t) = ˙̃n1(t) · ñj(t) = X(ṅi(t)) · X(nj(t)) = ṅi(t) · nj(t) = αi,j(t),

˙̃γ = X(γ̇(t)) = X(α(t)t(t)) = α(t)X(t(t)) = α(t)t̃(t).

Hence we have A(t) = Ã(t) and α(t) = α̃(t). 2

Lemma 1.2.2 ( [22]) Let (γ, N) and (γ̃, Ñ) : I → Rn × Vn,n−1 be framed curves with
a common curvature, that is, (A(t), α(t)) = (Ã(t), α̃(t)) for all t ∈ I. If there exists
a parameter t = t0 for which (γ(t0), N(t0)) = (γ̃(t0), Ñ(t0)), then (γ, N) and (γ̃, Ñ)
coincide.
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Proof. Here we put nn(t) = t(t). Define a smooth function f : I → R by f (t) =

∑n
i=1 ni(t) · ñi(t). Since αi,j(t) = α̃i,j(t) and αi,j(t) = −αj,i(t), we have

ḟ (t) =
n

∑
i=1

(
ṅi(t) · ñi(t) + ni(t) · ˙̃ni(t)

)
=

n

∑
i=1

{(
n

∑
j=1

αi,j(t)nj(t)

)
· ñi(t) + ni(t) ·

(
n

∑
j=1

α̃i,j(t)ñj(t)

)}

= 2
n

∑
i=1

n

∑
j=1

{(
αi,j(t) + αj,i(t)

)
ni(t) · ñj(t)

}
= 0.

It follows that f is constant. Moreover N(t0) = Ñ(t0), so that t(t0) = t̃(t0). Hence
f (t0) = n and the function f is constant with value n. By the Cauchy-Schwarz
inequality, we have

ni(t) · ñi(t) ≤ ∥ni(t)∥∥ñi(t)∥ = 1

for each i = 1, . . . , n. If one of these inequalities were strict, the value of f (t) would
be less than n. It follows that these inequalities are equalities, and we have ni(t) ·
ñi(t) = 1 for all t ∈ I and i = 1, . . . , n. Then we have

∥ni(t)− ñi(t)∥2 = ni(t) · ni(t)− 2ni(t) · ñi(t) + ñi(t) · ñi(t) = 0.

Hence ni(t) = ñi(t) for all t ∈ I and i = 1, . . . , n. Since γ̇(t) = α(t)t(t), ˙̃γ(t) =
α̃(t)t̃(t) and the assumption α(t) = α̃(t), we obtain (d/dt)(γ(t) − γ̃(t)) = 0. It
follow that γ(t)− γ̃(t) is constant. By the condition γ(t0) = γ̃(t0), we have γ(t) =
γ̃(t) for all t ∈ I. 2

Proof of Theorem 1.1.5. Choose any fixed value t = t0 of the parameter. By using a
matrix X ∈ SO(n) and a vector x ∈ Rn, we can assume that γ̃(t0) = X(γ(t0)) +
x and Ñ(t0) = X(N(t0)). By Lemma 1.2.1, the curvatures of the framed curves
(γ(t), N(t)) and (X(γ(t)) + x, X(N(t))) coincide. By Lemma 1.2.2, we have

γ̃(t) = X(γ(t)) + x, Ñ(t) = X(N(t))

for all t ∈ I. It follows that (γ, N) and (γ̃, Ñ) are congruent as framed curves. 2

The uniqueness theorem can be proved also by using the uniqueness theorem of
a solution of a system of linear ordinary differential equations.

1.3 Framed curves in R3×V3,2

In this section we focus on framed curves in R3 ×V3,2. One can extend the results to
curves in higher-dimensional spaces. However it is rather tedious; we concentrate
on the case of n = 3.

We use the following notations throughout this section. Let (γ, n1, n2) : I →
R3×V3,2 be a framed curve and t(t) = n1(t)× n2(t). The Frenet-Serret type formula
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is given by  ṅ1(t)
ṅ2(t)
ṫ(t)

 =

 0 ℓ(t) m(t)
−ℓ(t) 0 n(t)
−m(t) −n(t) 0

 n1(t)
n2(t)
t(t)

 ,

where ℓ(t) = ṅ1(t) · n2(t), m(t) = ṅ1(t) · t(t) and n(t) = ṅ2(t) · t(t). Moreover there
exists a smooth mapping α : I → R such that

γ̇(t) = α(t)t(t).

Example 1.3.1 A typical example of a framed curve is a Frenet curve. Let γ : I → R3

be a Frenet curve, that is, γ̇(t) and γ̈(t) are linearly independent for all t ∈ I. If we
take n1(t) = n(t) and n2(t) = b(t), then (γ, n1, n2) : I → R3×V3,2 is a framed curve.
We remark that t(t) = n1(t)× n2(t) is the unit tangent vector at t ∈ I. Here,

t(t) =
γ̇(t)
∥γ̇(t)∥ , n(t) =

(γ̇(t)× γ̈(t))× γ̇(t)
∥(γ̇(t)× γ̈(t))× γ̇(t)∥ , b(t) =

γ̇(t)× γ̈(t)
∥γ̇(t)× γ̈(t)∥ .

We give relationships between invariants of a Frenet curve and of a framed curve.

Proposition 1.3.2 ( [22]) With the same notations as in Example 1.3.1, the relationships be-
tween invariants of a Frenet curve (κ(t), τ(t)) and of a framed curve (ℓ(t), m(t), n(t), α(t))
are given by

κ(t) =
√

m2(t) + n2(t)
|α(t)| , τ(t) =

(m2(t) + n2(t))ℓ(t) + m(t)ṅ(t)− ṁ(t)n(t)
(m2(t) + n2(t))α(t)

.

Proof. By straightforward calculations, we have

γ̇(t) = α(t)t(t),
γ̈(t) = −α(t)m(t)n1(t)− α(t)n(t)n2(t) + α̇(t)t(t),
...
γ(t) = − (2α̇(t)m(t) + α(t)ṁ(t)− α(t)ℓ(t)n(t)) n1(t)

− (2α̇(t)n(t) + α(t)ṅ(t) + α(t)ℓ(t)m(t)) n2(t)
+
(
α̈(t)− α(t)m2(t)− α(t)n2(t)

)
t(t).

It follows that

∥γ̇(t)∥ = |α(t)|,

∥γ̇(t)× γ̈(t)∥ = α2(t)
√

m2(t) + n2(t),

det (γ̇(t), γ̈(t),
...
γ(t)) = α3(t)

(
m(t)ṅ(t)− ṁ(t)n(t) +

(
m2(t) + n2(t)

)
ℓ(t)

)
.

Therefore the curvature κ(t) is given by

κ(t) =
∥γ̇(t)× γ̈(t)∥
∥γ̇(t)∥3 =

√
m2(t) + n2(t)
|α(t)|
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and the torsion τ(t) is given by

τ(t) =
det (γ̇(t), γ̈(t),

...
γ(t))

∥γ̇(t)× γ̈(t)∥2 =

(
m2(t) + n2(t)

)
ℓ(t) + m(t)ṅ(t)− ṁ(t)n(t)

α(t) (m2(t) + n2(t))
.

2

Let (γ, n1, n2) : I → R3 × V3,2 be a framed curve with the curvature (ℓ, m, n, α).
By the proof of Proposition 1.3.2, we have the following Taylor expansion of γ:

γ(t) = γ(t0) + (t− t0)α(t0)t(t0)

+
(t− t0)2

2
(−α(t0)m(t0)n1(t0)− α(t0)n(t0)n2(t0) + α̇(t0)t(t0))

+
(t− t0)3

3!
(−(2α̇(t0)m(t0) + α(t0)ṁ(t0)− α(t0)ℓ(t0)n(t0))n1(t0)

−(2α̇(t0)n(t0) + α(t0)ṅ(t0) + α(t0)ℓ(t0)m(t0))n2(t0)

+(α̈(t0)− α(t0)m2(t0)− α(t0)n2(t0))t(t0)) + o(4).

If t0 is a singular point of γ, then we have

γ(t) = γ(t0) +
(t− t0)2

2
α̇(t0)t(t0)

+
(t− t0)3

3!
(−2α̇(t0)m(t0)n1(t0)− 2α̇(t0)n(t0)n2(t0) + α̈(t0)t(t0)) + o(4).

Let γ : (R, 0)→ (R3, 0) be a space curve germ and write γ(t) = (x(t), y(t), z(t)).
We can show that if γ is not infinitely flat (i.e. either x(t), y(t) or z(t) does not belong
to m∞

1 ), then γ is a framed base curve. Here m∞
1 is the ideal of infinitely flat function

germs. Without loss of the generality we assume that x(t) does not belong to m∞
1

and that order x(t) ≤ min{order y(t), order z(t)}. Then there exist smooth function
germs a(t) and b(t) such that ẏ(t) = a(t)ẋ(t) and ż(t) = b(t)ẋ(t). Thus if we take

n1(t) =
1√

1 + a2(t)
(−a(t), 1, 0) ,

n2(t) =
1√

(1 + a2(t)) (1 + a2(t) + b2(t))

(
−b(t),−a(t)b(t), 1 + a2(t)

)
,

then (γ, n1, n2) is a framed curve. We remark that

t(t) = n1(t)× n2(t) =
1√

1 + a2(t) + b2(t)
(1, a(t), b(t)) .

On the other hand, constant maps are also framed base curves which do not
satisfy the above sufficient condition. In particular an analytic curve germ is always
a framed base curve because if it is infinitely flat, then it is constant.

We summarize the above arguments as the following proposition.

Proposition 1.3.3 Let γ : (I, t0) → R3 be a real analytic curve germ. Then γ is a framed
base curve, that is, there exists a mapping germ (n1, n2) : (I, t0)→ V3,2 such that (γ, n1, n2)
is a framed curve.
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Example 1.3.4 Let n1, n2, n3, k1 and k2 be natural numbers with n2 = n1 + k1 and
n3 = n2 + k2, and let (γ, n1, n2) : R→ R3 ×V3,2 be

γ(t) =

(
1
n1

tn1 ,
1
n2

tn2 ,
1
n3

tn3

)
,

n1(t) =
1√

1 + t2k1
(−tk1 , 1, 0),

n2(t) =
1√

(1 + t2k1)(1 + t2k1 + t2k1+2k2)
(−tk1+k2 ,−t2k1+k2 , 1 + t2k1).

We can easily check that (γ, n1, n2) is a framed curve. We say that γ is (n1, n2, n3)-
type. Since t : R→ S2;

t(t) =
1√

1 + t2k1 + t2k1+2k2
(1, tk1 , tk1+k2),

the curvature of the framed curve (γ, n1, n2) is given by

ℓ(t) =
k1t2k1+k2−1

(1 + t2k1)
√

1 + t2k1 + t2k1+2k2
,

m(t) =
−k1tk1−1√

(1 + t2k1)(1 + t2k1 + t2k1+2k2)
,

n(t) =
−tk1+k2−1(k1 + k2 + k2t2k1)

(1 + t2k1 + t2k1+2k2)
√

1 + t2k1
,

α(t) = tn1−1
√

1 + t2k1 + t2k1+2k2 .

We now consider a framed curve in a plane. Let (γ, n1, n2) : I → R3 × V3,2 be a
framed curve with the curvature (ℓ, m, n, α). We denote a plane by

P(v, c) = {x ∈ R3 | x · v = c},

where v ∈ S2 and c ∈ R. If γ(t) ∈ P(v, c), then we have det(γ̇(t), γ̈(t),
...
γ(t)) = 0. It

follows that

α(t)
((

m2(t) + n2(t)
)
ℓ(t) + m(t)ṅ(t)− ṁ(t)n(t)

)
= 0

for all t ∈ I. Conversely, we have the following result.

Proposition 1.3.5 ( [22]) Let (γ, n1, n2) : I → R3 × V3,2 be a framed curve with the cur-
vature (ℓ, m, n, α).

(1) If α(t) = 0 for all t ∈ I, then γ(t) is a point.

(2) If m2(t) + n2(t) = 0 for all t ∈ I, then γ(t) is a part of a straight line.

(3) If (m2(t) + n2(t))ℓ(t) + m(t)ṅ(t) − ṁ(t)n(t) = 0 and m2(t) + n2(t) ̸= 0 for all
t ∈ I, then there exist a constant vector v ∈ S2 and a constant number c ∈ R such that
γ(t) ∈ P(v, c).

Proof. (1) Since γ̇(t) = α(t)t(t) = 0 for all t ∈ I, γ(t) is a point.
(2) By the Frenet-Serret type formula, ṫ(t) = 0 for all t ∈ I and hence γ̇(t) =

α(t)t(t) = α(t)v, where v ∈ S2 is a constant vector. Then there exists a constant
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vector x such that γ(t) = (
∫

α(t)dt)v + x. It follows that γ(t) is a part of a straight
line.

(3) We take a Bishop frame {n1(t), n2(t), t(t)} along the framed base curve γ(t)
(cf. Section 1.3.1). By straightforward calculations, we have

m(t)ṅ(t)− ṁ(t)n(t) = (m2(t) + n2(t))ℓ(t) + m(t)ṅ(t)− ṁ(t)n(t) = 0

and
m2(t) + n2(t) = m2(t) + n2(t) = 0

for all t ∈ I. It follows that m(t) and n(t) are linearly dependent on I (cf. [4, 35, 44]).
Thus there exists a non-zero constant vector (c1, c2) such that c1m(t) + c2n(t) = 0
for all t ∈ I. Then ṽ = c1n1(t) + c2n2(t) is a non-zero constant vector. Let v =

ṽ/
√

c2
1 + c2

2. Since γ̇(t) · v = α(t)t(t) · v = 0 for all t ∈ I, there exists a constant
number c ∈ R such that γ(t) ∈ P(v, c). 2

Remark 1.3.6 If (γ, n1, n2) : I → R3 × V3,2 is an analytic mapping, then m(t) and
n(t) are also analytic functions. Hence if m(t)ṅ(t)− ṁ(t)n(t)+ (m2(t)+n2(t))ℓ(t) =
0 for all t ∈ I, then m(t) and n(t) are linearly dependent on I (cf. [4, 44]). It follows
that there exist a constant vector v ∈ S3 and a constant number c ∈ R such that
γ(t) ∈ P(v, c).

We also define a Legendre curve on a Plane.

Definition 1.3.7 ( [22]) We say that (γ, n) : I → R3 × S2 is a Legendre curve on the
plane P(v, c) if γ(t) · v = c, n(t) · v = 0 and γ̇(t) · n(t) = 0 for all t ∈ I.

Proposition 1.3.8 ( [22]) (1) If (γ, n) : I → R3 × S2 is a Legendre curve on the palne
P(v, c), then (γ, n, v) : I → R3 ×V3,2 is a framed curve with ℓ(t) = m(t) = 0 for all
t ∈ I. Conversely, if (γ, n1, n2) : I → R3 ×V3,2 is a framed curve with ℓ(t) = m(t) =
0 for all t ∈ I, then there exist a constant vector v ∈ S2 and a constant number c ∈ R

such that (γ, n2) : I → R3 × S2 is a Legendre curve on the plane P(v, c).

(2) If (γ, n) : I → R3 × S2 is a Legendre curve on the palne P(v, c), then (γ, v, n) :
I → R3 × V3,2 is a framed curve with ℓ(t) = n(t) = 0 for all t ∈ I. Conversely, if
(γ, n1, n2) : I → R3 × V3,2 is a framed curve with ℓ(t) = n(t) = 0 for all t ∈ I,
then there exist a constant vector v ∈ S2 and a constant number c ∈ R such that
(γ, n1) : I → R3 × S2 is a Legendre curve on the plane P(v, c).

Proof. (1) By definition, we have γ̇(t) · v = 0 and (v, n(t)) ∈ V3,2. Since v is constant,
we have ℓ(t) = m(t) = 0 for all t ∈ I. Conversely, by the Frenet-Serret type formula,
v = n1(t) ∈ S2 is a constant vector. Moreover, since γ̇(t) · v = α(t)t(t) · n1(t) = 0 for
all t ∈ I, there exists a constant number c ∈ R such taht γ(t) · v = c. It follows that
(γ, n2) : I → R3 × S2 is a Legendre curve on the plane P(v, c).

Assertion (2) can be proved by similar way. 2

1.3.1 Parameter changes and frame changes

Let I and I be intervals. A smooth function s : I → I is said to be a change of
parameter if s is surjective and has a positive derivative at every point. It follows that
s is a diffeomorphism. Let (γ, n1, n2) : I → R3 × V3,2 and (γ, n1, n2) : I → R3 ×
V3,2 be framed curves with the curvatures (ℓ, m, n, α) and (ℓ, m, n, α), respectively.
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Suppose that (γ, n1, n2) and (γ, n1, n2) are parametrically equivalent via the change
of parameter s : I → I, that is, (γ, n1, n2)(t) = (γ, n1, n2)(s(t)) for all t ∈ I. Then we
have

ℓ(t) = ṡ(t)ℓ(s(t)), m(t) = ṡ(t)m(s(t)), n(t) = ṡ(t)n(s(t)), α(t) = ṡ(t)α(s(t)).

Therefore, the curvature depends on a parametrization.

Generally, we cannot consider the arc-length parameter of the framed base curve
γ. However, if (γ, n1, n2) is an immersion, we can introduce the arc-length param-
eter for the framed immersion (γ, n1, n2). The speed of the framed immersion at the
parameter t is defined to be the length of the tangent vector at t, namely,

s(t) =
√

γ̇(t) · γ̇(t) + ṅ1(t) · ṅ1(t) + ṅ2(t) · ṅ2(t).

Given scalars a, b ∈ I, we define the arc-length from t = a to t = b to be the integral
of the speed,

L(γ,n1,n2)(t) =
∫ b

a
s(t)dt.

By the same method for the arc-length parameter of a regular curve, one can prove
the following (cf. [5, 16, 17]).

Proposition 1.3.9 ( [22]) Let (γ, n1, n2) : I → R3 × V3,2 be a framed immersion and
t0 ∈ I. Then (γ, n1, n2) is parametrically equivalent to a unit speed curve (γ̃, ñ1, ñ2) : Ĩ →
R3 ×V3,2 under a change of parameter t : Ĩ → I with t(0) = t0 and t′(s) > 0.

We call the parameter s in Proposition 1.3.9 the arc-length parameter for the framed
immersion. Let s be the arc-length parameter for (γ, n1, n2). By definition, we have
γ′(s) · γ′(s) + n′1(s) · n′1(s) + n′2(s) · n′2(s) = 1, where ′ is the derivation with respect
to s. It follows that 2ℓ2(s) + m2(s) + n2(s) + α2(t) = 1.

For the normal planes of γ(t), which are spanned by n1(t) and n2(t), there are
other frames by rotations and reflections. We define (n1(t), n2(t)) ∈ V3,2 by(

n1(t)
n2(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
n1(t)
n2(t)

)
,

where θ(t) is a smooth function. Then (γ, n1, n2) : I → R3 × V3,2 is a framed curve
and t(t) = n1(t)× n2(t) = n1(t)× n2(t) = t(t). The curvature of (γ, n1, n2) is given
by

ℓ(t) = ℓ(t)− θ̇(t),
m(t) = m(t) cos θ(t)− n(t) sin θ(t),
n(t) = m(t) sin θ(t) + n(t) cos θ(t),
α(t) = α(t).

We call {n1(t), n2(t), t(t)} a rotated frame along γ(t) by θ(t). If we take a smooth
function θ : I → R which satisfies θ̇(t) = ℓ(t), then we call {n1(t), n2(t), t(t)} a
Bishop frame along γ(t) by θ(t) (cf. [3, 21, 22]). For a Bishop frame, we have the
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following Frenet-Serret type formula: ṅ1(t)
ṅ2(t)
ṫ(t)

 =

 0 0 m(t)
0 0 n(t)

−m(t) −n(t) 0

 n1(t)
n2(t)
t(t)

 .

On the other hand, we define (ñ1(t), ñ2(t)) ∈ V3,2 by(
ñ1(t)
ñ2(t)

)
=

(
1 0
0 −1

)(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
n1(t)
n2(t)

)
,

where θ(t) is a smooth function. Then (γ, ñ1, ñ2) : I → R3 × V3,2 is a framed curve
and t̃(t) = ñ1(t)× ñ2(t) = −n1(t)× n2(t) = −t(t). The curvature of (γ, ñ1, ñ2) is
given by

ℓ̃(t) = −ℓ(t) + θ̇(t),
m̃(t) = −m(t) cos θ(t) + n(t) sin θ(t),
ñ(t) = m(t) sin θ(t) + n(t) cos θ(t),
α̃(t) = −α(t).

We call {ñ1(t), ñ2(t),−t(t)} a reflected frame along γ(t) by θ(t).

By straightforward calculations, we have the following equations:

m2(t) + n2(t) = m2(t) + n2(t)
= m̃2(t) + ñ2(t)

and

ℓ(t)(m2(t) + n2(t)) + m(t)ṅ(t)− ṁ(t)n(t)
= ℓ(t)(m2(t) + n2(t)) + m(t)ṅ(t)− ṁ(t)n(t)
= ℓ̃(t)(m̃2(t) + ñ2(t)) + m̃(t) ˙̃n(t)− ˙̃m(t)ñ(t).

1.3.2 Contact between framed curves

In this section, we discuss contact between framed curves. Let (γ, n1, n2) : I →
R3 × V3,2; t 7→ (γ, n1, n2)(t) and (γ̃, ñ1, ñ2) : Ĩ → R3 × V3,2; u 7→ (γ, n1, n2)(u) be
framed curves, and let k be a natural number. We say that (γ, n1, n2) and (γ̃, ñ1, ñ2)
have k-th order contact at t = t0, u = u0 if

(γ, n1, n2) (t0) = (γ̃, ñ1, ñ2) (u0),
d
dt

(γ, n1, n2) (t0) =
d

du
(γ̃, ñ1, ñ2) (u0), . . . ,

dk−1

dtk−1 (γ, n1, n2) (t0)=
dk−1

duk−1 (γ̃, ñ1, ñ2) (u0),
dk

dtk (γ, n1, n2) (t0) ̸=
dk

duk (γ̃, ñ1, ñ2) (u0)

(cf. [10, 17]). Moreover, we say that (γ, n1, n2) and (γ̃, ñ1, ñ2) have at least k-th order
contact at t = t0, u = u0 if

(γ, n1, n2) (t0) = (γ̃, ñ1, ñ2) (u0),
d
dt

(γ, n1, n2) (t0) =
d

du
(γ̃, ñ1, ñ2) (u0), . . . ,

dk−1

dtk−1 (γ, n1, n2) (t0) =
dk−1

duk−1 (γ̃, ñ1, ñ2) (u0).
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Generally, we may assume that (γ, n1, n2) and (γ̃, ñ1, ñ2) have at least first order
contact at any point t = t0, u = u0 up to congruence as framed curves. We denote
F (t) = (ℓ(t), m(t), n(t), α(t)) and F̃ (t) = (ℓ̃(t), m̃(t), ñ(t), α̃(t)) for convenience.

Theorem 1.3.10 ( [22]) Let (γ, n1, n2) and (γ̃, ñ1, ñ2) as above. If (γ, n1, n2) and (γ̃, ñ1, ñ2)
have at least (k + 1)-th order contact at t = t0, u = u0, then

F (t0) = F̃ (u0),
d
dt
F (t0) =

d
du
F̃ (u0), . . . ,

dk−1

dtk−1F (t0) =
dk−1

duk−1 F̃ (u0). (1.1)

Conversely, if condition (1.1) holds, then (γ, n1, n2) and (γ̃, ñ1, ñ2) have at least (k + 1)-th
order contact at t = t0, u = u0 up to congruence as framed curves.

Proof. Suppose that (γ, n1, n2) and (γ̃, ñ1, ñ2) have at least second order contact at
t = t0, u = u0. Since n1(t0) = ñ1(u0) and n2(t0) = ñ2(u0), we have t(t0) = t̃(u0). By
the Frenet-Serret type formula, we have

d
dt
(γ, n1, n2)(t) = (α(t)t(t), ℓ(t)n2(t) + m(t)t(t),−ℓ(t)n1(t) + n(t)t(t)),

d
du

(γ̃, ñ1, ñ2)(u) = (α̃(u)t̃(u), ℓ̃(u)ñ2(u) + m̃(u)t̃(u),−ℓ̃(u)ñ1(u) + ñ(u)t̃(u)).

It follows that F (t0) = F̃ (u0). Therefore, the first assertion of Theorem 1.3.10 holds
in the case of k = 1.

Suppose that the assumption is true up to the k-th order contact. Let (γ, n1, n2)
and (γ̃, ñ1, ñ2) have at least (k + 1)-th order contact at t = t0, u = u0. Then these
have at least k-th order contact, so that

F (t0) = F̃ (u0),
d
dt
F (t0) =

d
du
F̃ (u0), . . . ,

dk−2

dtk−2F (t0) =
dk−2

duk−2 F̃ (u0).

By the Frenet-Serret type formula, we have

dk

dtk γ(t)=

(
dk−1

dtk−1 α(t)

)
t(t)+ f1

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

n1(t)

+ f2

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

n2(t)+ f3

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

t(t),

dk

dtk n1(t)=

(
dk−1

dtk−1 ℓ(t)

)
n2(t)+

(
dk−1

dtk−1 m(t)

)
t(t)+g1

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

n1(t)

+g2

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

n2(t)+g3

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

t(t),

dk

dtk n2(t)=−
(

dk−1

dtk−1 ℓ(t)

)
n1(t)+

(
dk−1

dtk−1 n(t)

)
t(t)+h1

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

n1(t)

+h2

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

n2(t)+h3

(
F (t), . . . ,

dk−2

dtk−2F (t)
)

t(t)
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for some smooth functions fi, gi, hi (i = 1, 2, 3). By the same calculations,

dk

duk γ̃(u)=

(
dk−1

duk−1 α̃(u)

)
t̃(u)+ f1

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

ñ1(u)

+ f2

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

ñ2(u)+ f3

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

t̃(u),

dk

duk ñ1(u)=

(
dk−1

duk−1 ℓ̃(u)

)
ñ2(u)+

(
dk−1

duk−1 m̃(u)

)
t̃(u)+g1

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

ñ1(u)

+g2

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

ñ2(u)+g3

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

t̃(u),

dk

duk ñ2(u)=−
(

dk−1

duk−1 ℓ̃(u)

)
ñ1(u)+

(
dk−1

duk−1 ñ(u)

)
t̃(u)+h1

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

ñ1(u)

+h2

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

ñ2(u)+h3

(
F̃ (u), . . . ,

dk−2

duk−2 F̃ (u)
)

t̃(u).

It follows that (dk−1/dtk−1)F (t0) = (dk−1/duk−1)F̃ (u0). By the induction, we have
the first assertion.

Conversely, suppose that condition (1.1) holds. By the above calculations, we
have (di/dti)(γ, n1, n2)(t0) = (di/dui)(γ̃, ñ1, ñ2)(u0) for i = 1, . . . , k. Therefore,
(γ, n1, n2) and (γ̃, ñ1, ñ2) have at least (k + 1)-th order contact at t = t0, u = u0
up to congruence as framed curves. 2

1.3.3 Projections to planes and Legendre curves

We quickly review Legendre curves in the unit tangent bundle over a plane; for more
detail, see [10]. Legendre curves correspond with framed curves when n = 2. We
say that (γ, n) : I → R2 × S1 is a Legendre curve if (γ, n)∗θ = 0 for all t ∈ I, where θ
is the canonical contact 1-form on the unit tangent bundle T1R2 = R2× S1 (cf. [1,2]).
This condition is equivalent to γ̇(t) · n(t) = 0 for all t ∈ I. We say that γ : I → R2 is
a frontal if there exists a smooth mapping n : I → S1 such that (γ, n) is a Legendre
curve.

Let (γ, n) : I → R2 × S1 be a Legendre curve. Then we have the Frenet type
formula of the frontal γ as follows. We put t(t) = J(n(t)), where J is the anti-
clockwise rotation by π/2 on R2. We call the pair {n(t), t(t)} a moving frame along
the frontal γ(t) in R2. The Frenet type formula of the frontal (or, the Legendre curve)
is given by (

ṅ(t)
ṫ(t)

)
=

(
0 ℓ(t)
−ℓ(t) 0

)(
n(t)
t(t)

)
,

where ℓ(t) = ṅ(t) · t(t). Moreover, there exists a smooth function β(t) such that

γ̇(t) = β(t)t(t).

We call the pair (ℓ(t), β(t)) the curvature of the Legendre curve (with respect to the
parameter t).

Let (γ, n1, n2) : I → R3 × V3,2 be a framed curve with the curvature (ℓ, m, n, α).
For a fixed point t0 ∈ I, we consider three orthogonal projections from R3 along the
directions n1(t0), n2(t0) and t(t0).
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First, we consider the projection of γ along the direction n1(t0) given by γn1 : I →
R2; γn1(t) = (γ(t) · n2(t0), γ(t) · t(t0)). Then γ̇n1(t) = α(t)(t(t) · n2(t0), t(t) · t(t0)).
There is a subinterval I1 of I around t0 such that (t(t) · n2(t0))2 + (t(t) · t(t0))2 ̸= 0
for all t ∈ I1. We define a smooth mapping nn1 : I1 → S1 by

nn1(t) =
1√

(t(t) · n2(t0))2 + (t(t) · t(t0))2
(t(t) · t(t0),−t(t) · n2(t0)) .

Then (γn1 , nn1) : I1 → R2 × S1 is a Legendre curve. Since tn1 : I1 → S1 is given by

tn1(t) = J(nn1(t)) =
1√

(t(t) · n2(t0))2 + (t(t) · t(t0))2
(t(t) · n2(t0), t(t) · t(t0)) ,

the curvatures of (γn1 , nn1) are

ℓn1(t) = (m(t) ((n1(t) · n2(t0)) (t(t) · t(t0))− (n1(t) · t(t0)) (t(t) · n2(t0)))

+n(t) ((n2(t) · t(t0)) (t(t) · t(t0))− (n2(t) · t(t0)) (t(t) · n2(t0))))
/(

(t(t) · n2(t0))
2 + (t(t) · t(t0))

2)
and

βn1(t) = α(t)
√
(t(t) · n2(t0))2 + (t(t) · t(t0))2.

We remark that ℓn1(t0) = n(t0) and βn1(t0) = α(t0). The projection of γ along the
direction n2(t0) is similar to the case of the direction n1(t0).

Next, we consider the projection of γ along the direction t(t0) given by tt : I →
R2; tt(t) = (γ(t) · n1(t0), γ(t) · n2(t0)). Then γ̇t(t) = α(t)(t(t) · n1(t0), t(t) · n2(t0)).
In this case, γt is not always a frontal, that is, there does not exist a smooth mapping
nt : I → S1 such that (γt, nt) : I → R2 × S1 is a Legendre curve, see Example 1.3.12.
However, if γt is not infinitely flat around t0 (i.e. either γ(t) · n1(t0) or γ(t) · n2(t0)
does not belong to m∞

1 ), then γt is a frontal (cf. [10]).
Generally, we fix a positive orthonormal basis {v1, v2, v3} on R3 with v3 = v1 ×

v2 and v3 ̸= ±t(t0). We consider the orthogonal projection along the direction v3
given by γv3 : I → R2; γv3(t) = (γ(t) · v1, γ(t) · v2). Then γ̇v3(t) = α(t)(t(t) ·
v1, t(t) · v2). By the assumption, there is a subinterval Ĩ of I around t0 such that
(t(t) · v1)

2 + (t(t) · v2)2 ̸= 0 for all t ∈ Ĩ. We define a smooth mapping nv3 : Ĩ → S1

by

nv3(t) =
1√

(t(t) · v1)2 + (t(t) · v2)2
(t(t) · v2,−t(t) · v1) .

Then (γv3 , nv3) : Ĩ → R2 × S1 is a Legendre curve. Since tv3 : I → S1 is given by

tv3(t) = J(nv3(t)) =
1√

(t(t) · v1)2 + (t(t) · v2)2
(t(t) · v1, t(t) · v2) ,

the curvatures of the Legendre curve (γv3 , nv3) are

ℓv3(t) = (m(t) ((n1(t) · v1) (t(t) · v2)− (n1(t) · v2) (t(t) · v1))

+n(t) ((n2(t) · v1) (t(t) · v2)− (n2(t) · v2) (t(t) · v1)))
/(

(t(t) · v1)
2 + (t(t) · v2)

2)
and

βv3(t) = α(t)
√
(t(t) · v1)2 + (t(t) · v2)2.
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Remark 1.3.11 If we take a positive orthonormal basis {v1, v2, v3} on R3 with v3 ∈
S2 \ {±t(I)}, then we may consider Ĩ = I. In this case, the Legendre curve (γv3 , nv3)
can be defined globally.

Example 1.3.12 Let γ : R→ R3 be

γ(t) =


(t, 0, e−1/t2

) if t > 0,
(0, 0, 0) if t = 0,
(t, e−1/t2

, 0) if t < 0,

(cf. Figure 1.1). The curve γ is regular but does not satisfy the linearly independent
condition at t = 0. However, γ is a framed base curve. We have the smooth mapping
(n1, n2) : R→ V3,2;

n1(t) =


(

1/
√

2 + ḟ (t)2
)
( ḟ (t),−1,−1) if t ̸= 0,(

1/
√

2
)
(0,−1,−1) if t = 0,

n2(t) =



(
1/
√
(1 + ḟ (t)2)(2 + ḟ (t)2)

)
( ḟ (t), 1 + ḟ (t)2,−1) if t > 0,(

1/
√

2
)
(0, 1,−1) if t = 0,(

1/
√
(1 + ḟ (t)2)(2 + ḟ (t)2)

)
(− ḟ (t), 1,−1− ḟ (t)2) if t < 0,

where f (t) = e−1/t2
for t ̸= 0. It is easy to see that (γ, n1, n2) is a framed curve.

Since t : R→ S2;

t(t) = n1(t)× n2(t) =



(
1/
√

1 + ḟ (t)2
)
(1, 0, ḟ (t)) if t > 0,

(1, 0, 0) if t = 0,(
1/
√

1 + ḟ (t)2
)
(1, ḟ (t), 0) if t < 0,

the curvature of the framed curve (γ, n1, n2) is given by

ℓ(t) =


ḟ (t) f̈ (t)/

(
(2 + ḟ (t)2)

√
1 + ḟ (t)2

)
(1, 0, ḟ (t)) if t > 0,

0 if t = 0,

− ḟ (t) f̈ (t)/
(
(2 + ḟ (t)2)

√
1 + ḟ (t)2

)
(1, 0, ḟ (t)) if t < 0,

m(t) =

{
f̈ (t)/

√
(1 + ḟ (t)2)(2 + ḟ (t)2) if t ̸= 0,

0 if t = 0,

n(t) =


f̈ (t)/

(
(1 + ḟ (t)2)

√
2 + ḟ (t)2

)
if t > 0,

0 if t = 0,

− f̈ (t)/
(
(1 + ḟ (t)2)

√
2 + ḟ (t)2

)
if t < 0,

α(t) =

{ √
1 + ḟ (t)2 if t ̸= 0,

1 if t = 0.
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We remark that consider the projection to the direction t(0) = (1, 0, 0). Then tt :
R→ R2 is given by

γt(t) =


−(1/

√
2)(e−1/t2

, e−1/t2
) if t > 0,

(0, 0) if t = 0,
(1/
√

2)(−e−1/t2
, e−1/t2

) if t < 0.

It follows that γt : R→ R2 is not a frontal (cf. [10]). We plot γt in Figure 1.2.

FIGURE 1.1: γ of Ex-
ample 1.3.12
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FIGURE 1.2: γt of Ex-
ample 1.3.12
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Chapter 2

Frenet type framed base curves and
developable surfaces

There are several articles concerning singularities of the tangent developable sur-
face (i.e. the envelope of osculating planes), the focal developable surface (i.e. the
envelope of normal planes) and the rectifying developable surface (i.e. the envelope
of rectifying planes) of a space curve (cf. [7, 23–26, 31, 33, 34, 36, 37, 40]). In [23–25]
Goo Ishikawa investigated relationships between singularities of the tangent devel-
opable surface and the type (n1, n2, n3) of a space curve. An (n1, n2, n3)-type space
curve may have singular points. On the other hand, the author can not find any arti-
cle concerning the focal developable surface and the rectifying developable surface
of a space curve with singular points.

In this chapter, we consider the focal developable surface and the rectifying de-
velopable surface of a space curve with singular points. In order to define these no-
tions, we apply the theory of framed curves under a certain condition (cf. Chapter 1
and [22]). For them, we give characterizations as developable surfaces (cf. Theorems
2.2.2 and 2.3.2) and characterizations of singularities (cf. Theorems 2.2.3 and 2.3.3).
This chapter is based on [19, 21].

2.1 Preliminaries

In this section, in order to investigate the focal developable surface and the recti-
fying developable surface of a space curve with singular points, we briefly review
necessary notions.

2.1.1 Frenet curves and developable surfaces

We briefly review basic concepts on classical differential geometry of regular space
curves in R3. Let I be an interval, and let γ : I → R3 be a Frenet curve, that is, γ̇(t)
and γ̈(t) are linearly independent for all t ∈ I. Then we have an orthonormal frame

{t(t), n(t), b(t)} =
{

γ̇(t)
∥γ̇(t)∥ ,

(γ̇(t)× γ̈(t))× γ̇(t)
∥(γ̇(t)× γ̈(t))× γ̇(t)∥ ,

γ̇(t)× γ̈(t)
∥γ̇(t)× γ̈(t)∥

}
which is called the Frenet frame along γ(t). By standard arguments, we have the
following Frenet-Serret formula: ṫ(t)

ṅ(t)
ḃ(t)

 =

 0 ∥γ̇(t)∥κ(t) 0
−∥γ̇(t)∥κ(t) 0 ∥γ̇(t)∥τ(t)

0 ∥γ̇(t)∥τ(t) 0

 t(t)
n(t)
b(t)

 ,
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where

κ(t) =
∥γ̇(t)× γ̈(t)∥
∥γ̇(t)∥3 , τ(t) =

det(γ̇(t), γ̈(t),
...
γ(t))

∥γ̇(t)× γ̈(t)∥2 .

We call κ(t) a curvature and τ(t) a torsion of the Frenet curve γ(t). We remark that
the curvature κ(t) and the torsion τ(t) are independent of the choice of parameteri-
zations.

Let γ be a Frenet curve. It is known that developable surfaces associated with
the Frenet frame as follows:

(1) The tangent developable surface:

TDγ(t, u) = γ(t) + ut(t).

(2) The focal developable surface:

FDγ(t, u) = γ(t) +
1

κ(t)
− κ̇(t)
∥γ̇(t)∥κ2(t)τ(t)

b(t) (when τ(t) ̸= 0).

(3) The rectifying developable surface:

RDγ(t, u) = γ(t) + u
τ(t)t(t) + κ(t)b(t)√

κ2(t) + τ2(t)
.

2.1.2 Frenet type framed base curves

If γ has a singular point, we cannot construct the Frenet frame along γ(t). However,
we can define the Frenet type frame along γ(t) under a certain condition.

Definition 2.1.1 We say that γ : I → R3 is a Frenet type framed base curve if there exist
a regular spherical curve t : I → S2 and a smooth function α : I → R such that
γ̇(t) = α(t)t(t) for all t ∈ I. Then we call t(t) a unit tangent vector and α(t) a speed
function of γ(t).

Clearly, t0 is a singular point of γ if and only if α(t0) = 0. We define a unit principal
normal vector n(t) = ṫ(t)/∥ṫ(t)∥ and a unit binormal vector b(t) = t(t)× n(t) of γ(t).
Then we have an orthonormal frame {t(t), n(t), b(t)} along γ(t) which is called the
Frenet type frame along γ(t). By standard arguments, we have the following Frenet-
Serret type formula: ṫ(t)

ṅ(t)
ḃ(t)

 =

 0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0

 t(t)
n(t)
b(t)

 ,

where

κ(t) = ∥ṫ(t)∥, τ(t) =
det (t(t), ṫ(t), ẗ(t))

∥ṫ(t)∥2 .

We call κ(t) a curvature and τ(t) a torsion of the Frenet type framed base curve γ(t).
We can easily check that γ is a framed base curve. More precisely, (γ, n, b) is a
framed curve with the curvature (τ(t),−κ(t), 0, α(t)) (cf. Section 1.1).

We define a vector field d(t) along γ(t) by

d(t) = τ(t)t(t) + κ(t)b(t),
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which is called a Darboux type vector along γ(t). By using the Darboux type vector,
the Frenet-Serret type formula is written as follows:

ṫ(t) = d(t)× t(t),
ṅ(t) = d(t)× n(t),
ḃ(t) = d(t)× b(t).

Therefore, the Darboux type vector plays an important role for study of the Frenet
type framed base curve. Since κ(t) > 0, we can define a spherical Darboux type vector
by

d(t) =
τ(t)t(t) + κ(t)b(t)√

κ2(t) + τ2(t)
.

Remark 2.1.2 Since t(t) is a regular curve, we uniquely obtain the unit principal
normal vector n(t) and the unit binormal vector n(t). Therefore, κ(t), τ(t) and d(t)
is uniquely determined with respect to t(t).

2.1.3 Support functions

Let γ : I → R3 be a Frenet type framed base curve with (t, α). We define a family of
functions Ft : I ×R → R; Ft(t, x) = (γ(t)− x) · t(t). We call Ft the support function
of γ with respect to the unit tangent vector t. We denote ft,x0(t) = Ft(t, x0) for any
x0 ∈ R3. Then we have the following proposition:

Proposition 2.1.3 Let γ : I → R3 be a Frenet type framed base curve with (t, α). Then we
have the following:

(1) ft,x0(t0) = 0 if and only if there exist a, b ∈ R such that

γ(t0)− x0 = an(t0) + bb(t0).

(2) ft,x0(t0) = ḟt,x0(t0) = 0 if and only if there exists a ∈ R such that

γ(t0)− x0 = −α(t0)

κ(t0)
n(t0) + ab(t0).

(3) ft,x0(t0) = ḟt,x0(t0) = f̈t,x0(t0) = 0 if and only if there exists a ∈ R such that

γ(t0)− x0 = −α(t0)

κ(t0)
n(t0) + ab(t0)

and
α(t0)κ̇(t0)− α̇(t0)κ(t0)− aκ2(t0)τ(t0) = 0.

Proof. Since ft,x0(t) = (γ(t)− x) · t(t), we have the following calculations:

(i) ft,x0(t) = (γ(t)− x) · t(t),

(ii) ḟt,x0(t) = α(t) + (γ(t)− x) · (κ(t)n(t)),

(iii) f̈t,x0(t) = α̇(t) + (γ(t)− x) · (−κ2(t)t(t) + κ̇(t)n(t) + κ(t)τ(t)b(t)).
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By (i), (1) follows.
By (ii), ft,x0(t0) = ḟt,x0(t0) = 0 if and only if there exist a, b ∈ R such that γ(t0)−

x = an(t0) + bb(t0) and α(t0) + aκ(t0) = 0. Since κ(t0) > 0, we have

a = −α(t0)

κ(t0)
,

so that there exists c ∈ R such that

γ(t0)− x0 = −α(t0)

κ(t0)
n(t0) + cb(t0).

Therefore, (2) holds.
By (iii), ft,x0(t0) = ḟt,x0(t0) = f̈t,x0(t0) = 0 if and only if there exists a ∈ R such

that

γ(t0)− x0 = −α(t0)

κ(t0)
n(t0) + ab(t0)

and
α(t0)κ̇(t0)− α̇(t0)κ(t0)− aκ2(t0)τ(t0) = 0.

This completes the proof. 2

For a support function of γ with respect to the unit tangent vector t, the discrim-
inant set

DFt =

{
x ∈ R3 | there exists t ∈ I such that Ft =

∂Ft

∂t
= 0 at (t, x)

}
corresponds with the focal developable surface of γ (cf. Section 2.2.1). Moreover the
secondary discriminant set

D2
Ft
=

{
x ∈ R3 | there exists t ∈ I such that Ft =

∂Ft

∂t
=

∂2Ft

∂t2 = 0 at (t, x)
}

corresponds with the evolute of γ under the condition τ(t) ̸= 0 (cf. Section 2.2.2).

On the other hand, we define a family of functions Fn : I ×R → R; Fn(t, x) =
(γ(t)− x) · n(t). We call Fn the support function of γ with respect to the unit principal
normal vector n. We denote fn,x0(t) = Fn(t, x0) for any x0 ∈ R3. Then we have the
following proposition:

Proposition 2.1.4 Let γ : I → R3 be a Frenet type framed base curve with (t, α). Then we
have the following:

(1) fn,x0(t0) = 0 if and only if there exist a, b ∈ R such that

γ(t0)− x0 = at(t0) + bb(t0).

(2) fn,x0(t0) = ḟn,x0(t0) = 0 if and only if there exists a ∈ R such that

γ(t0)− x0 = a
τ(t0)t(t0) + κ(t0)b(t0)√

κ2(t0) + τ2(t0)
.
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(3) fn,x0(t0) = ḟn,x0(t0) = f̈n,x0(t0) = 0 if and only if there exists a ∈ R such that

γ(t0)− x0 = a
τ(t0)t(t0) + κ(t0)b(t0)√

κ2(t0) + τ2(t0)

and

α(t0)κ(t0) + a
κ(t0)τ̇(t0)− κ̇(t0)τ(t0)√

κ2(t0) + τ2(t0)
= 0.

Proof. Since fn,x0(t) = (γ(t)− x) · n(t), we have the following calculations:

(i) fn,x0(t) = (γ(t)− x) · n(t),

(ii) ḟn,x0(t) = (γ(t)− x) · (−κ(t)t(t) + τ(t)b(t)),

(iii) f̈n,x0(t) = α(t)κ(t) + (γ(t)− x) · (−κ̇(t)t(t)− (κ2(t) + τ2(t)) + τ̇(t)b(t)).

By (i), (1) follows.
By (ii), fn,x0(t0) = ḟn,x0(t0) = 0 if and only if there exist a, b ∈ R such that

γ(t0)− x = at(t0) + bb(t0) and −aκ(t0) + bτ(t0) = 0. Since κ(t0) > 0, we have

a = b
τ(t0)

κ(t0)
,

so that there exists c ∈ R such that

γ(t0)− x0 = c
τ(t0)t(t0) + κ(t0)b(t0)√

κ2(t0) + τ2(t0)
.

Therefore (2) holds.
By (iii), fn,x0(t0) = ḟn,x0(t0) = f̈n,x0(t0) = 0 if and only if there exists a ∈ R such

that

γ(t0)− x0 = a
τ(t0)t(t0) + κ(t0)b(t0)√

κ2(t0) + τ2(t0)
.

and

α(t0)κ(t0) + a
κ(t0)τ̇(t0)− κ̇(t0)τ(t0)√

κ2(t0) + τ2(t0)
= 0.

This completes the proof. 2

For a support function of γ with respect to the unit principal normal vector n,
the discriminant set

DFn =

{
x ∈ R3 | there exists t ∈ I such that Fn =

∂Fn

∂t
= 0 at (t, x)

}
corresponds with the rectifying developable surface of γ (cf. Section 2.3.1).

2.1.4 Criteria of singularities for wave fronts and frontals

We briefly review some properties of wave fronts and frontals. For details, see [1, 2,
9, 29, 32]. Let f : V → R3; (u, v) 7→ f (u, v) be a smooth mapping, where V ⊂ R2 is
an open set. We say that f is a frontal if there exists a unit vector field ν along f such
that ( f , ν) : U → T1R3 is an isotropic map, where T1R3 is the unit tangent bundle of
R3 equipped with the canonical contact structure. If ( f , ν) is an immersion, we call
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FIGURE 2.1: The cus-
pidal edge

FIGURE 2.2: The swal-
lowtail

f a wave front. By definition, ( f , ν) is isotropic if and only if

∂ f
∂u

(u, v) · ν(u, v) = 0 and
∂ f
∂v

(u, v) · ν(u, v) = 0.

We call ν the unit normal vector field or the Gauss map of f . Let f : V → R3 be a
frontal. The signed area density function λ : U → R is defined to be

λ(u, v) = det
(

∂ f
∂u

(u, v),
∂ f
∂v

(u, v), ν(u, v)
)

.

We call (u0, v0) a singular point of f if λ(u0, v0) = 0. A singular point (u0, v0) of f
is non-degenerate if dλ(u0, v0) ̸= 0. Let (u0, v0) be a non-degenerate singular point of
f . Then S( f ) is parametrized as a regular curve c : (R, 0) → (V, (u0, v0)) which is
called a singular curve, where S( f ) is the set of singular points of f . Moreover, there
exists a unique non-zero vector field η up to non-zero scalar multiplications such
that d f (η(t)) = 0 on S( f ). We call η(t) the null vector field.

Two map germs f , g : (R2, 0) → (R3, 0) are A-equivalent if there exist diffeo-
morphisms s : (R2, 0)→ (R2, 0) and t : (R3, 0)→ (R3, 0) such that t ◦ f = g ◦ s. The
following criteria of singularities for wave fronts and frontals are known:

Theorem 2.1.5 ( [32]) Let f : V → R3 be a wave front, and let (u0, v0) ∈ V be a non-
degenerate singular point of f .

(1) f is A-equivalent to the cuspidal edge ce at (u0, v0) if and only if ηλ(p) ̸= 0.

(2) f is A-equivalent to the swallowtail sw at (u0, v0) if and only if ηλ(p) = 0 and
ηηλ(p) ̸= 0.

Here, ce : (R2, 0)→ (R3, 0); (u, v) 7→ (u, v2, v3) is the cuspidal edge (Figure 2.1) and
sw : (R2, 0) → (R3, 0); (u, v) 7→ (3u4 + u2v, 4u3 + 2uv, v) is the swallowtail (Figure
2.2).

Theorem 2.1.6 ( [9]) Let f : V → R3 be a frontal (not front), and let (u0, v0) ∈ V be a
non-degenerate singular point of f . f isA-equivalent to the cuspidal cross cap ccr if and only
if ηλ(p) ̸= 0, Φ(0) = 0 and Φ̇(0) ̸= 0. Here, Φ(t) = det( ḟ (c(t)), ν(c(t)), dν(η(t)))
and ccr : (R2, 0) → (R3, 0); (u, v) 7→ (u, uv3, v2) is the cuspidal cross cap (Figure
2.3).

2.1.5 Ruled surfaces and developable surfaces

We briefly review notions and basic properties of ruled surfaces and developable
surfaces. For details, see [30]. Let γ : I → R3 and ξ : I → R3 \ {0} be C∞-mappings.
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FIGURE 2.3: The cuspidal cross cap

Then we define a mapping F(γ,ξ) : I ×R→ R3 by

F(γ,ξ)(t, u) = γ(t) + uξ(t).

We call the mapping F(γ,ξ) a ruled surface, the mapping γ a base curve and the mapping
ξ a director curve. The line defined by γ(t) + uξ(t) for a fixed t ∈ I is called a ruling.
We call the ruled surface with vanishing Gaussian curvature on the regular part a
developable surface. It is known that a ruled surface F(γ,ξ) is a developable surface if
and only if

det
(
γ̇(t), ξ(t), ξ̇(t)

)
= 0

(cf. [30]). If the director curve ξ is constant, we call F(γ,ξ) a (generalized) cylinder. If
we define a mapping ξ : I → S2 by ξ(t) = ξ(t)/∥ξ(t)∥, we have F(γ,ξ)(I ×R) =

F(γ,ξ)(I×R). In this case, F(γ,ξ) is a cylinder if and only if ξ̇(t) ≡ 0. We say that F(γ,ξ)

is non-cylindrical if ξ̇(t) ̸= 0. Suppose that F(γ,ξ) is non-cylindrical. Then the striction
curve is defined to be

σ(t) = γ(t)− γ̇(t) · ξ̇(t)
ξ̇(t) · ξ̇(t)

ξ(t).

It is known that singularities of a non-cylindrical ruled surface is located on the
striction curve (cf. [30]). A non-cylindrical ruled surface F(γ,ξ) is a cone if the striction
curve σ is constant. It is known that a non-cylindrical developable surface F(γ,ξ) is a
wave front if and only if

det
(
ξ(t), ξ̇(t), ξ̈(t)

)
̸= 0

(cf. [30]). In this case, we call F(γ,ξ) a (non-cylindrical) developable front.

2.2 Focal developable surfaces and evolutes

For a Frenet curve, the focal developable surface and the evolute are classical objects
in differential geometry. There are many articles concerning the focal developable
(i.e. the envelope of normal planes) and the evolute (i.e. the locus of center of oscu-
lating spheres) of a Frenet curve (For instance [5, 8, 17, 37, 38, 42]).

In this section, we consider the focal developable surface and the evolute of a
Frenet type framed base curve.

2.2.1 Focal developable surfaces

We define the focal developable surface of a Frenet type framed base curve as the
discriminant set of the support function of the curve with respect to the unit tangent
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vector (cf. Proposition 2.1.3). Let γ : I → R3 be a Frenet type framed base curve
with (t, α).

Definition 2.2.1 We define a mapping FDγ : I ×R→ R3 by

FDγ(t, u) = γ(t) +
α(t)
κ(t)

n(t) + ub(t).

We call FDγ the focal developable surface of γ.

The focal developable surface FDγ is a ruled surface and we have

det
(

d
dt

(
γ(t) +

α(t)
κ(t)

n(t)
)

, b(t), ḃ(t)
)

= det
(

d
dt

(
α(t)
κ(t)

)
n(t) +

α(t)τ(t)
κ(t)

b(t), b(t),−τ(t)n(t)
)

= 0.

This means that FDγ is a developable surface (cf .Section 2.1.5). Moreover, FDγ is
a developable front (cf. Sections 2.1.4 and 2.1.5). We introduce an invariants σf (t) as
follows:

σf (t) =
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
, (when τ(t) ̸= 0).

We remark that τ(t0) = 0 if and only if t0 ∈ I is a singular point of the unit binormal
vector b(t).

Theorem 2.2.2 Let γ : I → R3 be a Frenet type framed base curve with (t, α). Then we
have the following:

(1) The following are equivalent:

(a) FDγ is a cylinder,

(b) τ(t) ≡ 0.

(2) If τ(t) ̸= 0, then the following are equivalent:

(c) FDγ is a conical surface,

(d) σf (t) ≡ 0.

Proof. (1) By definition, FDγ is a cylinder if and only if b(t) is constant. Since
ḃ(t) = −τ(t)n(t), b(t) is constant if and only if τ(t) ≡ 0.

(2) We consider the striction curve σ : I → R is defined by

σ(t) = γ(t) +
α(t)
κ(t)

n(t)−
d
dt

(
γ(t) + α(t)

κ(t)n(t)
)
· ḃ(t)

ḃ(t) · ḃ(t)
b(t)

= γ(t) +
α(t)
κ(t)

n(t)− α(t)κ̇(t)− α̇(t)κ(t)
κ2(t)τ(t)

b(t).
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Then (2)-(c) is equivalent to the condition σ̇(t) ≡ 0. We can calculate that

σ̇(t) = γ̇(t) +
d
dt

(
α(t)
κ(t)

)
n(t) +

α(t)
κ(t)

ṅ(t)

− d
dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
b(t)− α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)
ḃ(t)

= α(t)t(t)− α(t)κ̇(t)− α̇(t)κ(t)
κ2(t)

n(t) +
α(t)
κ(t)

(−κ(t)t(t) + τ(t)b(t))

− d
dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
b(t)− α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)
(−τ(t)n(t))

=

(
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

))
b(t)

= σf (t)b(t).

It follows that (2)-(c) and (2)-(d) are equivalent. 2

We remark that developable surfaces are classified into cylinders, cones or tan-
gent surfaces of space curves (cf. [43]). By result of Theorem 2.2.2, two invariants
τ(t) and σf (t) might be related to singularities of the focal developable surface. Ac-
tually, we can characterize singularities of the focal developable surface of a Frenet
type framed base curve by using these invariants τ(t) and σf (t).

Theorem 2.2.3 Let γ : I → R3 be a Frenet type framed base curve with (t, α). Then we
have the following:

(1) (t0, u0) is a singular point of FDγ if and only if

α(t0)κ̇(t0)− α̇(t0)κ(t0)

κ2(t0)
+ u0τ(t0) = 0.

(2) FDγ is A-equivalent to the cuspidal edge ce at (t0, u0) if and only if

(a) τ(t0) ̸= 0, σf (t0) ̸= 0 and

u0 = −α(t0)κ̇(t0)− α̇(t0)κ(t0)

κ2(t0)τ(t0)
,

or

(b) τ(t0) = 0, α(t0)κ̇(t0)− α̇(t0)κ(t0) = 0 and

d
dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)

)∣∣∣∣
t=t0

+ u0τ̇(t0) ̸= 0.

(3) FDγ isA-equivalent to the swallowtail sw at (t0, u0) if and only if τ(t0) ̸= 0, σf (t0) =
0, σ̇f (t0) ̸= 0 and

u0 = −α(t0)κ̇(t0)− α̇(t0)κ(t0)

κ2(t0)τ(t0)
.

Proof. By a straightforward calculation, we have

∂FDγ

∂t
(t, u)× ∂FDγ

∂t
(t, u) = −

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)
+ uτ(t)

)
t(t).
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Therefore (t0, u0) is a singular point of FDγ if and only if

α(t0)κ̇(t0)− α̇(t0)κ(t0)

κ2(t0)
+ u0τ(t0) = 0.

This means that (1) holds. Assertions (2) and (3) can be proven by using the criteria
for the cuspidal edge ce and the swallowtail sw (cf. [32]). We give the signed density
function λ : I ×R→ R by

λ(t, u) = det
(

∂FDγ

∂t
(t, u),

∂FDγ

∂u
(t, u), t(t)

)
=

α(t)κ̇(t)− α̇(t)κ(t)
κ2(t)

+ uτ(t).

Suppose that (t0, u0) is a non-degenerate singular point of FDγ, that is,

∂λ

∂t
(t0, u0) =

d
dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)

)∣∣∣∣
t=t0

+ u0τ̇(t0) ̸= 0

or
∂λ

∂u
(t0, u0) = τ(t0) ̸= 0.

(2)-(a) When τ(t0) ̸= 0, we have the singular curve c : (I, t0)→ (I ×R, (t0, u0));

c(t) =
(

t,−α(t)κ̇(t)− α̇(t)κ(t)
κ2(t)τ(t)

)
and the null vector field η : (I, t0)→ R2 \ {0};

η(t) =
(

1,−α(t)τ(t)
κ(t)

)
.

By using the criterion for the cuspidal edge ce, the focal developable surface FDγ is
A-equivalent to the cuspidal edge ce at (t0, u0) if and only if

det(ċ(t0), η(t0)) = −
α(t0)τ(t0)

κ(t0)
+

d
dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)∣∣∣∣
t=t0

= −σf (t0) ̸= 0.

Therefore, (2)-(a) holds.
(2)-(b) When τ(t0) = 0 and

d
dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)

)∣∣∣∣
t=t0

+ u0τ̇(t0) ̸= 0,

there exists a smooth function ϕ : (R, u0)→ (I, t0) such that λ(ϕ(u), u) = 0 and

dϕ

du
(u) = − λu(t, u)

λt(t, u)

∣∣∣∣
t=ϕ(u)

.

Accordingly, we have the singular curve c : (R, u0) → (I × R, (t0, u0)); c(u) =
(ϕ(u), u) and the null vector field

η(u) =
(

1,−α(ϕ(u))τ(ϕ(u))
κ(ϕ(u))

)
.
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Since

det
(

dc
du

(u0), η(u0)

)
= det

(
0 1
1 ∗

)
= −1 ̸= 0,

the focal developable surface FDγ is alwaysA-equivalent to the cuspidal edge ce at
(t0, u0) under the assumption. Therefore, (2)-(b) holds.

(3) By the proof of (2)-(b), it is enough to consider in the same assumption as
(2)-(a). By using the criterion for the swallowtail sw, the focal developable surface
FDγ is A-equivalent to the swallowtail sw at (t0, u0) if and only if

det(ċ(t0), η(t0)) = −σf (t0) = 0 and
ddet(ċ, η)

dt
(t0) = −σ̇f (t0) ̸= 0.

Therefore, (3) holds. This completes the proof. 2

2.2.2 Evolutes

We define the evolute of a Frenet type framed base curve as the secondary discrimi-
nant set of the support function of the curve with respect to the unit tangent vector
under a certain condition (cf. Proposition 2.1.3). In the other words, the evolute is
the striction curve of the focal developable surface. Let γ : I → R3 be a Frenet type
framed base curve with (t, α). Throughout this section, we assume that τ(t) ̸= 0.

Definition 2.2.4 We define a mapping Eγ : I → R3 by

Eγ(t) = γ(t) +
α(t)
κ(t)

n(t)− α(t)κ̇(t)− α̇(t)κ(t)
κ2(t)τ(t)

b(t).

We call Eγ the evolute of γ.

By a straightforward calculation, we have

Ėγ(t) =

(
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

))
b(t)

= σf (t)b(t).

Then we have the following proposition:

Proposition 2.2.5 The evolute Eγ is a Frenet type framed base curve with (b, σf ). The
curvature and the torsion is given by κEγ

(t) = sgn(τ)τ(t) and τEγ
(t) = κ(t), where

sgn(τ) is the sign of τ.

Proof. We can easily check that the evolute Eγ is a Frenet type framed base curve
with (b, σf ). By straightforward calculations, we have the principal normal vec-
tor nEγ

(t) = ḃ(t)/∥ḃ(t)∥ = −sgn(τ)n(t) and the binormal vector bEγ
(t) = b(t)×

(−sgn(τ)n(t)) = sgn(τ)t(t). It follows that

κEγ
(t) = ḃ(t) · nEγ

(t) = (−τ(t)n(t)) · (−sgn(τ)n(t)) = sgn(τ)τ(t)

and

τEγ
(t) = ṅEγ

(t) · bEγ
(t) = sgn2(τ)((κ(t)t(t)− τ(t)b(t)) · t(t)) = κ(t).

2
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We give relationships between singularities of the evolute Eγ and of the focal
developable surface FDγ as corollary of Theorem 2.2.3.

Corollary 2.2.6 ( [21]) Let γ : I → R3 be a Frenet type framed base curve with τ(t) ̸= 0.
Suppose that (t0, u0) is a singular point of FDγ. Then we have the following:

(1) FDγ is A-equivalent to the cuspidal edge ce at (t0, u0) if and only if the evolute Eγ is
regular at t0.

(2) FDγ is A-equivalent to the swallowtail sw at (t0, u0) if and only if the evolute Eγ is
A-equivalent to the 3/2-cusp c at t0.

Here, c : (R, 0)→ (R3, 0); t 7→ (t2, t3, 0) is the 3/2-cusp.

Evolutes and spheres

For a Frenet curve γ : I → R3 with τ(t) ̸= 0, the evolute Eγ is constant if and only
if γ is a curve on a sphere S2(c, r) = {x ∈ R3 | ∥x − c∥ = r} (cf. [5, 17]), where
c ∈ R3 and c ∈ R>0. We investigate relationships between the evolute of a Frenet
type framed base curve and a sphere. Let γ : I → R3 be a Frenet type framed base
curve with τ(t) ̸= 0.

Proposition 2.2.7 ( [21]) If Eγ is constant, then there exist a constant vector c ∈ R3 and a
non-negative number r ∈ R such taht γ(t) ∈ S2(c, r).

Proof. Suppose that Eγ is constant, that is, σf (t) ≡ 0. Then we put c = Eγ(t). By a
straightforward calculation, we have

d
dt
∥γ(t)− c∥2

= 2
(

α(t)
κ(t)

)
d
dt

(
α(t)
κ(t)

)
+ 2

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
d
dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
= −2(α(t)κ̇(t)− α̇(t)κ(t))

κ2(t)τ(t)

(
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

))
= −2(α(t)κ̇(t)− α̇(t)κ(t))

κ2(t)τ(t)
σf (t)

= 0

Therefore, there exists a non-negative number r = ∥γ(t) − c∥ such that γ(t) ∈
S2(c, r). 2

Lemma 2.2.8 ( [21]) Eγ is constant if and only if there exist functions f , g : I → R and a
constant vector c ∈ R3 such that γ(t)− c = f (t)n(t) + g(t)b(t).

Proof. If Eγ is constant, then we can write γ(t)− c = f (t)n(t) + g(t)b(t), where

c = Eγ(t), f (t) = −α(t)
κ(t)

and g(t) =
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)
.

Conversely, suppose that there exist functions f , g : I → R and a constant vector
c ∈ R3 such that γ(t)− c = f (t)n(t) + g(t)b(t). Taking the derivative of the both
sides, we have

α(t)t(t) = −κ(t) f (t)t(t) + ( ḟ (t)− τ(t)g(t))n(t) + (ġ(t) + τ(t) f (t))b(t).



2.2. Focal developable surfaces and evolutes 31

It follows that

α(t) = −κ(t) f (t), ḟ (t)− τ(t)g(t) = 0, ġ(t) + τ(t) f (t) = 0

and

σf (t) =
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
= −τ(t) f (t)− d

dt

(
ḟ (t)
τ(t)

)
= ġ(t)− ġ(t)
= 0.

Therefore, Eγ is constant. 2

Proposition 2.2.9 ( [21]) Suppose that the set of regular points of γ is dense in I. Then Eγ

is constant if and only if there exist a constant vector c ∈ R3 and a positive number r ∈ R

such that γ(t) ∈ S2(c, r).

Proof. Suppose that Eγ is constant. By Proposition 2.2.7, there exist a constant vector
c ∈ R3 and a non-negative number r ∈ R such that γ(t) ∈ S2(c, r). If r = 0, γ(t) = c
and γ̇(t) ≡ 0. This case does not occur because the set of reular points of γ is dense
in I. Therefore, r is positive.

Conversely, suppose that there exist a constant vector c ∈ R3 and a positive
number r ∈ R such that γ(t) ∈ S2(c, r). By the assumption, we have ∥γ(t)− c∥ = r2.
Taking the derivative of the both sides, we have α(t)t(t) · (γ(t)− c) ≡ 0. Since the
set of regular points of γ is dense in I, we have t(t) · (γ(t)− c) ≡ 0. Then there exist
functions f , g : I → R such that γ(t)− c = f (t)n(t) + g(t)b(t). By Lemma 2.2.8, Eγ

is constant. 2

Contact between Frenet type framed base curves and evolutes

We investigate contact between Frenet type framed base curves and evolutes.

Proposition 2.2.10 ( [21]) Let γ : I → R3; t 7→ γ(t) and γ̃ : Ĩ → R3; u 7→ γ̃(u)
be Frenet type framed base curves with τ(t) ̸= 0 and τ̃(t) ̸= 0, respectively. If (γ, n, b)
and (γ̃, ñ, b̃) have at least (k + 2)-th order contact at t = t0, u = u0 for k ∈ N, then
(Eγ,−sgn(τ)n, sgn(τ)t) and (Eγ̃,−sgn(τ̃)ñ, sgn(τ̃)t̃) have at least k-th order contact
t = t0, u = u0.

Proof. We give the proof by using the induction on k. First suppose that (γ, n, b) and
(γ̃, ñ, b̃) have at least third order contact at t = t0, u = u0. By Theorem 1.3.10, we
have

(γ, n, b)(t0) = (γ̃, ñ, b̃)(u0),
d
dt
(γ, n, b)(t0) =

d
du

(γ̃, ñ, b̃)(u0),

d2

dt2 (γ, n, b)(t0) =
d2

du2 (γ̃, ñ, b̃)(u0), F (t0) = F̃ (u0),
d
dt
F (t0) =

d
du
F̃ (u0),

where F (t) = (τ(t),−κ(t), 0, α(t)) and F̃ (u) = (τ̃(u),−κ̃(u), 0, α̃(u)). Therefore,
we have (Eγ,−sgn(τ)n, sgn(τ)t)(t0) = (Eγ̃,−sgn(τ̃)ñ, sgn(τ̃)t̃)(u0).
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Suppose that the assertion holds for the case of k + 2. Suppose that (γ, n, b) and
(γ̃, ñ, b̃) have at least (k + 3)-th order contact at t = t0, u = u0 and

di

dti (Eγ,−sgn(τ)n, sgn(τ)t)(t0) =
di

dui (Eγ̃,−sgn(τ̃)ñ, sgn(τ̃)t̃)(u0)

for i = 0, 1, . . . , k− 1. By Theorem 1.3.10, we have

di

dtiF (t0) =
di

dui F̃ (u0)

for i = 0, 1, . . . , k + 1. We denote by

(v1, v2, v3)(t) = (b,−sgn(τ)n, sgn(τ)t)(t), (ṽ1, ṽ2, ṽ3)(u) = (b̃,−sgn(τ̃)ñ, sgn(τ̃)t̃)(u),

FEγ
(t) = (κ,−sgn(τ)τ, 0, σf )(t) and FEγ̃

(t) = (κ̃,−sgn(τ̃)τ̃, 0, σ̃f )(u) for conve-
nience. It follows that

dk

dtk Eγ(t) =

(
dk−1

dtk−1 σf (t)
)

v1(t) +
3

∑
i=1

fi

(
FEγ

(t), . . . ,
dk−2

dtk−2FEγ
(t)
)

vi(t),

dk

dtk v2(t) = −sgn(τ)
(

dk−1

dtk−1 τ(t)
)

v1(t) + sgn(τ)
(

dk−1

dtk−1 κ(t)
)

v3(t)

+
3

∑
i=1

gi

(
FEγ

(t), . . . ,
dk−2

dtk−2FEγ
(t)
)

vi(t),

dk

dtk v3(t) = −sgn(τ)
(

dk−1

dtk−1 κ(t)
)

v2(t) +
3

∑
i=1

hi

(
FEγ

(t), . . . ,
dk−2

dtk−2FEγ
(t)
)

vi(t)

for some smooth functions fi, gi and hi (i = 1, 2, 3). Moreover, we have

dj

dtj σf (t) = σj

(
F (t), . . . ,

dj+2

dtj+2F (t)
)

for some smooth functions σj for j = 0, 1, . . . , k − 1. By the same calculations, we
have

dk

duk Eγ̃(u) =

(
dk−1

duk−1 σ̃f (t)
)

ṽ1(u) +
3

∑
i=1

fi

(
FEγ̃

(u), . . . ,
dk−2

duk−2FEγ̃
(u)
)

ṽi(u),

dk

duk ṽ2(u) = −sgn(τ̃)
(

dk−1

duk−1 τ̃(u)
)

ṽ1(u) + sgn(τ̃)
(

dk−1

duk−1 κ̃(u)
)

ṽ3(u)

+
3

∑
i=1

gi

(
FEγ̃

(u), . . . ,
dk−2

duk−2FEγ̃
(u)
)

ṽi(u),

dk

duk ṽ3(u) = −sgn(τ̃)
(

dk−1

duk−1 κ̃(u)
)

ṽ2(u) +
3

∑
i=1

hi

(
FEγ̃

(u), . . . ,
dk−2

duk−2FEγ̃
(u)
)

ṽi(u)

and
dj

duj σ̃f (u) = σj

(
F̃ (u), . . . ,

dj+2

duj+2 F̃ (u)
)

.

It follows that

dk

dtk (Eγ,−sgn(τ)n, sgn(τ)t)(t0) =
dk

duk (Eγ̃,−sgn(τ̃)ñ, sgn(τ̃)t̃)(u0).
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Therefore, (γ, n, b) and (γ̃, ñ, b̃) have at least (k + 1)-th order contact at t = t0, u =
u0. By the induction, we have the result. 2

Proposition 2.2.11 ( [21]) Let γ : I → R3 be a Frenet type framed base curve with τ(t) ̸=
0. (γ, n, b) and (Eγ,−sgn(τ)n, sgn(τ)t) are congruent as framed curves if and only if
κ(t) = τ(t) and α(t) = σf (t).

Proof. Suppose that (γ, n, b) and (Eγ,−sgn(τ)n, sgn(τ)t) are congruent as framed
curves. By Lemma 1.2.1 and Proposition 2.2.5, we have

(τ(t),−κ(t), 0, α(t)) = (κ(t),−(τ)τ(t), 0, σf (t))

It follows that κ(t) = τ(t) and α(t) = σf (t). Moreover the converse is true by the
above discussion. 2

Remark 2.2.12 A function τ(t)/κ(t) is constant if and only if γ is a framed helix (cf.
Section 2.3.2 and [19]). Therefore, γ is a framed helix if κ(t) = τ(t).

Example 2.2.13 Let γ : R→ R3 be a curve defined by

γ(t) =
(
(t + 1) sin t + cos t,−(t + 1) cos t + sin t,

1
2

t2 + t
)

(cf. Figure 2.4). The curve γ has a singular point at t = −1, so that it is not a Frenet
curve. On the other hand, γ is a Frenet type framed base curve with the mapping
(t, α) : R→ S2 ×R;

t(t) =
1√
2
(cos t, sin t, 1),

α(t) =
√

2(t + 1).

By straightforward calculations, we have

n(t) =
ṫ(t)
∥ṫ(t)∥ = (− sin t, cos t, 0),

b(t) = t(t)× n(t) =
1√
2
(− cos t,− sin t, 1).

The curvature κ(t) and the torsion τ(t) are κ(t) = 1/
√

2, τ(t) = 1/
√

2, respectively.
The evolute Eγ : I → R3 is given

Eγ(t) =
(
−(t + 1) sin t− cos t, (t + 1) cos t− sin t,

1
2

t2 + t + 2
)

(cf. Figure 2.5). By Proposition 2.2.11, (γ, n, b) and (Eγ,−b, t) are congruent as
framed curves. Then γ is a framed helix (cf. 2.3.2 and [19]).

2.2.3 Examples

In order to understand the phenomena for the focal developable surfaces and the
evolutes of Frenet type framed base curves, we give examples.
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FIGURE 2.4: γ of Ex-
ample 2.2.13

FIGURE 2.5: Eγ of Ex-
ample 2.2.13

Example 2.2.14 Let γ : R→ R3 be a curve defined by

γ(t) = (t2, t3, 0)

(cf. Figure 2.6). We call γ a 3/2-cusp. The curve γ has a singular point at t = 0, so
that it is not a Frenet curve. On the other hand, γ is a Frenet type framed base curve
with the smooth mapping (t, α) : R→ S2 ×R;

t(t) =
1√

4 + 9t2
(2, 3t, 0),

α(t) = t
√

4 + 9t2.

By straightforward calculation, we have

n(t) =
ṫ(t)
∥ṫ(t)∥ =

1√
4 + 9t2

(−3t, 2, 0),

b(t) = t(t)× n(t) = (0, 0, 1).

The curvature κ(t) and the torsion τ(t) are κ(t) = 6/(4+ 9t2), τ(t) = 0, respectively.
The focal developable surface FDγ : I ×R→ R3 is given by

FDγ(t, u) = γ(t) +
α(t)
κ(t)

n(t) + ub(t)

(cf. Figure 2.6). The base curve γ(t) + (α(t)/κ(t)n(t)) is the evolute as planer front
(cf. [11,12]). By Theorem 2.2.2, the focal developable surfaceFDγ is a cylinder. Since
τ(t) ≡ 0, we cannot consider the evolute of the curve γ as framed base curve.

FIGURE 2.6: (γ,FDγ) of Example 2.2.14
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FIGURE 2.7: (γ, Eγ) of
Example 2.2.15

FIGURE 2.8: FDγ of
Example 2.2.15

Example 2.2.15 Let γ : R→ S2 ⊂ R3 be a curve defined by

γ(t) =

(
3
4

cos t− 1
4

cos 3t,
3
4

sin t− 1
4

sin 3t,
√

3
2

cos t

)

(cf. Figure 2.7). We call the curve γ a spherical nephroid (cf. [41]). The curve γ has
singular points at t = 0, π, so that it is not a Frenet curve. On the other hand, γ is a
Frenet type framed base curve with the smooth mapping (t, α) : R→ S2 ×R;

t(t) =

(√
3

2
cos 2t,

√
3

2
sin 2t,−1

2

)
,

α(t) =
√

3 sin t.

By straightforward calculations, we have

n(t) =
ṫ(t)
∥ṫ(t)∥ = (− sin 2t, cos 2t, 0),

b(t) = t(t)× n(t) =
1
2
(− cos 2t,− sin 2t,

√
3).

The curvature κ(t) and the torsion τ(t) are κ(t) =
√

3, τ(t) = 1, respectively. The
focal surface FDγ : I ×R→ R3 is given by

FDγ(t, u) = γ(t) +
α(t)
κ(t)

n(t) + ub(t).

(cf. Figure 2.8). By Theorem 2.2.2 and

σf (t) =
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
= 0,

the focal developable surface FDγ is a conical surface. Moreover, the evolute Eγ is
a point Eγ(t) = (0, 0, 0) (cf. Figure 2.7).

Example 2.2.16 Let γ : R→ R3 be a curve defined by

γ(t) =
(

t2, t3, t4
)

(cf. Figure 2.9). The curve γ has a singular point at t = 0, so that it is not a Frenet
curve. On the other hand, γ is a Frenet type framed base curve with the smooth
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FIGURE 2.9: (γ, Eγ) of
Example 2.2.16

FIGURE 2.10: FDγ of
Example 2.2.16

mapping (t, α) : R→ S2 ×R;

t(t) =
1√

4 + 9t2 + 16t4
(2, 3t, 4t2),

α(t) = t
√

4 + 9t2 + 16t4.

By straightforward calculations, we have

n(t) =
1√

(4 + 9t2 + 16t4)(9 + 64t2 + 36t4)
(−9t− 32t3, 6− 24t4, 16t + 18t3),

b(t) =
1√

9 + 64t2 + 36t4
(6t2,−8t, 3).

The curvature κ(t) and the torsion τ(t) are

κ(t) =
2
√

9 + 64t2 + 36t4

4 + 9t2 + 16t4 ,

τ(t) =
12
√

4 + 9t2 + 16t4

9 + 64t2 + 36t4 ,

respectively. The focal surface FDγ : I ×R→ R3 is given by

FDγ(t, u) = γ(t) +
α(t)
κ(t)

n(t) + ub(t)

(cf. Figure 2.10). We can calculate that

σf (t) =
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
= t(3 + 20t2)

√
9 + 64t2 + 36t4.

By Theorem 2.2.3, σf (0) = 0 and σ̇f (0) = 9, the focal developable surface FDγ is
A-equivalent to the swallowtail sw at (0,−1/2). The evolute Eγ : I → R3 is given
by

Eγ(t) = γ(t) +
α(t)
κ(t)

n(t)− α(t)κ̇(t)− α̇(t)κ(t)
κ2(t)τ(t)

b(t)

(cf. Figure 2.9).

Example 2.2.17 Let γ : R→ R3 be a curve defined by

γ(t) = (cos3 t, sin3 t, cos 2t)
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FIGURE 2.11: (γ, Eγ)
of Example 2.2.17

FIGURE 2.12: FDγ of
Example 2.2.17

(cf. Figure 2.12). We call γ an astroid. The curve γ has singular points at t =
0, π/2, π, 3π/2, so that it is not a Frenet curve. On the other hand, γ is a Frenet
type framed base curve with the smooth mapping (t, α) : R→ S2 ×R;

t(t) =
1
5
(−3 cos t, 3 sin t,−4),

α(t) = 5 cos t sin t.

By straightforward calculations, we have

n(t) = (sin t, cos t, 0),

b(t) =
1
5
(4 cos t,−4 sin t,−3).

The curvature κ(t) and the torsion τ(t) are κ(t) = −3/5, τ(t) = −4/5, respectively.
The focal surface FDγ : I ×R→ R3 is given by

FDγ(t, u) = γ(t) +
α(t)
κ(t)

n(t) + ub(t)

(cf. Figure 2.12). By Theorem 2.2.3 and

σf (t) =
α(t)τ(t)

κ(t)
− d

dt

(
α(t)κ̇(t)− α̇(t)κ(t)

κ2(t)τ(t)

)
= 35 cos t sin t,

the focal developable surface FDγ is A-equivalent to the cuspidal edge ce at t =
0, π/2, π, 3π/2. The evolute Eγ : I → R3 is given by

Eγ(t) =
(

28
3

cos3 t,
28
3

sin3 t,−21
4

cos 2t
)

(cf. Figure 2.11). Therefore, the evolute of the astroid is the astroid.

2.3 Rectifying developable surfaces and framed helices

For a Frenet curve, the rectifying developable surface is investigated in [26]. They
showed relationships between singularities of the rectifying developable surfaces of
a Frenet curve and geometric invariants of the curve. A Frenet curve is always a
deodesic of its rectifying developable surface.

In this section, we consider the rectifying developable surface of a Frenet type
framed base curve and a framed helix.
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2.3.1 Rectifying developable surfaces

We define the rectifying developable surface of a Frenet type framed base curve as
the discriminant set of the support function of the curve with respect to the unit
principal normal vector (cf. Proposition 2.1.4). Let γ : I → R3 be a Frenet type
framed base curve with (t, α).

Definition 2.3.1 We define a mappingRDγ : I ×R→ R3 by

RDγ(t, u) = γ(t) + ud(t) = γ(t) + u
τ(t)t(t) + κ(t)b(t)√

κ2(t) + τ2(t)
.

We call RDγ the rectifying developable surface of γ, where d is the spherical Darboux
type vector (cf. Section 2.1.2).

The rectifying developable surfaceRDγ is a ruled surface and we have

ḋ(t) =
(

κ(t)τ̇(t)− κ̇(t)τ(t)
κ2(t) + τ2(t)

)
κ(t)t(t)− τ(t)b(t)√

κ2(t) + τ2(t)
,

so that we have

det
(

γ̇(t), d(t), ḋ(t)
)

= det

(
α(t)t(t),

τ(t)t(t) + κ(t)b(t)√
κ2(t) + τ2(t)

,
(

κ(t)τ̇(t)− κ̇(t)τ(t)
κ2(t) + τ2(t)

)
κ(t)t(t)− τ(t)b(t)√

κ2(t) + τ2(t)

)
= 0

for all t ∈ I. This means that RDγ is a developable surface (cf .Section 2.1.5). More-
over, RDγ is a developable front (cf. Sections 2.1.4 and 2.1.5). We introduce two
invariants δr(t), σr(t) as follows:

δr(t) =
κ(t)τ̇(t)− κ̇(t)τ(t)

κ2(t) + τ2(t)
,

σr(t) =
α(t)τ(t)√

κ2(t) + τ2(t)
− d

dt

(
α(t)κ(t)

δr(t)
√

κ2(t) + τ2(t)

)
(when δr(t) ̸= 0).

Theorem 2.3.2 ( [19]) Let γ : I → R3 be a Frenet type framed base curve with (t, α). Then
we have the following:

(1) The following are equivalent:

(a) RDγ is a cylinder,
(b) δr(t) ≡ 0.

(2) If δr(t) ̸= 0, then the following are equivalent:

(c) RDγ is a conical surface,
(d) σr(t) ≡ 0.

Proof. (1) By definition,RDγ is a cylinder if and only if d(t) is constant. Since

ḋ(t) =
(

κ(t)τ̇(t)− κ̇(t)τ(t)
κ2(t) + τ2(t)

)
κ(t)t(t)− τ(t)b(t)√

κ2(t) + τ2(t)
= δr(t)

κ(t)t(t)− τ(t)b(t)√
κ2(t) + τ2(t)

,
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d(t) is constant if and only if δr(t) ≡ 0.
(2) We consider the striction curve σ(t) defined by

σ(t) = γ(t)− γ̇(t) · ḋ(t)
ḋ(t) · ḋ(t)

d(t) = γ(t)− α(t)κ(t)
δr(t)

√
κ2(t) + τ2(t)

d(t).

Then (2)-(c) is equivalent to the condition σ̇(t) ≡ 0. We can calculate that

σ̇(t) = γ̇(t)− d
dt

(
α(t)κ(t)

δr(t)
√

κ2(t) + τ2(t)

)
d(t)− α(t)κ(t)

δr(t)
√

κ2(t) + τ2(t)
ḋ(t)

= α(t)t(t)− d
dt

(
α(t)κ(t)

δr(t)
√

κ2(t)+τ2(t)

)
d(t)− α(t)κ(t)√

κ2(t)+τ2(t)
κ(t)t(t)−τ(t)b(t)√

κ2(t)+τ2(t)

=

(
α(t)τ(t)√

κ2(t) + τ2(t)
− d

dt

(
α(t)κ(t)

δr(t)
√

κ2(t) + τ2(t)

))
τ(t)t(t) + κ(t)b(t)√

κ2(t) + τ2(t)

= σr(t)d(t).

It follows that (2)-(c) and (2)-(d) are equivalent. 2

We give characterizations of singularities of the rectifying developable surface
RDγ by using δr(t) and σr(t).

Theorem 2.3.3 ( [19]) Let γ : I → R3 be a Frenet type framed base curve with (t, α). Then
we have the following:

(1) (t0, u0) is a singular point ofRDγ if and only if

α(t0)κ(t0)√
κ2(t0) + τ2(t0)

+ u0δr(t0) = 0.

(2) RDγ is A-equivalent to the cuspidal edge ce at (t0, u0) if and only if

(a) δr(t0) ̸= 0, σr(t0) ̸= 0 and

u0 = − α(t0)κ(t0)

δr(t0)
√

κ2(t0) + τ2(t0)
,

or

(b) δr(t0) = α(t0) = 0, δ̇r(t0) ̸= 0 and

u0 ̸= −
α̇(t0)κ(t0)

√
κ2(t0) + τ2(t0)

κ(t0)τ̈(t0)− κ̈(t0)τ(t0)
,

or

(c) δr(t0) = α(t0) = 0 and α̇(t0) ̸= 0.

(3) RDγ is A-equivalent to the swallowtail sw at (t0, u0) if and only if δr(t0) ̸= 0,
σr(t0) = 0, σ̇r(t0) ̸= 0 and

u0 = − α(t0)κ(t0)

δr(t0)
√

κ2(t0) + τ2(t0)
,
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Proof. By a straightforward calculation, we have

∂RDγ

∂t
(t, u)× ∂RDγ

∂t
(t, u) = −

(
α(t)κ(t)√

κ2(t) + τ2(t)
+ uδr(t)

)
n(t).

Therefore (t0, u0) is a singular point ofRDγ if and only if

α(t0)κ(t0)√
κ2(t0) + τ2(t0)

+ u0δr(t0) = 0.

This means that (1) holds. Assertions (2) and (3) can be proven by using the criterion
for the cuspidal edge ce and the swallowtail sw in [32]. We give the signed density
function λ : I ×R→ R by

λ(t, u) = det
(

∂RDγ

∂t
(t, u),

∂RDγ

∂u
(t, u), n(t)

)
= − α(t)κ(t)√

κ2(t) + τ2(t)
− uδr(t).

Suppose that (t0, u0) is a non-degenerate singular point ofRDγ, that is,

∂λ

∂t
(t0, u0) = − d

dt

(
α(t)κ(t)√

κ2(t) + τ2(t)

)∣∣∣∣∣
t=t0

− uδ̇r(t) ̸= 0

or
∂λ

∂u
(t0, u0) = δr(t0) ̸= 0.

(2)-(a) When δr(t0) ̸= 0, we have the singular curve c : (I, t0)→ (I ×R, (t0, u0));

c(t) =

(
t,− α(t)κ(t)

δr(t)
√

κ2(t) + τ2(t)

)

and the null vector field η : (I, t0)→ R2 \ {0};

η(t) =

(
1,− α(t)τ(t)√

κ2(t) + τ2(t)

)
.

By using the criterion for the cuspidal edge ce, the focal developable surface FDγ is
A-equivalent to the cuspidal edge ce at (t0, u0) if and only if

det(ċ(t0), η(t0)) = −
α(t0)τ(t0)√

κ2(t0) + τ2(t0)
+

d
dt

(
α(t)κ(t)

δr(t)
√

κ2(t) + τ2(t)

)∣∣∣∣∣
t=t0

= −σr(t0) ̸= 0.

Therefore we have (2)-(a).
(2)-(b, c)) When δr(t0) = 0 and

− d
dt

(
α(t)κ(t)

κ2(t) + τ2(t)

)∣∣∣∣
t=t0

− uδ̇r(t) ̸= 0,
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there exists a smooth function ϕ : (R, u0)→ (I, t0) such that λ(ϕ(u), u) = 0 and

dϕ

du
(u) = − λu(t, u)

λt(t, u)

∣∣∣∣
t=ϕ(u)

.

Accordingly, we have the singular curve c : (R, u0) → (I × R, (t0, u0)); c(u) =
(ϕ(u), u) and the null vector field

η(u) =

(
1,− α(ϕ(u))τ(ϕ(u))√

κ2(ϕ(u)) + τ2(ϕ(u))

)
.

Since

det
(

dc
du

(u0), η(u0)

)
= det

(
0 1
1 ∗

)
= −1 ̸= 0,

the rectifying developable surface FDγ is always A-equivalent to the cuspidal edge
ce at (t0, u0) under the assumption. Therefore, (2)-(b), (c) holds.

(3) By the proof of (2)-(b), (c), it is enough to consider in the same assumption
as (2)-(a). By using the criterion for the swallowtail sw, the rectifying developable
surfaceRDγ is A-equivalent to the swallowtail sw at (t0, u0) if and only if

det(ċ(t0), η(t0)) = −σr(t0) = 0 and
ddet(ċ, η)

dt
(t0) = −σ̇r(t0) ̸= 0.

Therefore, (3) holds. This completes the proof. 2

2.3.2 Framed helices

In this section, we define a (generalized) helix which may have singular points. Let
γ : I → R3 be a Frenet type framed base curve with (t, α).

Definition 2.3.4 (Framed helix) We say that γ : I → R3 is a framed helix if there exist
a constant vector v ∈ S2 and a constant number c ∈ R such that t(t) · v ≡ c.

This means that tangent lines of γ make a constant angle with a fixed direction, so
that a framed helix is a natural generalization of a regular helix. The invariant δr(t)
characterize a framed helix. We can prove the following proposition.

Proposition 2.3.5 ( [19]) Let γ : I → R3 be a Frenet type framed base curve with (t, α).
Then the following are equivalent:

(1) γ is a framed helix,

(2) δr(t) ≡ 0.

Proof. Suppose that γ is a framed helix. Here, we put v = a(t)t(t) + b(t)n(t) +
c(t)b(t), where a(t), b(t) and c(t) are smooth functions. By the assumption,

v · t(t) = a(t) = c. (2.1)

Moreover, taking the derivative of the both sides of the equation (2.1), we have

−b(t)κ(t)t(t) + (cκ(t) + ḃ(t)− c(t)τ(t))n(t) + (ċ(t) + b(t)τ(t))b(t) = 0.
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Then we have b(t) = 0, c(t) = c1 and c = c(τ(t)/κ(t)), where c1 is a constant
number. On the other hand, since

1 = ∥v∥2 = c2
1

(
τ2(t)
κ2(t)

+ 1
)

,

we have c1 ̸= 0. Thus c/c1 = τ(t)/κ(t). We remark that δr(t) = 0 if and only if

d
dt

(
τ(t)
κ(t)

)
=

κ(t)τ̇(t)− κ̇(t)τ(t)
κ2(t)

= 0.

Therefore, we have δr(t) ≡ 0.
Conversely, suppose that δr(t) ≡ 0. We set v = (τ(t)/κ(t))t(t) + b(t) and v =

v/∥v∥. Then

v · t(t) =
τ(t)
κ(t)√

τ2(t)
κ2(t) + 1

,

that is, v · t(t) is constant. This means that γ is a framed helix. 2

Corollary 2.3.6 ( [19]) Let γ : I → R3 be a Frenet type framed base curve with (t, α).
Then we have the following are equivalent:

(a) RDγ is a cylinder,

(b) δr(t) ≡ 0,

(c) γ is a framed helix.

By Theorem 1.3.10, we can show the following propositions.

Proposition 2.3.7 ( [19]) If (γ, n, b)(t0) and (γ̃, ñ, b̃)(u0) have at least (k + 2)-th order
contact as framed curves, then δ

(p)
r (t0) = δ̃

(p)
r (u0) for 0 ≤ p ≤ k− 1, where

δ
(p)
r (t0) =

dpδr

dtp (t0) and δ̃
(p)
r (u0) =

dpδ̃r

dup (u0).

Proposition 2.3.8 ( [19]) Let γ : I → R3 be a Frenet type framed base curve with (t, α).
Then there exists a framed curve (γ̃, ñ, b̃) : I → R3×V3,2 such that γ̃ is a framed helix, and
(γ, n, b) and (γ̃, ñ, b̃) have at least second order contact as framed curves at a point t0 ∈ I.

Proof. Choose any fixed value t = t0 of the parameter. We consider a new curvature
as a framed curve

(τ̃(t),−κ̃(t), 0, α̃(t)) = ((τ(t0)/κ(t0))κ(t),−κ(t), 0, α(t)) .

As an application of Theorems 1.1.4 and 1.1.5, there exists a framed curve (γ̃, ñ, b̃)
with the curvature (τ̃(t),−κ̃(t), 0, α̃(t)). By Theorem 1.3.10 and an appropriate Eu-
clid transformation, (γ, n, b) and (γ̃, ñ, b̃) have at least second order contact as framed
curves at t0 ∈ I. Moreover, by a straightforward calculation, we have δ̃(t) ≡ 0.
Therefore, γ̃ is a framed helix. 2
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2.3.3 Examples

In order to understand the phenomena for rectifying the developable surfaces of
framed base curves and framed helices, we give examples.

Example 2.3.9 (The astroid) Let γ : R→ R3 be a curve defined by

γ(t) = (cos3 t, sin3 t, cos 2t)

(cf. Figure 2.13). The curve γ is a Frenet type framed base curve (cf. Example 2.2.17).
By Corollary 2.3.6 and δr(t) ≡ 0, γ is a framed helix. The rectifying developable
surface is given byRDγ(t, u) =

(
cos3 t, sin3 t,−u + cos 2t

)
. By Theorem 2.3.3 (2)-(c),

the rectifying developable surface RDγ is A-equivalent to the cuspidal edge ce at
t = 0, π/2, π, 3π/2 (cf. Figure 2.14).

FIGURE 2.13: γ of Ex-
ample 2.3.9

FIGURE 2.14:
(γ,RDγ) of Example

2.3.9

Example 2.3.10 (The spherical nephroid (cf. [41])) Let γ : [0, 2π) → S2 ⊂ R3 be a
curve defined by

γ(t) =

(
3
4

cos t− 1
4

cos 3t,
3
4

sin t− 1
4

sin 3t,
√

3
2

cos t

)

(cf. Figure 2.15). The curve γ is a Frenet type framed base curve (cf. Example 2.2.15).
By Corollary 2.3.6 and δr(t) ≡ 0, γ is a framed helix. The rectifying developable
surface is given by

RDγ(t, u) =

(
3
4

cos t− 1
4

cos 3t,
3
4

sin t− 1
4

sin 3t, u +

√
3

2
cos t

)
.

By Theorem 2.3.3 (2)-(c), the rectifying developable surface RDγ is A-equivalent to
the cuspidal edge ce at t = 0, π (cf. Figure 2.16).

Example 2.3.11 ((2, 3, 5)-type) Let γ : R→ R3 be a curve defined by

γ(t) =
(

1
2

t2,
1
3

t3,
1
5

t5
)

(cf. Figure 2.17). The curve γ has a singular point at t = 0, so that it is not a Frenet
curve. On the other hand, γ is a Frenet type framed base curve with the mapping
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FIGURE 2.15: γ of Ex-
ample 2.3.10

FIGURE 2.16:
(γ,RDγ) of Example

2.3.10

(t, α) : R→ S2 ×R;

t(t) =
1√

1 + t2 + t6

(
1, t, t3) ,

α(t) = t
√

1 + t2 + t6.

By straightforward calculations, we have

κ(t) =

√
1 + 9t4 + 4t6

1 + t2 + t6 , τ(t) =
6t
√

1 + t2 + t6

1 + 9t4 + 4t6 .

By Theorem 2.3.3 (2)-(b), δ(0) = 6, σ(0) = 1/6 and α(0) = 0, the rectifying devel-
opable surfaceRDγ isA-equivalent to the cuspidal edge ce at (0, 0) (cf. Figure 2.18).

FIGURE 2.17: γ of Ex-
ample 2.3.11

FIGURE 2.18:
(γ,RDγ) of Example

2.3.11
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Chapter 3

Frontal curves on embedded
surfaces and developable surfaces

In this chapter, we consider two types of developable surfaces along a frontal curve
on an embedded surface in the Euclidean 3-space. One is called the osculating devel-
opable surface, and the other is called the normal developable surface. The frontal
curve may have singular points. We give new invariants of the frontal curve which
characterize singularities of the developable surfaces. Moreover, a frontal curve is
a contour generator with respect to an orthogonal projection or a central projection
if and only if one of these invariants constantly equal to zero. This chapter is based
on [20].

3.1 Preliminaries

3.1.1 Regular curves on embedded surfaces and developable surfaces

Let M = X(V) be a surface given locally by an embedding X : V → R3, V ⊂ R2 is
an open set. Let γ : I → V be a regular plane curve, where γ(t) = (u(t), v(t)) and
I is an open interval. Then we have a regular space curve γ = X ◦ γ : I → M ⊂ R3

on the surface M. On the surface, we have the unit normal vector field n defined by

n(u, v) =
Xu(u, v)× Xv(u, v)
∥Xu(u, v)× Xv(u, v)∥ .

Since γ is a regular space curve in R3, we adopt the arc-length parameter and denote
γ(s) = X(u(s), v(s)). Then we have the unit tangent vector field t(s) = γ′(s), where
γ′(s) = (dγ/ds)(s). We have nγ(s) = n ◦ γ(s), which is the unit normal vector
field of M along γ(s). Moreover, we define b(s) = nγ(s)× t(s). Then we have an
orthonormal frame {t(s), nγ(s), b(s)} along γ(s), which is called the Darboux frame
along γ(s). Then we have the following Frenet-Serret type formula: t′(s)

b′(s)
n′γ(s)

 =

 0 κg(s) κn(s)
−κg(s) 0 τg(s)
−κn(s) −τg(s) 0

 t(s)
b(s)

nγ(s)

 .

Here,

κg(s) = t′(s) · b(s) = det
(
γ′(s), γ′′(s), nγ(s)

)
,

κn(s) = t′(s) · nγ(s) = γ′′(s) · nγ(s),

τg(s) = b′(s) · nγ(s) = det
(

γ′(s), nγ(s), n′γ(s)
)

.
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We call κg(s) a geodesic curvature, κn(s) a normal curvature and τg(s) a geodesic torsion
of γ(s), respectively. It is known that

(1) γ is an asymptotic curve of M if and only if κn(s) ≡ 0,

(2) γ is a geodesic of M if and only if κg(s) ≡ 0,

(3) γ is a principal curve of M if and only if τg(s) ≡ 0.

We define two vector fields do(s), dr(s) along γ(s) by

do(s) = τg(s)t(s)− κn(s)b(s),
dr(s) = τg(s)t(s) + κg(s)nγ(s)

which are called the osculating Darboux vector field, the rectifying Darboux vector field
along γ(s), respectively. We also define spherical Darboux images as follows:

do(s) =
τg(s)t(s)− κn(s)b(s)√

κ2
n(s) + τ2

g (s)
if
(
κn(s), τg(s)

)
̸= (0, 0),

dr(s) =
τg(s)t(s) + κg(s)nγ(s)√

τ2
g (s) + κ2

g(s)
if
(
τg(s), κg(s)

)
̸= (0, 0).

These are called the spherical osculating Darboux image, the spherical rectifying Darboux
image along γ(s), respectively. The condition (κn(s), τg(s)) ̸= (0, 0) means that nγ(s)
is a regular spherical curve. Then do(s) is a spherical dual of nγ(s). On the other
hand, the condition (κg(s), τg(s)) ̸= (0, 0) means that b(s) is a regular spherical
curve. Then dr(s) is a spherical dual of b(s).

Definition 3.1.1 (The osculating developable surface, [28]) Let γ = X ◦ γ : I →
M ⊂ R3 be a unit speed curve on a surface M with κ2

n(s) + τ2
g (s) ̸= 0. We define a

mapping ODγ : I ×R→ R3 by

ODγ(s, u) = γ(s) + udo(s) = γ(s) + u
τg(s)t(s)− κn(s)b(s)√

κ2
n(s) + τ2

g (s)
.

We call ODγ the osculating developable surface along γ on M.

It is easy to show that ODγ is a developable surface. If (s0, 0) is a regular point of
ODγ (i.e. κn(s0) ̸= 0), the normal vector of ODγ at ODγ(s0, 0) = γ(s0) has the same
direction of the normal vector of M at γ(s0). This is the reason why we call ODγ the
osculating developable surface of M along γ.

Definition 3.1.2 (The normal developable surface, [18]) Let γ = X ◦ γ : I → M ⊂
R3 be a unit speed curve on a surface M with κ2

g(s)+ τ2
g (s) ̸= 0. We define a mapping

NDγ : I ×R→ R3 by

NDγ(s, u) = γ(s) + udr(s) = γ(s) + u
τg(s)t(s) + κg(s)nγ(s)√

κ2
g(s) + τ2

g (s)
.

We call NDγ the normal developable surface along γ on M.
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We can also show that NDγ is a developable surface. If (s0, 0) is a regular point of
NDγ (i.e. κg(s0) ̸= 0), the normal vector of NDγ at NDγ(s0, 0) = γ(s0) is tangent to
M at γ(s0). This is the reason why we call NDγ the normal developable surface of
M along γ.

We introduce four invariants of (M, γ) as follows:

δo(s) = κg(s) +
κn(s)τ′g(s)− κ′n(s)τg(s)

κ2
n(s) + τ2

g (s)
,

σo(s) =
τg(s)√

κ2
n(s) + τ2

g (s)
− d

ds

 κn(s)

δo(s)
√

κ2
n(s) + τ2

g (s)

 , (when δo(s) ̸= 0),

δr(s) = κn(s)−
κg(s)τ′g(s)− κ′g(s)τg(s)

κ2
g(s) + τ2

g (s)
,

σr(s) =
τg(s)√

κ2
g(s) + τ2

g (s)
+

d
ds

 κg(s)

δr(s)
√

κ2
g(s) + τ2

g (s)

 , (when δr(s) ̸= 0).

These invariants characterize singularities of ODγ and NDγ (cf. [18,28]). Moreover,
[28] showed that a regular curve is a contour generator with respect to an orthogonal
projection (respectively, a central projection) if and only if δo(t) (respectively, σo(t))
constantly equal to zero.

3.1.2 Contour generators

We now briefly review the notion of contour generators. Let M ⊂ R3 be a surface
and n be a unit normal vector field on M. For a unit vector k ∈ S2, the contour
generator of orthogonal projection with the direction k is defined to be

{p ∈ M | k · n(p) = 0}.

It is actually the singular set of the orthogonal projection with direction k. Moreover,
for a point c ∈ R3, the contour generator of the central projection with the center c is
defined to be

{p ∈ M | (p− c) · n(p) = 0}.

It is also the singular set of the central projection with the center c. The notion of
contour generators plays an important role in the computer vision theory [6].

3.1.3 Frontal curves on embedded surfaces

Hereafter, we do not assume that γ : I → V is a regular curve. It follows that
γ : X ◦ γ : I → M ⊂ R3 may have singular points. If γ has a singular point, we
can not construct the Darboux frame. However, we can define a moving frame of a
frontal curve for a Legendre curve in T1M = {(x, v) ∈ TM | ∥v∥ = 1}, where T1M
is the unit tangent bundle over M equipped with the canonical contact structure.

Definition 3.1.3 We say that (γ, b) : I → T1M is a Legendre curve on the unit tangent
bundle T1M if γ̇(t) · b(t) = 0 for all t ∈ I. We call γ a frontal curve. Moreover, if (γ, b)
is a Legendre immersion, we call γ a front curve.

For a surface M = X(V) given locally by an embedding X : V → R3, let γ : I → V
be a plane curve, and let (γ, b) : I → T1M be a Legendre curve, where γ = X ◦ γ :
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I → M ⊂ R3. Then we have the Frenet-Serret type formula of the frontal curve γ as
follows. nγ(t) is defined by

nγ(t) = n ◦ γ(t).

We remark that nγ(t) may have singular points. We put t(t) = nγ(t) × b(t). We
call an orthonormal frame {nγ(t), b(t), t(t)} the Darboux type frame along the frontal
curve γ(t) on M ⊂ R3 and we have the Frenet-Serret type formula of the frontal
curve (or, the Legendre curve) which is given by ṅγ(t)

ḃ(t)
ṫ(t)

 =

 0 ℓ(t) m(t)
−ℓ(t) 0 n(t)
−m(t) −n(t) 0

 nγ(t)
b(t)
t(t)

 ,

where ℓ(t) = ṅγ(t) · b(t), m(t) = ṅγ(t) · t(t) and n(t) = ḃ(t) · t(t). Moreover, there
exists a smooth function α(t) such that

γ̇(t) = α(t)t(t).

We call the mapping (ℓ, m, n, α) : I → R4 the curvature of the Legendre curve (with
respect to the parameter t). By Definition 3.1.3, (γ, nγ, b) : I → V3,2×V3,2 is a framed
curve, so that we can apply the existence and the uniqueness theorem for framed
curves (cf. Theorems 1.1.4 and 1.1.5). This is the reason why we call (ℓ, m, n, α) the
curvature of (γ, b).

Suppose that nγ(t) is a spherical frontal curve, that is, there exists a smooth map-
ping do : I → S2 such that (nγ, do) : I → V3,2 is a spherical Legendre curve (cf. [41]).
Then we call do(t) the spherical osculating Darboux frontal curve. do(t) is a dual of nγ(t)
as spherical frontal curve. In this sense, the spherical osculating Darboux frontal
curve is a natural generalization of the spherical osculating Darboux image for a
regular curve. We put to(t) = nγ(t) × do(t) and we have the Frenet-Serret type
formula of (nγ, do) which is given by ṅγ(t)

ḋo(t)
ṫo(t)

 =

 0 0 mo(t)
0 0 no(t)

−mo(t) −no(t) 0

 nγ(t)
do(t)
to(t)

 ,

where mo(t) = ṅγ(t) · do(t) and no(t) = ṅγ(t) · to(t). Moreover, we have the follow-
ing relationship:(

do(t)
to(t)

)
=

(
cos θo(t) − sin θo(t)
sin θo(t) cos θo(t)

)(
b(t)
t(t)

)
,

where cos θo(t) = do(t) · b(t) = to(t) · t(t) and sin θo(t) = −do(t) · t(t) = to(t) · b(t).
On the other hand, suppose that b(t) is a spherical frontal curve, that is, there

exists a smooth mapping dr : I → S2 such that (b, dr) : I → V3,2 is a spherical
Legendre curve. Then we call dr(t) the spherical rectifying Darboux frontal curve. We
put tr(t) = b(t)× dr(t) and we have the Frenet-Serret type formula of (b, dr) which
is given by  ḃ(t)

ḋr(t)
ṫr(t)

 =

 0 0 mr(t)
0 0 nr(t)

−mr(t) −nr(t) 0

 b(t)
dr(t)
tr(t)

 ,
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where mr(t) = ḃ(t) · dr(t) and nr(t) = ḃ(t) · tr(t). We have the following relation-
ship: (

dr(t)
tr(t)

)
=

(
cos θr(t) − sin θr(t)
sin θr(t) cos θr(t)

)(
t(t)

nγ(t)

)
,

where cos θr(t) = dr(t) · t(t) = tr(t) · nγ(t) and sin θr(t) = −dr(t) · nγ(t) = tr(t) ·
t(t).

3.2 Osculating developable surfaces

In this section, we introduce the osculating developable surface along a frontal curve
on a embedded surface. Let (γ, b) : I → T1M be a Legendre curve with a spherical
osculating Darboux frontal curve do(t).

Definition 3.2.1 We define a mapping ODγ : I ×R→ R3 by

ODγ(t, u) = γ(t) + udo(t).

We call ODγ a (generalized) osculating developable surface of M along γ.

The osculating developable surface ODγ is a ruled surface and we have

det
(
γ̇, do, ḋo

)
= det (αt, do, noto)

= det (αt, cos θob− sin θot, no (sin θob + cos θot))
= 0.

This means that ODγ is a developable surface. If γ is a regular curve, then we have
ODγ(I ×R) = ODγ(I ×R). This is the reason why we call ODγ the (generalized)
osculating developable surface of M along γ (cf. Definition 3.1.1).

We introduce an invariant σo of (M, γ) as follows:

σo(t) = α(t) sin θo(t) +
d
dt

(
α(t) cos θo(t)

no(t)

)
(when no(t) ̸= 0).

Then no(t) and σo(t) characterize contour generators of M as follows:

Theorem 3.2.2 Let (γ, b) : I → T1M be a Legendre curve with a spherical osculating
Darboux frontal curve do(t). Suppose that the set of regular points of nγ is dense in I.

(1) The following are equivalent:

(a) ODγ is a cylinder,

(b) no(t) ≡ 0,

(c) γ is a contour generator with respect to an orthogonal projection.

(2) If no(t) ̸= 0, then the following are equivalent:

(d) ODγ is a conical surface,

(e) σo(t) ≡ 0,

(f) γ is a contour generator with respect to a central projection.
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Proof. (1) By definition, ODγ is a cylinder if and only if do(t) is constant. Since
ḋo(t) = no(t)to(t), do(t) is constant if and only if no(t) ≡ 0. Therefore, (a) is equiv-
alent to (b). Suppose that (c) holds. Then there exists a vector k ∈ S2 such that
nγ(t) · k ≡ 0. Then there exist functions λ, µ : I → R such that k = λ(t)do(t) +
µ(r)to(t). Since ṅγ(t) · k ≡ 0 and the assumption, we have µ(t) ≡ 0, so that we
have k = ±do(t). Therefore, (a) holds. Conversely, suppose that (a) holds. Then we
choose k = do(t) ∈ S2. By definition of do(t), we have nγ(t) · k = nγ(t) · do(t) ≡ 0.
Therefore, (a) implies (c).

(2) We consider a striction curve σ(t) given by

σ(t) = γ(t)− α(t) cos θo(t)
no(t)

do(t).

Then (d) is equivalent to the condition that σ̇(t) ≡ 0. We can calculate that

σ̇ = αt− d
dt

(
α cos θo

no

)
do −

(
α cos θo

no

)
noto

= α (− sin θodo + cos θoto)−
d
dt

(
α cos θo

no

)
do − α cos θoto

= −
(

α sin θo +
d
dt

(
α cos θo

no

))
do

= −σdo.

It follows that (d) and (e) are equivalent. By the definition of the contour generator
with respect to a central projection, (f) means that there exists c ∈ R3 such that
(γ(t) − c) · nγ(t) ≡ 0. If (d) holds, then σ(t) is constant. For the constant point
c = σ(t) ∈ R3, we have

(γ(t)− c) · nγ(t) = (γ(t)− σ(t)) · nγ(t)

=

(
α(t) cos θo(t)

no(t)
do(t)

)
· nγ(t)

= 0.

This means that (f) holds. For the converse, by (f), there exists a point c ∈ R3

such that (γ(t) − c) · nγ(t) = 0. Taking the derivative of the both side, we have
0 = (γ(t) − c) · (mo(t)to(t)). Since the set of regular points of nγ is dense, there
exists a function λ : I → R such that γ(t) − c = λ(t)do(t). Taking the derivative
again, we have

0 = αmo cos θo + (γ− c) ·
(
−m2

onγ −monodo + ṁoto
)

= αmo cos θo + λdo ·
(
−m2

onγ −monodo + ṁoto
)

= mo (α cos θo − λno) .

Since the set of regular points of nγ is dense, α(t) cos θo(t)− λ(t)no(t) = 0. It follows
that

c = γ(t)− λ(t)do(t) = γ(t)− α(t) cos θo(t)
no(t)

do(t) = σ(t).

Therefore, σ(t) is constant, so that (iv) holds. This completes the proof. 2
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Corollary 3.2.3 The osculating developable surface ODγ is non-cylindrical if and only if
no(t) ̸= 0.

By the result of Theorem 3.2.2, two invariants no(t) and σo(t) might be related
to the singularities of osculating developable surfaces. Actually, we can character-
ize the singularities of osculating developable surfaces of M along curves by using
theses two invariants no(t) and σo(t).

Theorem 3.2.4 Let (γ, b) : I → T1M be a Legendre curve a with spherical osculating
Darboux frontal curve do(t). Then we have the following:

(1) (t0, u0) is a singular point of the osculating developable surface ODγ if and only if

α(t0) cos θo(t0) + u0no(t0) = 0.

(2) Suppose that (t0, u0) is a singular point of ODγ and mo(t0) ̸= 0.

(a) The osculating developable surface ODγ is A-equivalent to the cuspidal edge ce
at (t0, u0) if and only if

(a-i) no(t0) ̸= 0 and σo(t0) ̸= 0,

or

(a-ii) no(t0) = 0 and α̇(t0) cos θo(t0)− α(t0)n(t0) sin θo(t) + u0ṅo(t0) ̸= 0.

(b) The osculating developable surface ODγ is A-equivalent to the swallowtail sw
at (t0, u0) if and only if σo(t0) = 0 and no(t0)σ̇o(t0) ̸= 0.

(3) Suppose that (t0, u0) is a singular point of ODγ and mo(t0) = 0.

(c) The osculating developable surface ODγ is A-equivalent to the cuspidal cross
cap ccr at (t0, u0) if and only if no(t0) ̸= 0 and ṁo(t0)σo(t0) ̸= 0.

Proof. ODγ : I ×R→ R3 is a frontal with a unit normal vector field nγ. We remark
thatODγ : (I×R, (t0, u0))→ $3 is a wave front (not frontal) if and only if m(t0) ̸= 0.
We give a signed area density function λ : I ×R→ R by

λ(t, u) = det
(

∂ODγ

∂t
(t, u),

∂ODγ

∂u
(t, u), nγ(t)

)
= −α(t) cos θo(t)− uno(t).

This means that (1) holds.
Suppose that (t0, u0) is a non-degenerate singular point of ODγ, that is,

∂λ

∂t
(t0, u0) = −α̇(t0) cos θo(t0) + α(t0)θ̇o(t0) sin θo(t0)− u0ṅo(t0) ̸= 0

or
∂λ

∂u
(t0, u0) = −no(t0) ̸= 0.

(a-i) We consider the case when mo(t0) ̸= 0 and no(t0) ̸= 0. Then a singular curve
c : (I, t0)→ (I ×R, (t0, u0)) is given by

c(t) =
(

t,−α(t) cos θo(t)
no(t)

)
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and a null vector field η : (I, t0)→ R2 is given by

η(t) = (1, α(t) sin θo(t)).

By using the criterion for the cuspidal edge, the osculating developable surfaceODγ

is A-equivalent to the cuspidal edge ce at (t0, u0) if and only if

det(ċ(t0), η(t0)) = α(t0) sin θo(t0) +
d
dt

(
α cos θo

no

)
(t0) = σo(t0) ̸= 0.

Therefore, (a-i) holds.
(a-ii) We consider the case when mo(t0) ̸= 0, no(t0) = 0 and

−α̇(t0) cos θo(t0) + α(t0)θ̇o(t0) sin θo(t0)− u0ṅo(t0) ̸= 0.

Then there exists ϕ : (R, u0)→ (I, t0) such that λ(ϕ(u), u) = 0 and

dϕ

du
(u) = − λu(t, u)

λt(t, u)

∣∣∣∣
t=ϕ(u)

.

Accordingly, we have a singular curve c(u) = (ϕ(u), u) and a null vector field

η(u) = (1, α(ϕ(u)) sin θo(ϕ(u))).

Since

det
(

dc
du

(u0), η(u0)

)
= det

(
0 1
1 ∗

)
= −1 ̸= 0,

the osculating developable surfaceODγ is alwaysA-equivalent to the cuspidal edge
ce at (t0, u0) under the assumption.

(2)-(b) By the proof of (a-ii), it is enough to consider in the same assumption as
(a-i). By using the criterion of the swallowtail, the osculating developable surface
ODγ is A-equivalent to the swallowtail sw at (t0, u0) if and only if

det(ċ(t0), η(t0)) = σo(t0) = 0 and
d det(ċ, η)

dt
(t0) = σ̇o(t0) ̸= 0.

Therefore, (2)-(b) holds.
(3) We consider the case when mo(t0) = 0 and no(t0) ̸= 0. (3) can be proven using

the criterion for the cuspidal cross cap ccr (cf. Theorem 2.1.6). For ĉ(t) = ODγ(c(t)),
we consider a function

Φ(t) = det
( ˙̂c(t), nγ(t), dnγ(η(t))

)
= mo(t)σo(t).

By using the criterion of the cuspidal cross cap, the osculating developable surface
ODγ is A-equivalent to the cuspidal cross cap ccr at (t0, u0) if and only if σo(t0) ̸= 0
and ṁo(t) ̸= 0. On the other hand, in the case when no(t0) = 0, the osculating devel-
opable surface ODγ is never A-equivalent to the cuspidal cross cap ccr at (t0, u0).
This completes the proof. 2

Theorem 3.2.4, (3)-(c) occurs when we consider frontal curves on embedded sur-
faces. In other words, we have the following corollary.

Corollary 3.2.5 For a regular curve γ : I → M ⊂ R3, the osculating developable surface
ODγ is never A-equivalent to the cuspidal cross cap ccr.
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We consider the case when the surface itself is a developable surface where the
curve is located on.

Proposition 3.2.6 Suppose that the developable surface M is the image of

F(c,ξ)(s, u) = c(s) + uξ(s)

and γ : I → M is a frontal curve in the regular part of M, where c(s) is the base curve
and ξ(s) is the director curve. Then (nγ, ξ) : I → V3,2 is a spherical Legendre curve and
ODγ(I ×R) ⊂ M, where ξ(t) = ξ(s(t))/|ξ(s(t))|.

Proof. By the assumption, we have det(c′(s), ξ(s), ξ′(s)) = 0. We now consider a
curve on M parametrized by

γ(t) = c(s(t)) + u(t)ξ(s(t)),

where t is a parameter of γ. Since

∂F(c,ξ)

∂s
(s, u) = c′(s) + uξ′(s),

∂F(c,ξ)

∂u
(s, u) = ξ(s),

the unit normal vector along γ is

nγ(t) =
1

l(t)
((

c′(s(t)) + u(t)ξ′(s(t))
)
× ξ(s(t))

)
=

1
l(t)

((
c′(s(t))× ξ(s(t))

)
+ u(t)

(
ξ′(s(t))× ξ(s(t))

))
,

where

l(t) =
∣∣∣∣∂F(c,ξ)

∂s
(s(t), u(t))×

∂F(c,ξ)

∂u
(s(t), u(t))

∣∣∣∣ .

We can also calculate that

ṅγ =
ṡ
l
(
c′′ × ξ + c′ × ξ′

)
− l̇

l2

(
c′ × ξ

)
+

ṡu
l
(
ξ′′ × ξ

)
+

u̇l − ul̇
l2

(
ξ′ × ξ

)
,

so that we have nγ(t) · ξ(t) = 0 and ṅγ(t) · ξ(t) = 0, where ξ(t) = ξ(s(t))/|ξ(s(t))|.
Therefore, (nγ, ξ) : I → V3,2 is a spherical Legendre curve and we have ODγ(t, v) =
γ(t) + vξ(t). This means that ODγ(I ×R) ⊂ M. 2

3.3 Normal developable surfaces

In this section, we introduce the normal developable surface along a frontal curve
on an embedded surface. Let (γ, b) : I → T1M be a Legendre curve with a spherical
rectifying Darboux frontal curve dr(t).

Definition 3.3.1 We define a mapping NDγ : I ×R→ R3 by

NDγ(t, u) = γ(t) + udr(t).

We call NDγ a (generalized) normal developable surface of M along γ.
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The normal developable surface NDγ is a ruled surface and we have

det
(
γ̇, dr, ḋr

)
= det (αt, dr, nrtr)

= det (αt, cos θrt− sin θrnγ, nr (sin θrt + cos θrnγ))

= 0.

This means that NDγ(I ×R) is a developable surface. If γ is a regular curve, then
we have NDγ(I × R) = NDγ(I × R). This is the reason why we call NDγ the
(generalized) normal developable surface of M along γ.

We introduce an invariant σr of (M, γ) as follows:

σr(t) = α(t) cos θr(t)−
d
dt

(
α(t) sin θr(t)

nr(t)

)
(when nr(t) ̸= 0).

Then nr(t) and σr(t) characterize cylindrical surfaces and conical surfaces. By the
same method of Theorem 3.2.2, we have the following proposition.

Proposition 3.3.2 Let (γ, b) : I → T1M be a Legendre curve with spherical rectifying
Darboux frontal curve dr(t). Then we have the following:

(A) The following are equivalent:

(i) NDγ is a cylinder,

(ii) nr(t) ≡ 0.

(B) If nr(t) ̸= 0, then the following are equivalent:

(iii) NDγ is a conical surface,

(iv) σr(t) ≡ 0.

Corollary 3.3.3 The normal developable surface NDγ is non-cylindrical if and only if
nr(t) ̸= 0.

By the result of Proposition 3.3.2, two invariants nr(t) and σr(t) might be related to
the singularities of normal developable surfaces. Actually, we can characterize the
singularities of normal developable surfaces of M along curves by using theses two
invariants nr(t) and σr(t).

Theorem 3.3.4 Let (γ, b) : I → T1M be a Legendre curve with spherical rectifying Dar-
boux frontal curve dr(t). Then we have the following:

(1) (t0, u0) is a singular point of the normal developable surface NDγ if and only if

α(t0) sin θr(t0) + u0nr(t0) = 0.

(2) Suppose that (t0, u0) is a singular point of NDγ and mr(t0) ̸= 0.

(a) The normal developable surface NDγ is A-equivalent to the cuspidal edge ce at
(t0, u0) if and only if

(a-i) nr(t0) ̸= 0 and σr(t0) ̸= 0,

or

(a-ii) nr(t0) = 0 and α̇(t0) sin θr(t0)− α(t0)m(t0) cos θ(t0) + uṅr(t0) ̸= 0.
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(b) The normal developable surface NDγ is A-equivalent to the swallowtail sw at
(t0, u0) if and only if nr(t0) ̸= 0, σr(t0) = 0 and σ̇r(t0) ̸= 0.

(3) Suppose that (t0, u0) is a singular point of NDγ and mr(t0) = 0.

(c) The normal developable surface NDγ is A-equivalent to the cuspidal cross cap
ccr at (t0, u0) if and only if nr(t0) ̸= 0 and ṁr(t0)σr(t0) ̸= 0.

Remark 3.3.5 In order the normal developable surface NDγ to be A-equivalent to
the cuspidal cross cap ccr, b needs to have a singular point. Therefore, the general-
ization to spherical frontal is necessary different from the regular case (cf. [18]).

3.4 Examples

We give some examples of osculating developable surfaces and normal developable
surfaces along frontal curves on embedded surfaces.

Example 3.4.1 Let X : R2 → R3 be X(u, v) = (u, v, u2 + (u2− v3)2), and let γ : R→
R2 be γ(t) = (t3, t2). The unit normal vector field n is given by

n(u, v) =
1

f (u, v)
(−2u− 4u(u2 − v3), 6v2(u2 − v3), 1),

where f (u, v) =
√

1 + (2u + 4u(u2 − v3))2 + (6v2(u2 − v3))2. Then (γ, b) : I →
T1M;

γ(t) = X ◦ γ(t) = (t3, t2, t6),

ν(t) =
1√

(1 + 4t6)(4 + 9t2 + 36t8)
(2,−3t− 12t7, 4t3).

is a Legendre immersion. By straightforward calculations, we have

nγ(t) =
1√

1 + 4t6
(−2t3, 0, 1), t(t) =

1√
4 + 9t2 + 36t8

(3t, 2, 6t4),

ℓ(t) =
−12t3

(1 + 4t6)
√

4 + 9t2 + 36t8
, m(t) =

−18t3√
(1 + 4t6)(4 + 9t2 + 36t8)

,

n(t) =
−6− 96t6

(4 + 9t2 + 36t8)
√

1 + 4t6
.

We can easily check that do(t) = (0, 1, 0) is the spherical Darboux vector field, so
that the osculating developable surface ODγ : R2 → R3 is given by

ODγ(t, u) = γ(t) + udo(t) = (t3, t2 + u, t6).

Then we can also calculate that

to(t) =
1√

1 + 4t6
(−1, 0,−2t3), mo(t) =

−6t2

1 + 4t6 , no(t) = 0.

By Theorem 3.2.2-(1) and no(t) ≡ 0,ODγ is a cylinder and γ is the contour generator
with respect to the orthogonal projection with direction do(t). We remark that the
apparent contour has regular parameterizations. However, the contour generator γ
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has 3/2-cusp at t = 0. We cannot recognize singularities of the contour generator
from the image of the apparent contour. We draw the pictures of X, γ and ODγ in
Figure 3.1.

FIGURE 3.1: Figures of Example 3.4.1 (Left to right: (X, γ), (ODγ, γ)
and (X,ODγ, γ)).

Example 3.4.2 Let X : R2\{0} → R3 be X(u, v) = (u, v,
√

u2 + v2 +(u2 +(v+ 1)3)2)
and let γ : R→ R2 be γ(t) = (t3,−1− t2). Then we have

γ(t) = (t3,−1− t2,
√

1 + 2t2 + t4 + t6),

nγ(t) =
1√
2

(
−t3

√
1 + 2t2 + t4 + t6

,
1 + t2

√
1 + 2t2 + t4 + t6

, 1
)

and (γ, b) : I → T1M is a Legendre immersion, where

b(t) =
1

f (t)

(
−4 + 8t2 + 7t4 + 5t6
√

1 + 2t2 + t4 + t6
,−3t + 8t3 + 5t5 + 6t7
√

1 + 2t2 + t4 + t6
, 3t + t3

)
,

and f (t) =
√

16 + 50t2 + 76t4 + 50t6 + 36t8. By straightforward calculations, we
have

ℓ(t) =
6t2 + 8t4 + 11t6 + 3t8

(1 + 2t2 + t4 + t6)
√

8 + 25t2 + 38t4 + 25t6 + 18t8
,

m(t) = − 9t3 + 6t5 + t7

(1 + 2t2 + t4 + t6)
√

16 + 50t2 + 76t4 + 50t6 + 36t8
,

n(t) =
12 + 48t2 + 45t4 + 45t6 + 51t8 + 23t10 + 12t12

(1 + 2t2 + t4 + t6)(8 + 25t2 + 38t4 + 25t6 + 18t8)
√

2

and

α(t) = t

√
8 + 25t2 + 38t4 + 25t6 + 18t8

1 + 2t2 + t4 + t6 .

We can easily check that the spherical Darboux vector field is given by

do(t) =
1√
2

(
−t3

√
1 + 2t2 + t4 + t6

,
1 + t2

√
1 + 2t2 + t4 + t6

,−1
)

,

so that we have the osculating developable surfaceODγ(t, u) = γ(t) + udo(t). Then
we can also calculate that

mo(t) =
3t2 + t4

(1 + 2t2 + t4 + t6)
√

2
, no(t) =

3t2 + t4

(1 + 2t2 + t4 + t6)
√

2
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and σo(t) = 0 (when t ̸= 0). By Theorem 3.2.2-(2), ODγ is a conical surface away
from t = 0. On the other hand, ODγ is characterized as cylinder at t = 0. However,
ODγ(R × R) has a parametrization as conical surface. Properties of developable
surfaces are intricate when base curves have singular points. We draw pictures of
X, γ and ODγ in Figure 3.2.

FIGURE 3.2: Figures of Example 3.4.2 (Left to right: (X, γ), (ODγ, γ)
and (X,ODγ, γ)).

Example 3.4.3 Let X : R2 → R3 be X(u, v) = (u, v, u2 + (3/2)v2), and let γ : R →
R2 be γ(t) = (t2/2, t3/2). Then we have

γ(t) =
(

1
2

t2,
1
3

t3,
1
4

t4 +
1
6

t6
)

, nγ(t) =
1√

1 + t4 + t6
(−t2,−t3, 1)

and (γ, b) : I → T1M is a Legendre immersion, where

b(t) =
1√

1 + t2
(t,−1, 0).

By straightforward calculation, we have

ℓ(t) =
t2√

(1 + t2)(1 + t4 + t6)
, m(t) = − t(2 + 3t2)

(1 + t4 + t6)
√

1 + t2
,

n(t) =
1

(1 + t2)
√

1 + t4 + t6
, α(t) = t

√
(1 + t2)(1 + t4 + t6).

We can easily check that the spherical Darboux vector field is given by

do(t) =
1√

4 + 9t2 + t6
(−3t, 2,−t3),

so that we have the osculating developable surfaceODγ(t, u) = γ(t) + udo(t). Then
we can also calculate that

mo(t) =
t
√

4 + 9t2 + t6

1 + t4 + t6 , no(t) =
6
√

1 + t4 + t6

4 + 9t2 + t6

and σo(t) ̸= 0. By Theorem 3.2.4 (3)-(c), the osculating developable surface ODγ is
A-equivalent to the cuspidal cross cap ccr at (0, 0). We draw pictures of X, γ and
ODγ in Figure 3.3.
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FIGURE 3.3: Figures of Example 3.4.4 (Left to right: (X, γ), (ODγ, γ)
and (X,ODγ, γ)).

Example 3.4.4 Let X : R2 → R3 be X(u, v) = (u/2, v/3, u2/4) and let γ : R → R2

be γ(t) = (t2, t3). Then we have

γ(t) =
(

1
2

t2,
1
3

t3,
1
4

t4
)

, nγ(t) =
1√

1 + t4

(
−t2, 0, 1

)
and (γ, b) : I → T1M is a Legendre immersion, where

b(t) =
1√

(1 + t4)(1 + t2 + t4)

(
t,−1− t4, t3

)
.

By straightforward calculations, we have

ℓ(t) =
−2t2

(1 + t4)
√

1 + t2 + t4
, m(t) =

−2t√
(1 + t4)(1 + t2 + t4)

,

n(t) =
1− t4

(1 + t2 + t4)
√

1 + t4
, α(t) = t

√
1 + t2 + t4.

We can easily check that the spherical Darboux vector field is given by do(t) =
(0, 1, 0). By Theorem 3.2.6, ODγ(R × R) ⊂ X(R × R). On the other hand, the
spherical rectifying Darboux vector field is given by

dr(t) =
1

f (t)

(
3t2 + 3t4 + 5t6 + 2t8 + t10 − t12 − t14,

2t2 + 2t5 + 4t7 + 2t9 + 3t11,

−1− t2 + t4 + 2t6 + 5t8 + 3t10 + 3t12
)

,

where f (t) = (1+ t2 + 2t4 + t6 + t8)
√

1 + 3t4 + 4t6 + 3t8 + t12. We can also calculate
that mr(t) =

1+3t4+4t6+3t8+t12√
(1+t2+2t4+t6+t8)(1+t2+5t4+8t6+14t8+14t10+14t12+8t14+5t16+t18+t20)

and nr(t) =

6t+6t3+18t5+12t7+18t9+6t11+6t13√
(1+3t4+4t6+3t8+t12)(1+t2+5t4+8t6+14t8+14t10+14t12+8t14+5t16+t18+t20)

.

By Theorem 3.3.4, (2)-(b) and nr(0) = 0, λt(0, u) = 1 + 6u0, the normal developable
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surface NDγ is A-equivalent to the cuspidal edge ce at (0, u) away from u ̸= 1/6.
We draw pictures of X, γ, ODγ and NDγ in Figure 3.4.

FIGURE 3.4: Figures of Example 3.4.4 (Left to right: (X, γ), (ODγ, γ)
and (NDγ, γ)).
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Chapter 4

Spherical framed curves and
extrinsic flat great circular surfaces

In this chapter we investigate a special class of surfaces in the 3-sphere which are
called extrinsic flat great circular surfaces.

4.1 Preliminaries

We briefly review notions and basic properties of Great circular surfaces and Ex-
trinsic flat great circular surfaces in [27]. Let (a0, a1, a2, a3) : I → SO(4) be a C∞-
mapping. By standard arguments, we have the following fundamental differential
equations:

ȧ0(t)
ȧ1(t)
ȧ2(t)
ȧ3(t)

 =


0 c1(t) c2(t) c3(t)

−c1(t) 0 c4(t) c5(t)
−c2(t) −c4(t) 0 c6(t)
−c3(t) −c5(t) −c6(t) 0




a0(t)
a1(t)
a2(t)
a3(t)

 ,

where

c1(t) = ȧ0(t) · a1(t) = −a0(t) · ȧ1(t), c2(t) = ȧ0(t) · a2(t) = −a0(t) · ȧ2(t),
c3(t) = ȧ0(t) · a3(t) = −a0(t) · ȧ3(t), c4(t) = ȧ1(t) · a2(t) = −a1(t) · ȧ2(t),
c5(t) = ȧ1(t) · a3(t) = −a1(t) · ȧ3(t), c6(t) = ȧ2(t) · a3(t) = −a2(t) · ȧ3(t).

We define a mapping FA : I × [0, 2π)→ S3 by

FA(t, θ) = cos θa1(t) + sin θa3(t).

We call FA a great circular surface, the mapping a1 a base curve and the mapping a3
a directrix. The great circle defined by cos θa1(t0) + sin θa3(t0) for a fixed t0 ∈ I is
called a generating great circle. We call the great circular surface with vanishing the
extrinsic Gaussian curvature on the regular part an extrinsic flat great circular surface
(briefly, we call an E-flat great circular surface). It is known that a great circular surface
FA(t, θ) is E-flat if and only if

c1(t)c6(t) + c3(t)c4(t) = 0. (4.1)

If (c1(t0), c3(t0), c4(t0), c6(t0)) = (0, 0, 0, 0), then all points on the great circle
FA(θ, t0) are the singularities. We say that FA is non-cyclic if

(c1(t), c3(t), c4(t), c6(t)) ̸= (0, 0, 0, 0) for all t ∈ I. (4.2)
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In [27], they showed the following criteria:

Theorem 4.1.1 ( [27]) Suppose that c1 ≡ c3 ≡ c4 ≡ 0, c6(t0) ̸= 0 and p0 = (θ0, t0) ∈
S(FA).

(1) FA at p0 is A-equivalent to the cudpidal edge if and only if c2(t0)c5(t0) ̸= 0.

(2) FA at p0 is A-equivalent to the swallowtail if and only if c5(t0) = 0 and c2(t0)ċ5(t0) ̸=
0.

(3) FA at p0 isA-equivalent to the cuspidal cross cap if and only if c2(t0) = 0 and c5(t0)ċ2(t0) ̸=
0.

On the other hand, we briefly review the spherical duality from the view point
of contact geometry. We now consider the following double fibrations over S3:

∆ = {(v, w) ∈ S3 × S3 | v ·w = 0},
π1 : ∆ ∋ (v, w) 7→ v ∈ S3, π2 : ∆ ∋ (v, w) 7→ w ∈ S3,
θ1 = dv ·w|∆, θ2 = v · dw|∆.

Here, dv ·w = ∑4
i=4 widvi and v · dw = ∑4

i=4 vidwi. By d(v ·w) = dv ·w + v · dw
and v · w = 0 on ∆, θ−1

1 (0) and θ−1
2 (0) define the same tangent hyperplane field

over ∆ which is denoted by K. Then (∆, K) is a contact manifold and both of πi are
Legendrian fibrations (cf. [27]).

We say that a C∞-mapping L : U → ∆ is an isotropic mapping if L∗θi = 0
(i = 1 or 2). We remark that the isotropic mapping is Legendrian immersion if it
is an immersion. If we have an isotropic mapping L : U → ∆, then we say that
π1 ◦ L(U) and π2 ◦ L(U) are ∆-dual to each other.

We consider the ∆-dual surface to the locus of singular values of FA under the
assumption that c1 ≡ c3 ≡ c4 = 0. By straightforward calculations, the singular
value of FA is a1(t). We consider a great circular surface defined by

F♯
A(t, θ) = cos θa0(t) + sin θa2(t).

Then we have the following diagram and criteria:

FA
taking singular value−−−−−−−−−−−→ a1

∆−dual

x y∆−dual

a0 ←−−−−−−−−−−−
taking singular value

F♯
A

Theorem 4.1.2 ( [27]) Suppose that c1 ≡ c3 ≡ c4 ≡ 0, c6(t0) ̸= 0 and p0 = (θ0, t0) ∈
S(FA).

(1) FA at p0 is A-equivalent to the cudpidal edge if and only if c2(t0)c5(t0) ̸= 0.

(2) FA at p0 is A-equivalent to the swallowtail if and only if c2(t0) = 0 and c5(t0)ċ2(t0) ̸=
0.

(3) FA at p0 isA-equivalent to the cuspidal cross cap if and only if c5(t0) = 0 and c2(t0)ċ5(t0) ̸=
0.
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We now briefly review the differential geometry on regular curves in S3. Let
γ : I → S3 be a regular curve. Then we can reparameterize γ by the arc-length.
Hence, we may assume that γ(s) is a unit speed curve. So we have the unit tangent
vector t(s) = γ′(s). In the case when t′(s) · t′(s) ̸= 1, we have a unit vector n(s) =
(t′(s) + γ(s))/(∥t′(s) + γ(s)∥). Moreover, define e(t) = γ(t)× t(t)× n(t), then we
have an orthonormal frame {γ(t), t(t), n(t), e(t)} of R4 along γ(t), which called the
Frenet frame along γ(t). By standard arguments, we have the following Frenet-Serret
type formula:

γ̇(t)
ṫ(t)
ṅ(t)
ė(t)

 =


0 1 0 0
−1 0 κg(s) 0
0 −κg(s) 0 τg(s)
0 0 −τg(s) 0




γ(t)
t(t)
n(t)
e(t)

 ,

where

κg(t) = ∥t′(s) + γ(s)∥ and τg(t) = −
det (γ(s), γ′(s), γ′′(s), γ′′′(s))

κ2
g(s)

.

The condition ṫ(t) · ṫ(t) ̸= 1 is equivalent to the condition κg(t) ̸= 0. It is known
that γ(t) is a great circle (i.e., the geodesic) if and only if κg(t) ≡ 0.

Let γ : I → S3 be a unit speed curve with κg(s) ̸= 0. We review 2-types of E-flat
great circular surfaces associated with the Frenet frame as follows:

(1) FT(s, θ) = cos θγ(s) + sin θt(s): the tangent E-flat great circular surface (cf. [27]),

(2) DSγ(s, θ) = cos θn(s) + sin θb(s): the dual E-flat great circular surface.

We cannot construct the Frenet frame at singular points of γ : I → S3. In the fol-
lowing section we would like to consider spherical curves which may have singular
points.

4.2 Spherical framed curves

Definition 4.2.1 We say that (γ, n1, n2) : I → V4,3 is a spherical framed curve if γ̇(t) ·
n1(t) = 0 and γ̇(t) · n2(t) = 0 for all t ∈ I. Moreover, if (γ, n1, n2) is an immersion,
we call a spherical framed immersion.

Definition 4.2.2 We say that γ : I → S3 is a spherical framed base curve if there exists
(n1, n2) : I → ∆ such that (γ, n1, n2) : I → V4,3 is a spherical framed curve.

We define t(t) = γ(t)× n1(t)× n2(t). Then we have an orthonormal frame {γ(t),
n1(t), n2(t), t(t)} of R4 along γ(t). By standard arguments, we have the following
Frenet-Serret type formula:

Proposition 4.2.3 Let (γ, n1, n2) : I → V4,3 be a spherical framed curve. Then we have
γ̇(t)
ṅ1(t)
ṅ2(t)
ṫ(t)

 =


0 0 0 α(t)
0 0 ℓ(t) m(t)
0 −ℓ(t) 0 n(t)
−α(t) −m(t) −n(t) 0




γ(t)
n1(t)
n2(t)
t(t)

 ,

where α(t) = γ̇(t) · t(t), ℓ(t) = ṅ1(t) · n2(t), m(t) = ṅ1(t) · t(t) and n(t) = ṅ2(t) · t(t).
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We call the mapping (α, ℓ, m, n) : I → R4 a curvature of the spherical framed curve
(γ, n1, n2). Note that t0 is a singular point of γ if and only if α(t0) = 0.

Definition 4.2.4 Let (γ, n1, n2), (γ̃, ñ1, ñ2) : I → V4,3 be spherical framed curves. We
say that (γ, n1, n2) and (γ̃, ñ1, ñ2) are congruent as spherical framed curves if there exists
a special orthogonal matrix A ∈ SO(4) such that

γ̃(t) = A(γ(t)), ñ1(t) = A(n1(t)) and ñ2(t) = A(n2(t))

for all t ∈ I.

As a special case of framed curves, we have the following existence theorem and
the uniqueness theorem (cf. [22]).

Theorem 4.2.5 (The existence theorem) For a smooth mapping (α, ℓ, m, n) : I → R4,
there exists a spherical framed curve (γ, n1, n2) whose associated curvature is (α, ℓ, m, n).

Theorem 4.2.6 (The uniqueness theorem) Let (γ, n1, n2) and (γ̃, ñ1, ñ2) be spherical
framed curves whose curvatures (α, ℓ, m, n) and (α̃, ℓ̃, m̃, ñ) coincide. Then (γ, n1, n2) and
(γ̃, ñ1, ñ2) are congruent as spherical framed curves.

Example 4.2.7 A regular curve is a typical example of a spherical framed curve. Let
γ : I → S3 be a unit speed curve with κg(s) ̸= 0. If we take n1(s) = n(s) and n1(s) =
e(s), then (γ, n1, n2) : I → V4,3 is a spherical framed curve. By a straightforward
calculation, we have

t(s) = t(s), α(s) = 1, ℓ(s) = τg(s), m(s) = −κg(s) and n(t) = 0.

Let (γ, n1, n2) : I → V4,3 be a spherical framed curve. We define (b1(t), b2(t)) ∈ ∆
by

b1(t) = cos θ(t)ν1(t)− sin θ(t)ν2(t), b2(t) = sin θ(t)ν1(t) + cos θ(t)ν2(t),

where θ(t) is a smooth function. Then (γ, b1, b2) : I → V4,3 is also a spherical framed
curve and

tb(t) = γ(t)× b1(t)× b2(t) = t(t).

We call {γ(t), b1(t), b2(t), tb(t)} a rotated frame along γ(t) by θ(t). If we take a
smooth function θ(t) which satisfies θ̇(t) = ℓ(t), then we call {γ(t), b1(t), b2(t), tb(t)}
a Bishop type frame along γ(t) (cf. [3]). It follows that the Frenet-Serret type formula
is given by

γ̇(t)
ḃ1(t)
ḃ2(t)
ṫb(t)

 =


0 0 0 α(t)
0 0 0 m̃(t)
0 0 0 ñ(t)
−α(t) −m̃(t) −ñ(t) 0




γ(t)
b1(t)
b2(t)
tb(t)

 ,

where

m̃(t) = cos θ(t)m(t)− sin θ(t)n(t), ñ(t) = sin θ(t)m(t) + cos θ(t)n(t).

On the other hand, we define ( f1, f2) ∈ ∆ by

f1(t) =
n(t)n1(t)−m(t)n2(t)√

m2(t) + n2(t)
, f2(t) =

m(t)n1(t) + n(t)n2(t)√
m2(t) + n2(t)
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under the condition m2(t) + n2(t) ̸= 0 for all t ∈ I. Then (γ, f1, f2) : I → V4,3 is a
spherical framed immersion and

t f (t) = γ(t)× f1(t)× f2(t) = t(t).

We call {γ(t), f1(t), f2(t), t f (t)} a Frenet type frame along γ(t). Then the Frenet-Serret
type formula is given by

γ̇(t)
ḟ1(t)
ḟ2(t)
ṫn(t)

 =


0 0 0 α(t)
0 0 ℓ(t) 0
0 −ℓ(t) 0 n(t)
−α(t) 0 −n(t) 0




γ(t)
f1(t)
f2(t)
tn(t)

 ,

where

ℓ(t) = ℓ(t) +
m(t)ṅ(t)− ṁ(t)n(t)

m2(t) + n2(t)
, n(t) =

√
m2(t) + n2(t).

4.3 Dual surfaces and tangent great circular surfaces

In this section, we consider dual surface of spherical framed curve. Let (γ, n1, n2) :
I → V4,3 be a spherical framed curve. We define a map DSγ : I × [0, 2π)→ S3 by

DSγ(t, θ) = cos θn1(t) + sin θn2(t).

We call DSγ a dual surface of γ(t). This is a great circular surface of (γ, n1,−t, n2) :
I → SO(4) and we have

γ̇(t)
ṅ1(t)
−ṫ(t)
ṅ2(t)

 =


0 0 −α(t) 0
0 0 −m(t) ℓ(t)

α(t) m(t) 0 n(t)
0 −ℓ(t) −n(t) 0




γ(t)
n1(t)
−t(t)
n2(t)

 .

By the condition (4.1), DSγ is an E-flat great circular surface.

Remark 4.3.1 In the same situation as in Example 4.2.7, we considerDSγ of (γ, ν1, ν2).
Then DSγ(s, θ) = cos θn(s) + sin θb(s) = DSγ(s, θ). Thus, DSγ is a generalization
of DSγ.

Remark 4.3.2 DSγ is non-cyclic if and only if m2(t) + n2(t) ̸= 0 for all t ∈ I.

Hereinafter, we consider a non-cyclic dual surface of γ(t) only, that is, we assume
that m2(t) + n2(t) ̸= 0 for all t ∈ I. For simplicity, we consider a spherical framed
immersion by the Frenet type frame. Let (γ, f1, f2) : I → V4,3 be a spherical framed
immersion with the Frenet type frame {γ(t), f1(t), f2(t), t f (t)}. Then the singular
points of DSγ are (t, 0) and (t, π) so that the singular value of DSγ is ±n1(t).

Proposition 4.3.3 (± f1, γ, t f ) : I → V4,3 is a spherical framed immersion.

Proof. We can easily check that (± f1(t), γ(t), t f (t)) ∈ V4,3. By the Frenet-Serret type
formula, we have

± ḟ1(t) · γ(t) = ℓ(t) f2(t) · γ(t) = 0

and
± ḟ1(t) · tn(t) = ℓ(t) f2(t) · t f (t) = 0.
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Therefore (± f1, γ, t f ) is a spherical framed immersion. 2

Since Proposition 4.3.3, we can take the dual surface of ± f1(t). It is given by

Ft(t, θ) = DS f1(t, θ) = cos θγ(t) + sin θt(t).

Ft corresponds to the E-flat tangent great circular surface in [27], so that we call Ft
the E-flat tangent great circular surface of γ(t). Since ∆-duality, we have the following
diagram:

DSγ
taking singular value−−−−−−−−−−−→ ± f1

∆−dual

x y∆−dual

(±)γ ←−−−−−−−−−−−
taking singular value

Ft

By using the criterion in [27], we have the following propositions.

Proposition 4.3.4 Suppose that (t0, θ0) ∈ S(DSγ). Then we have the following:

(i) DSγ at (t0, θ0) is A-equivalent to the cuspidal edge if and only if α(t0)ℓ(t0) ̸= 0.

(ii) DSγ at (t0, θ0) is A-equivalent to the swallowtail if and only if ℓ(t0) ̸= 0 and
α(t0)ℓ̇(t0) ̸= 0.

(iii) DSγ at (t0, θ0) is A-equivalent to the cuspidal cross cap if and only if α(t0) = 0 and
α̇(t0)ℓ(t0) ̸= 0.

Proof. In this case, we consider the orthonormal frame {γ(t), f1(t),−t(t), f2(t)} ∈
SO(4). By the Frenet-Serret type formula, we have

γ̇(t)
ḟ1(t)
−ṫ(t)
ḟ2(t)

 =


0 0 α(t) 0
0 0 0 ℓ(t)

α(t) 0 0 n(t)
0 −ℓ(t) −n(t) 0




γ(t)
f1(t)
−t(t)
f2(t)

 .

By criteria (cf. Theorem 4.1.1 and [27]), we have the assertion. 2

Proposition 4.3.5 Suppose that (t0, θ0) ∈ S(Ft). Then we have the following:

(i) Ft at (t0, θ0) is A-equivalent to the cuspidal edge if and only if α(t0)ℓ(t0) ̸= 0.

(ii) Ft at (t0, θ0) isA-equivalent to the swallowtail if and only if α(t0) = 0 and α̇(t0)ℓ(t0) ̸=
0.

(iii) Ft at (t0, θ0) is A-equivalent to the cuspidal cross cap if and only if ℓ(t0) ̸= 0 and
α(t0)ℓ̇(t0) ̸= 0.

Remark 4.3.6 For a regular spherical curve γ : I → S3, Proposition 4.3.4-(iii) and
4.3.5-(ii) doesn’t occur.

4.4 Focal great circular surfaces and evolutes

In this section, we consider E-flat focal great circular surfaces and evolutes of spher-
ical framed immersion. Let (γ, f1, f2) : I → V4,3 be a spherical framed immersion
with ℓ(t) ̸= 0, where {γ(t), f1(t), f2(t), t f (t)} is the Frenet type frame.
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Proposition 4.4.1 (t, ζ, f1) : I → V4,3 is a framed curve, where

ζ(t) =
n(t)γ(t)− α(t)n2(t)√

α2(t) + n2(t)
.

Proof. By a direct calculation, we have t(t) · t(t) = ζ(t) · ζ(t) = f1(t) · f1(t) = 1 and
t · ζ(t) = t · f1(t) = ζ(t) · f1(t). We can also calculate that

ṫ(t) · ζ(t) = (−α(t)γ(t)− n(t) f2(t)) ·
n(t)γ(t)− α(t)n2(t)√

α2(t) + f
2
(t)

= 0

and
ṫ(t) · f1(t) = (−α(t)γ(t)− n(t) f2(t)) · f1(t) = 0.

Therefore (t, ζ, f1) : I → V4,3 is a framed curve. 2

Remark 4.4.2 µn(t) is a regular spherical curve.

We define a mapping FSγ : I × [0, 2π)→ S3 by

FSγ(t, θ) = DSµ(t, θ) = cos θζ(t) + sin θ f1(t).

We call FSγ the E-flat focal great circular surface. By a direct calculation, (t0, θ0) is a
singular point of FSγ if and only if

α(t0)ṅ(t0)− α̇(t0)n(t0)√
α2(t0) + n2(t0)

cos θ0 + ℓ(t0)n(t0) sin θ0 = 0,

so that the singular value of FSγ is

E±γ (t) =
±ℓ(t)n2(t)γ(t)∓

(
α(t)ṅ(t)− α̇(t)n(t)

)
f1(t)∓ α(t)ℓ(t)n(t) f2(t)√

ℓ
2
(t)n4(t) +

(
α(t)ṅ(t)− α̇(t)n(t)

)2
+ α2(t)ℓ

2
(t)n2(t)

.

We call E±γ an evolute of γ.

Proposition 4.4.3 (E±γ , η, µ) : I → V4,3 is a spherical framed curve, where

η(t) =
α(t)γ(t) + n(t) f2(t)√

α2(t) + n2(t)

The focal E-frat great circular surface and the evolute of γ is given by t(t), so that
we have the following proposition.

Proposition 4.4.4 We have the following:

(i) FSγ(t, θ) = FSb1(t, θ) = FSb2(t, θ),

(ii) Eγ(t) = Eb1(t) = Eb2(t),

where {γ(t), b1(t), b2(t), µb(t)} is the Bishop type frame.
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Since Proposition 4.4.3, we can take the dual surface of E±γ (t). It is given by

DSE±γ (t, θ) = cos θη(t) + sin θt(t).

Since ∆-duality, we have the following diagram:

FSγ
taking singular value−−−−−−−−−−−→ E±γ

∆−dual

x y∆−dual

(±)t ←−−−−−−−−−−−
taking singular value

DSE±γ

We introduce two functions θ(t), σ(t) as follow:

θ(t) = arctan

 α(t)ṅ(t)− α̇(t)n(t)

ℓ(t)n(t)
√

α2(t) + n2(t)

 and σ(t) = −

 α(t)ℓ(t)√
α2(t) + n2(t)

+ θ̇(t)

 .

Theorem 4.4.5 Suppose that (t0, θ0) ∈ S(FSγ). Then we have the following:

(i) FSγ at (t0, θ0) is A-equivalent to the cuspidal edge if and only if σ(t0) ̸= 0,

(ii) FSγ at (t0, θ0) isA-equivalent to the swallowtail if and only if σ(t0) = 0 and σ̇(t0) ̸=
0,

(iii) The cuspidal cross cap doesn’t appear.

Theorem 4.4.6 Suppose that (t0, θ0) ∈ S(DSE±γ ). Then we have the following:

(i) DSE±γ at (t0, θ0) is A-equivalent to the cuspidal edge if and only if σ(t0) ̸= 0,

(ii) DSE±γ at (t0, θ0) isA-equivalent to the cuspidal cross cap if and only if σ(t0) = 0 and
σ̇(t0) ̸= 0,

(iii) The swallowtail doesn’t appear,
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