<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>心血管系の副作用を軽減した選択的β2アドレナリン受容体アゴニストの創製研究</td>
</tr>
<tr>
<td>著者</td>
<td>和田 康弘</td>
</tr>
<tr>
<td>引用</td>
<td>北海道大学 [博士] 薬科学 [甲第 13182号]</td>
</tr>
<tr>
<td>招致</td>
<td></td>
</tr>
<tr>
<td>題名</td>
<td></td>
</tr>
<tr>
<td>提携</td>
<td></td>
</tr>
<tr>
<td>カテゴリー</td>
<td></td>
</tr>
<tr>
<td>タイプ</td>
<td>theses (doctoral)</td>
</tr>
</tbody>
</table>

なお、このドキュメントは、北海道大学の学術情報プラットフォームであるHUSCAP联网に登録されているものです。
博士学位論文

心血管系の副作用を軽減した
選択的β₃ アドレナリン受容体アゴニストの創製研究

和田 康弘

北海道大学大学院生命科学院
生命科学専攻 生命医薬科学コース
創薬有機化学研究室

2018年3月
目次

序論 ... 2
第1章 新規なインダゾール骨格を有するβ3-AR アゴニスト化合物11の創出 ... 4
 第1節 ヒット化合物取得の戦略 ... 4
 第2節 α1A-AR に対する選択性向上のための化合物設計方針 ... 6
 第3節 インダゾール 3 位の変換による構造－β3-AR 並びにα1A-AR アゴニスト活性相関 7
 第4節 ラットの心血管系に与える影響 ... 10
 第5節 化合物11の排尿筋弛緩作用に関して ... 10
 第6節 インダゾール誘導体5～16の合成 .. 11
 第7節 第1章まとめ ... 17
第2章 スルホンアミド変換による薬物動態プロファイルの最適化 ... 18
 第1節 化合物11並びにその類縁体の薬物動態プロファイル ... 18
 第2節 高いβ3-AR 選択性とヒト代謝安定性を両立する最適化の方針 .. 19
 第3節 スルホンアミド部分の変換による構造－β3-AR 並びにα1A-AR アゴニスト活性相関 20
 第4節 化合物56dと化合物56fの薬物動態プロファイル ... 23
 第5節 化合物56dのラット心血管系への作用と排尿筋弛緩作用 .. 25
 第6節 インダゾール化合物56a～56fの合成 .. 26
 第7節 第2章まとめ ... 28
第3章 β3-AR と化合物56dの相互作用解析 .. 29
 第1節 ドッキングスタディと分子動力学シミュレーションによるβ3-AR と化合物56dの結合様式の
 推定 ... 29
 第2節 β3-AR と化合物56dの相互作用解析とβ3-AR 選択性の考察 .. 35
 第3節 第3章まとめ ... 38
結語 ... 39
実験の部 .. 41
略語表 .. 77
引用文献 .. 78
謝辞 ... 83
序論

過活動膀胱（Overactive Bladder, OAB）は 2002 年に国際禁制学会が定義した疾患である。[1] 過活動膀胱では、主に蓄尿時に不随意の排尿収縮による排尿筋過活動により正常な排尿が困難になり、急な尿意をもたらし、我慢できないほどの尿意切迫感を認め、さらに頻尿（昼間頻尿、夜間頻尿）や切迫性尿失禁（尿漏れ）などの諸症状が認められる。これら過活動膀胱の症状は患者にとって高いストレスとなり、そして生活の質を大きく下げる。[2]

人口をベースとした 5 か国（カナダ、ドイツ、イタリア、スウェーデン、イギリス）における推定によると、18 歳以上の約 12% が過活動膀胱の症状を有していると考えられている。[3] また、男性と女性の割合に大きな差は無く、年齢の上昇と共に患者が増える傾向がある。また、日本の日本排尿機能学会が行った調査によると、40 歳以上の過活動膀胱の有病率は 12.4% であり、有病者は 810 万人と推定されている。[4]

現在、過活動膀胱の治療の第一選択薬である抗コリン薬（ムスカリン受容体アンタゴニスト）は、排尿回数、尿意切迫感を改善させるものの、口渇、便秘、視力障害、尿閉などの副作用が報告されている。[5] それらの副作用はムスカリン受容体アンタゴニストの作用メカニズムに関連がある。[8] すなわち、標的分子であるムスカリン受容体は膀胱の他に唾液腺にも発現しており、そのアンタゴニストは口渇を引き起こす。また、抗コリン薬は膀胱収縮を抑える働きをするため、残尿も生じやすい。近年、膀胱選択性を高めた抗コリン薬も開発されているが、副作用、特に口渇を完全に回避するまでには至っていない。[6]

近年の調査によると、抗コリン薬を 12か月間継続投与できた過活動膀胱の患者は 35% 以下であり、抗コリン薬の副作用は過活動膀胱患者の長期服薬が困難であることを示唆しており、その結果として治療満足度の低下につながっている。[7]

上記治療満足度を向上させるために、過活動膀胱治療薬の新規標的分子として、アドレナリン受容体（adrenergic receptor, AR）の一つである β3-AR が注目されている。[7] アドレナリン受容体は α1-AR、α2-AR、β-AR の 3 つのサブファミリーに分類されており、その β-AR は β1、β2、β3 の 3 つのサブタイプが知られている。[8] アドレナリン受容体の生体内リガンドはアドレナリン、ノルアドレナリンである。[8]

G タンパク共役型受容体である β3-AR は、1980 年代にヒトゲノム解析により発見された β-AR サブタイプの 1 つである。[8-9] β3-AR は脂肪細胞の分解や熱発生、さらに肝、脳、前立腺、結腸、脇腹の弛緩に関わっていることが知られている。[10] 特に、ヒト膀胱組織における β-AR の mRNA を解析した結果、97% が β3-AR であることが報告されており [11]、ヒトの膀胱弛緩において β-AR のサブタイプのうち、β3-AR が最も重要な機能を持っていることが示唆されている。[12] さらに、β3-AR アゴニストはラットにおいて蓄尿を向上させたことから、β3-AR アゴニストは抗コリン薬に見られる副作用を示さない新規メカニズムの過活動膀胱治療薬として非常に期待されている。[14]

過活動膀胱の治療薬として臨床試験が実施された β3-AR アゴニストは 1（ミラベグロン、mirabegron、YM-178）[15]、2（ソラベグロン、solabegron、GW427353）[16]、3（リトベグロン、ritobegron、KUC-7483）[17]、4（ビベグロン、vibegron、MK-4618）[18] が知られている（Figure 1）。ミラベグロン（1）は過活動膀胱の治療薬として承認されており [18]、β3-AR アゴニストという新規メカニズムであるため、抗コリン薬と比較して口渇等の副作用が少ないことが特徴である。[7]
しかしながら、ミラベグロンは血圧上昇や心拍数上昇など心血管系に対する副作用を引き起こすことが知られている。[7]その原因は特定されていないものの、ミラベグロンの心拍数上昇作用に関してはβ₁-AR*に対するアゴニスト活性が原因の一つとして考えられる。[20]さらに、ミラベグロンはCYP2D6に対する阻害作用があるため、CYP2D6で代謝される薬剤との薬物間相互作用が懸念される。[21]

上述の通り、現在上市されているミラベグロンにはいくつか懸念点がある。そのミラベグロンよりも優れた治療薬を目指し、β₃-ARに対する高い選択性を持ち、血圧上昇を含む心血管系の副作用を軽減した新規な化合物を創出することで、ベストインクラスの過活動膀胱治療薬になると考え、本研究に着手した。

*β₁-ARは心臓や脂肪細胞に発現している。一方、β₂-ARは血管、子宮、気道平滑筋に発現している[19]。
第1章 新規なインダゾール骨格を有するβ3-ARアゴニスト化合物11の創出

第1節 ヒット化合物取得の戦略

ARの生体内リガンドであるアドレナリン、β-AR非選択的アゴニストであるイソプロテレノール、代表的なβ3-ARアゴニストであるミラベグロン並びにソラベグロンに共通する部分構造はアリールエタノールアミンであり、β3-ARアゴニスト活性を示すにはアリールエタノールアミンが必须構造であると考えた（Figure 2、赤色部分）。一方、イソプロテレノールとβ3-ARアゴニストの構造上の違いは、アリールエタノールアミンの右側にアミノチアゾールやビアリールカルボン酸などを有することである（Figure 2、点線内）。従って、β3-ARアゴニスト活性を有する新規なヒット化合物の取得を目的として、アリールエタノールアミンの右側にβ3-ARと水素結合が期待できる種々の2環性ヘテロ環*をエーテルリンカーで結合したライブラリーに対し、β3-ARアゴニスト活性評価を実施した（Figure 2、中段）。その評価方法はβ3-ARを発現させたChinese Hamster Ovary（CHO）細胞を用いて、細胞内のcAMPを定量した。その結果、アリールエタノールアミンの右側にインダゾール骨格を有する化合物5をヒット化合物として見出した（Figure 2、下段）。

Table 1に化合物5のARアゴニスト活性EC50†とその内在活性（intrinsic activity, IA‡）示す。化合物5は強いβ3-ARアゴニスト活性（EC50 = 21 nM）、並びにβ1-ARとβ2-AR§に対して高いβ3-AR選択性（β1/β3、β2/β3 >476-fold）を有していた。化合物5は文献等で報告されている他のヒット化合物[22]（Figure 3）と比較し、β1とβ2-ARアゴニスト活性が非常に弱く、β3-ARに対して極めて高選択的な特徴を有しているため、さらに詳細な薬理プロファイルを検討した。

β1-ARとβ2-ARに無効な高選択的β3-ARアゴニストが血圧心拍に与える影響を確認するために、麻酔下のラットに対して化合物5を静脈内投与した。その結果をTable 2に示す。化合物5投与後、1-5分の間で7.9%上昇した。なぜ、高選択的なβ3-ARアゴニストである化合物5が血圧上昇を引き起こしたのかを考察するために、β-ARのサブファミリーであるα1-AR**とα2-AR††のアゴニスト活性を評価した。その結果をTable 1に示す。化合物5はα1A-ARに対して強いアゴニスト活性（EC50 = 219 nM）を有することが分かった。α1-ARは広く全身に分布しており、特に心血管系組織、平滑筋、脳に発現している[23]。また、α1-ARアゴニストは末梢の血管収縮を介して血圧を上昇させることが知られている[24]。さらに、化合物5の血圧上昇はα1A-ARアントゴニストであるシロドシンを事前に投与することにより、完全に抑制された。ゆえに、化合物5の血圧上昇はα1-ARアゴニスト活性に由来することを示唆した。したがって、筆者はα1A-ARアゴニスト活性を減弱させたβ3-ARに高選択的な化合物創出を目指し、ヒット化合物5の構造をベースに化合物最適化研究を実施した。

*インダゾール、イソキノリン、1H-ビラゾロ[3,4-b]ビリジン、ベンゾイソキサゾール、ベンゾチアゾール、ベンゾイミダゾールなど
†内在活性の50%のcAMPを上昇させるときの化合物濃度
‡細胞内cAMPを上昇させるアゴニスト作用の程度を示している。陽性対象として非選択的β-ARアゴニストのイソプロテレノール（isoproterenol）が示すcAMP濃度を100%とし、化合物の内在活性を算出した。
§β1-ARもしくはβ2-ARアゴニスト活性の評価はβ3-ARアゴニスト活性評価と同様にβ1-ARもしくはβ2-ARを発現させたCHO細胞を用いて、細胞内のcAMPを定量し、化合物のβ1-ARもしくはβ2-ARアゴニスト活性を評価した。
**α1-ARはα1A、α1B、α1Dの3つのサブタイプが知られている[8]
††α2-ARはα2A、α2B、α2Cの3つのサブタイプが知られている[8]
Figure 2. Hit identification strategy

Table 1. Human adrenergic receptor agonist activity of 5

<table>
<thead>
<tr>
<th>AR</th>
<th>EC<sub>50</sub> (nM)<sup>a</sup></th>
<th>IA (%)</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>β<sub>3</sub></td>
<td>21 ± 0.67</td>
<td>82<sup>b</sup></td>
<td>β<sub>1</sub> / β<sub>3</sub> > 476</td>
</tr>
<tr>
<td>β<sub>1</sub></td>
<td>>10000</td>
<td>6.0<sup>b</sup></td>
<td>β<sub>2</sub> / β<sub>3</sub> > 476</td>
</tr>
<tr>
<td>β<sub>2</sub></td>
<td>>10000</td>
<td>4.0<sup>b</sup></td>
<td>β<sub>1</sub> / β<sub>3</sub> > 476</td>
</tr>
<tr>
<td>α<sub>1A</sub></td>
<td>219 ± 6.9</td>
<td>71<sup>c</sup></td>
<td>α<sub>1A</sub> / β<sub>3</sub> = 10</td>
</tr>
</tbody>
</table>

^aData are shown as means ± SEM (n=3). Compound 5 exhibited insignificant agonistic activity for α_{1B}, α_{1D}, α_{2A}, α_{2B} or α_{2C} (EC₅₀ >10000 nM).
^bIA (intrinsic activity): maximum response induced by isoproterenol was defined as 100%.
^cIA: maximum response induced by noradrenaline was defined as 100%.
Figure 3. Chemical structure of phenylethanolamine-based hit compounds

Table 2. Effect of 5 on HR and MBP in anesthetized rats^a

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>n</th>
<th>HR: Increase (%)</th>
<th>Decrease (%)</th>
<th>MBP: Increase (%)</th>
<th>Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>5</td>
<td>1.8 ± 0.9</td>
<td>4.5 ± 0.8</td>
<td>1.0 ± 0.5</td>
<td>5.4 ± 1.9</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4.2 ± 2.3</td>
<td>1.3 ± 0.7</td>
<td>7.5 ± 0.2</td>
<td>9.9 ± 0.2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7.9 ± 2.9</td>
<td>8.8 ± 4.5</td>
<td>24.2 ± 7.7</td>
<td>8.5 ± 1.1</td>
</tr>
<tr>
<td>1<sup>b</sup></td>
<td>1</td>
<td>1.7</td>
<td>ND</td>
<td>ND</td>
<td>20.6</td>
</tr>
</tbody>
</table>

^aCompound 5 was administered intravenously to rats, and, thereafter, HR and MBP were recorded for 30 min. Maximum increase or decrease of HR or MBP is shown as a value (%) relative to the baseline. Data are shown as means ± SEM. ^bSilodosin, a selective α_{1A}-AR antagonist, was administered intravenously at a dose of 0.01 mg/kg before administration of compound 5. n: number, ND: not detected.
基はα1A-AR アゴニスト活性に重要な変化を及ぼすと予想した。そこで、筆者はインダゾール 3 位の置換基変換を行うことで、α1A-AR アゴニスト活性に対して選択性を向上させたβ3-AR アゴニストを創出できると考え、合成を行った。

Figure 4. Design of indazole derivatives

第3節 インダゾール 3 位の変換による構造−β3-AR 並びにα1A-AR アゴニスト活性相関

（1）構造−β3-AR アゴニスト活性相関

Table 3 にインダゾール 3 位を変換した化合物のβ3-AR アゴニスト活性を示す。メチル基 5 をメトキシ基 7 に変換した結果、β3-AR アゴニスト活性は向上しなかった（5, EC50 = 21 nM vs. 7, EC50 = 40 nM）。一方、メチル基 5 をエトキシ基 8 に変換した結果、活性が減弱した（5, EC50 = 21 nM vs. 8, EC50 = 71 nM）。また、メチル基 5 をクロロ基 9、エチル基 10、イソプロピル基 11、シクロプロピル基 13 に変換した結果、活性にほとんど変化はなかった（5, EC50 = 21 nM vs. 9, EC50 = 43 nM; 10, EC50 = 14 nM; 11, EC50 = 13 nM; 13, EC50 = 17 nM）。しかし、メチル基 5 を t-ブチル基 12 もしくはフェニル基 16 に変換した結果、活性が大きく減弱した（5, EC50 = 21 nM vs. 12, EC50 = 338 nM, 16, EC50 = >10000 nM）。シクロプチル基 14、トリフルオロメチル基 15 はメチル基 5 よりも活性がやや減弱した（14, EC50 = 66 nM, 15, EC50 = 64 nM vs. 5, EC50 = 21 nM）。以上をまとめると、β3-AR アゴニスト活性の強さの順は 5, 7, 9, 10, 11, 13, 8, 14, 15 > 12 > 16 であった。

イソプロピル基 11 よりも大きい置換基である t-ブチル基 12 やフェニル基 16 はβ3-AR アゴニスト活性が減弱することから、イソプロピル基以下のサイズがβ3-AR との結合に適していると考えられる。その原因は置換基がイソプロピル基よりも大きい場合、β3-AR のアミノ酸残基と反発することが推定される。
Table 3. Human β3- and α1A-AR agonistic activity of indazole derivatives

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>β3</th>
<th>α1A</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EC50 (nM)</td>
<td>IA (%)</td>
<td>EC50 (nM)</td>
</tr>
<tr>
<td>5</td>
<td>Me</td>
<td>21 ± 0.67</td>
<td>82</td>
<td>219 ± 6.9</td>
</tr>
<tr>
<td>7</td>
<td>OMe</td>
<td>40 ± 1.9</td>
<td>70</td>
<td>252</td>
</tr>
<tr>
<td>8</td>
<td>OEt</td>
<td>71 ± 6.1</td>
<td>69</td>
<td>277</td>
</tr>
<tr>
<td>9</td>
<td>Cl</td>
<td>43 ± 2.9</td>
<td>89</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>Et</td>
<td>14 ± 0.58</td>
<td>78</td>
<td>857 ± 164</td>
</tr>
<tr>
<td>11</td>
<td>i-Pr</td>
<td>13 ± 1.5</td>
<td>69</td>
<td>>10000</td>
</tr>
<tr>
<td>12</td>
<td>t-Bu</td>
<td>338 ± 159</td>
<td>62</td>
<td>>10000</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>17 ± 3.8</td>
<td>72</td>
<td>1548 ± 419</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>66</td>
<td>68</td>
<td>>10000</td>
</tr>
<tr>
<td>15</td>
<td>CF3</td>
<td>64 ± 11</td>
<td>86</td>
<td>812 ± 179</td>
</tr>
<tr>
<td>16</td>
<td>Ph</td>
<td>>10000</td>
<td>29</td>
<td>>10000</td>
</tr>
</tbody>
</table>

*Data are shown as means ± SEM (n≧3) or are presented as the average of two experiments. IA (intrinsic activity): maximum response induced by isoproterenol was defined as 100%. IA: maximum response induced by noradrenaline was defined as 100%. NT: not tested.

*非選択的β-AR アゴニストであり、β-AR アゴニスト評価系の陽性対象として一般的に用いられる。[15]
†生体内のリガンドであり、α-AR アゴニスト評価系の陽性対象として一般的に用いられる。
（2）構造-α1A-AR アゴニスト活性相関

Table 3 にインダゾール 3 位を変換した化合物のα1A-AR アゴニスト活性を示す。まず、メトキシ体 7 あるいはエトキシ体 8 は、α1A-AR アゴニスト活性に変化は無かった（5, EC50 = 219 nM vs. 7, EC50 = 252 nM, 8, EC50 = 277 nM）。また、クロロ体 9 はメチル体 5 よりも α1A-AR アゴニスト活性が向上した（9, EC50 = 61 nM vs. 5, EC50 = 219 nM）。一方、エチル体 10、シクロプロピル体 13、トリフルオロメチル体 15 へと変換した結果、大きく α1A-AR アゴニスト活性が減弱した（5, EC50 = 219 nM vs. 10, EC50 = 857 nM; 13, EC50 = 1548 nM; 15, EC50 = 812 nM）。さらに、イソプロピル体 11、t-ブチル体 12、シクロブチル体 14 あるいはフェニル体 16 は、α1A-AR アゴニスト活性を示さなかった。以上をまとめると、α1A-AR アゴニスト活性の強さの順は 9 > 5, 7, 8 > 10, 13, 15 >> 11, 12, 14, 16 であった。

メトキシ体 7 並びに Figure 4 のヒドロキシメチル体 6 が強いα1A-AR アゴニスト活性（α1A-AR EC50 = 33 nM）を示したことからインダゾール 3 位ヒドロキシメチル基やメトキシ基はα1A-AR のアミノ酸残基と水素結合等の相互作用をしている可能性が考えられる。一方、イソプロピル体 11 のような分岐アルキル基は嵩高く、疎水性が高いために上記水素結合を形成することができず、α1A-AR アゴニスト活性を示さないので推測される。

（3）α1A/β3 選択性の構造相関

β3-AR アゴニスト活性と α1A-AR アゴニスト活性を基に、α1A-AR に対して β3-AR の選択性の順は 11 > 14 > 13 > 10 > 12 > 15 > 5 > 7 > 8 > 9 であった。ゆえに、β3-AR アゴニスト活性の強さと α1A-AR に対する選択性から化合物 10, 化合物 11 並びに化合物 13 を選択し、更なる薬理評価を実施した。

（4）β1-AR と β2-AR のアゴニスト活性

Table 4 に β3, β2, β1、並びに α1A-AR に対するアゴニスト活性を示す。化合物 10, 化合物 11, 並びに化合物 13 は β1-AR と β2-AR に対してアゴニスト活性を示さなかった（β1-AR EC50 = >10000 nM; β2-AR EC50 = >10000 nM）。したがって、これら 3 化合物は β3-AR 高選択的アゴニストであることが示唆された。

Table 4. Summary of human β and α1A-AR agonistic activity of indazole derivatives 10, 11 and 13d

<table>
<thead>
<tr>
<th>Compound</th>
<th>β3 EC50 (nM)</th>
<th>IA (%)</th>
<th>β1 EC50 (nM)</th>
<th>IA (%)</th>
<th>β2 EC50 (nM)</th>
<th>IA (%)</th>
<th>α1A EC50 (nM)</th>
<th>IA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>14 ± 0.58</td>
<td>78</td>
<td>>10000</td>
<td>5.4</td>
<td>>10000</td>
<td>1.9</td>
<td>857 ± 164</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>13 ± 1.5</td>
<td>69</td>
<td>>10000</td>
<td>11.9</td>
<td>>10000</td>
<td>5.6</td>
<td>>10000</td>
<td>9.1</td>
</tr>
<tr>
<td>13</td>
<td>17 ± 3.8</td>
<td>72</td>
<td>>10000</td>
<td>10.3</td>
<td>>10000</td>
<td>6.3</td>
<td>1548 ± 419</td>
<td>19</td>
</tr>
<tr>
<td>isoproterenol</td>
<td>86 ± 3.7</td>
<td>100</td>
<td>3.2 ± 0.29</td>
<td>100</td>
<td>13 ± 3.0</td>
<td>100</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>noradrenaline</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>9.1 ± 0.52</td>
<td>100</td>
</tr>
</tbody>
</table>

dData are shown as means ± SEM (n ≥ 3). IA (intrinsic activity): maximum response induced by isoproterenol was defined as 100%. NT: not tested.
第4節 ラットの心血管系に与える影響

上述の通り、化合物10、化合物11並びに化合物13はβ3-AR高選択的であることが示されたので、ラットを用いて心血管系に与える影響を評価し、ヒット化合物5並びにミラベグロン（1）と比較した。Table 5に結果を示すように、インドゾール3位が最適化された3化合物はすべてMBPの上昇を引き起こさなかった。一方、ヒット化合物5は大きくMBPの上昇（24.2％）を引き起こした。同様の評価にて、ミラベグロン（1）はMBPの大きな低下（38.3％）を引き起こした。また、化合物11はHRに関して影響を与えないかった。一方、ミラベグロン（1）はHRの上昇（10.0％）を引き起こした。MBPとHRの結果より、化合物10、化合物11並びに化合物13はミラベグロン（1）並びにヒット化合物5と比較し、MBPやHRに与える影響は少なく、その要因はβ3-ARに高選択的であることが示唆された。

Table 5. Effects of intravenous administration of indazole derivatives on HR and MBP in anaesthetized rats

<table>
<thead>
<tr>
<th>Compound</th>
<th>N</th>
<th>HR Increase (%)</th>
<th>HR Decrease (%)</th>
<th>MBP Increase (%)</th>
<th>MBP Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>5</td>
<td>1.8 ± 0.9</td>
<td>4.5 ± 0.8</td>
<td>1.0 ± 0.5</td>
<td>5.4 ± 1.9</td>
</tr>
<tr>
<td>mirabegron (1)</td>
<td>3</td>
<td>10.0 ± 2.5</td>
<td>ND</td>
<td>3.5 ± 3.5</td>
<td>38.3 ± 3.4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7.9 ± 2.9</td>
<td>8.8 ± 4.5</td>
<td>24.2 ± 7.7</td>
<td>8.5 ± 1.1</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>9.6 ± 1.3</td>
<td>1.6 ± 2.0</td>
<td>3.1 ± 0.2</td>
<td>10.8 ± 1.1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>3.3 ± 0.6</td>
<td>1.8 ± 0.5</td>
<td>4.7 ± 0.9</td>
<td>7.6 ± 1.7</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>5.7 ± 1.5</td>
<td>3.3 ± 0.7</td>
<td>2.7 ± 0.3</td>
<td>11.0 ± 3.0</td>
</tr>
</tbody>
</table>

*Compounds were administered intravenously to rats (3 mg/kg), and, thereafter, HR and MBP were recorded for 30 min. Maximum increase or decrease of HR or MBP is shown as a value (%) relative to the baseline. Data are shown as means ± SEM. N: Numbers of rats used. ND: Not detected.

第5節 化合物11の排尿筋弛緩作用に関して

次に、化合物11の膀胱平滑筋に対する弛緩作用を評価した。これまでにラットを用いた膀胱平滑筋に対する評価法が知られている[15]が、化合物11はヒトとラットでβ3-ARに対する活性に種差があり、ラットのβ3-ARアゴニスト活性が弱かった（EC50 = 535 nM, IA = 95％）。種々の動物に対するβ3-ARアゴニスト活性を評価した結果、化合物11はマーモセットに対して強いβ3-ARアゴニスト活性を有することが分かった（EC50 = 15 nM, IA = 75％）。ゆえに、化合物11はマーモセットを用いて膀胱平滑筋に対する弛緩作用を確認した。本評価では、マーモセットの膀胱を摘出し、事前に塩化カリウムを用いて排尿筋を収縮させた後、化合物を添加して膀胱平滑筋の弛緩を測定した。Figure 5に示すように、化合物11は用量依存的に弛緩作用を示し、その最大弛緩率は陽性対象の非選択的β-ARアゴニストであるイソプロテレノールと同等であった。この結果からマーモセットの膀胱弛緩は高選択的β3-ARアゴニスト11の作用で十分に引き起こすことができると考えられ、その弛緩作用は蓄尿時の膀胱容量の増大につながると推定される。
Figure 5. Relaxation of marmoset urinary bladder smooth muscle by 11. Each point represents the mean ± SD (n = 3). The marmoset urinary bladder was cut by a midline incision and 6 muscle strips of the bladder body were prepared. The strips were pre-contracted with 40 mmol/L KCl, and, after the tension had stabilized, test compounds were cumulatively added. When the relaxation response at the maximum concentration of the test compound was completed, papaverine was added at a final concentration of 10^{-4} mol/L, and the maximum relaxation response of each strip was determined. See Experimental Section for further details.

第6節 インダゾール誘導体5〜16の合成
（1）ターゲット化合物5〜16の合成ルート
インダゾール誘導体である化合物5〜16の合成に関して Scheme 1 に示す。アルコール中間体17とインダゾール中間体18〜28に対して光延反応を用いてエーテル結合を形成し、続いて塩酸を用いて保護基を除去することにより化合物5並びに化合物7〜16を合成した。同様の方法にて、アルコール中間体17とインダゾールエステル中間体29を光延反応にて結合させることで30を得た。30のエチルエステルを加水分解により、カルボン酸へと誘導後、そのカルボン酸をボランーTHF錯体を用いてアルコールへと還元、続く塩酸による脱保護にて、化合物6を得た。
Scheme 1. Synthesis of targets 5-16

Reagents and conditions: (a) TMAD, PPh₃, toluene, rt; (b) 4 M HCl in EtOAc or 4 M HCl in 1,4-dioxane, rt; (c) TMAD, PPh₃, THF, rt; (d) 2 M NaOH, MeOH, 40 °C; (e) BH₃·THF, THF, rt; (f) conc. HCl aq, EtOH, rt.

(2) インダゾール中間体 18-28 の合成
インダゾール 3 位にアルキル基を有する中間体 18, 22-26 の合成ルートを Scheme 2 に示す。フェノール 31 の水酸基を TBS 基で保護し、続いて Grignard 試薬を用いてシアノ基への求核付加反応と続く加水分解によりケトン 33a-33f へと変換した。イソプロピル基や t-ブチル基のような嵩高い Grignard 試薬の場合には CuBr の添加が効果的であった。得られたケトン 33a-33f に対し、ベンジルヒドラジンを用いてインダゾール環を構築（34a-34f）した。続いて、保護基を変換し、インダゾール中間体 18, 22-26 を合成した。
Scheme 2. Preparation of indazole intermediates (18 and 22-26)a

\textbf{a} Reagents and conditions: (a) TBSCl, imidazole, DMF, rt; (b) 33b,e: RMgBr, THF, reflux, then 5 M HCl aq, reflux; 34c,d,f: RMgBr or RMgCl, CuBr, THF, reflux, then 5 M HCl aq, reflux; (c) NH\textsubscript{2}-NHBn\cdot2HCl, AcONa, xylene, reflux; (d) H\textsubscript{2}, Pd/C, conc. HCl, EtOH, 60 °C; (e) TBDPSCl, imidazole, DMF, rt; (f) Boc\textsubscript{2}O, Et\textsubscript{3}N, DMAP, THF or CH\textsubscript{3}CN, rt; (g) TBAF, THF, rt.

インダゾール3位にクロロ基もしくはフェニル基を持つ中間体21、28の合成ルートをScheme 3に示す。6-アミノインダゾール35は亜硝酸ナトリウムにてジアゾニウム塩とし、酢酸にてアセチル保護されたフェノール体へ導いた。続いて、アセチル基を変換し、TBDPS基で保護された6-ヒドロキシインダゾール36を得た。塩基性条件下、インダゾール3位のハロゲン化にて、クロロ体37a、ヨウ素体37bへと変換した。インダゾールのNHをBoc基で保護し、TBDPS基の脱保護を行うことで中間体21を得た。また、38bをパラジウム触媒による鈴木-宮浦クロスカップリングを行うことで中間体28を得た。なお、本クロスカップリング条件下にてTBDPS基の除去も反応系中で進行した。
Scheme 3. Preparation of 21 and 28^a

Reagents and conditions: (a) NaNO₂, HBF₄ aq, H₂O, 0 °C, then AcOH, 130 °C; (b) 2 M NaOH aq, EtOH; (c) TBDPSCl, imidazole, DMF, rt; (d) tert-BuOK, THF, then NCS or I₂; (e) Boc₂O, Et₃N, DMAP, THF, rt; (f) TBAF, THF, rt; (g) PhB(OH)₂, (o-Tol)₃P, Pd₂(dba)₃, K₃PO₄, DMF/H₂O, 80 °C.

インダゾール 3 位にアルコキシ基を持つ中間体 19、20 の合成ルートを Scheme 4 に示す。フェノール 39 の水酸基をベンジル基にて保護し、ヒドラジン水和物存在下、マイクロウェーブを用いた加熱反応を実施し、インダゾール体 40 を得た。Patel らの方法²⁷を参考に、40 に対して di-Boc 保護を行った後、アンモニア-メタノールで処理することで O-Boc 基を除去し、N-Boc 体 41 を得た。続いて銀塩を用いた酸素原子選択的なアルキル化²⁸にて、42a、42b を得た後、ベンジル基を除去することで中間体 19、20 を得た。
Scheme 4. Preparation of 19 and 20

Reagents and conditions: (a) BnBr, K₂CO₃, DMF, 50 °C; (b) NH₂-NH₂·H₂O, n-BuOH, MW, 160 °C; (c) Boc₂O, Et₃N, DMAP, CH₂Cl₂, rt, then 7 M NH₃/MeOH, MeOH, rt; (d) R-I, Ag₂CO₃, toluene, MW, 60 °C or 90 °C; (e) H₂, Pd/C, THF, rt.

インダゾール3位にトリフルオメチル基を持つ中間体27の合成ルートをScheme 5に示す。ニトロトルエン43に対し、ラジカル条件下でベンジル位を臭素化することで化合物44を得た。銅触媒存在下、FSO₂CF₂COOMeを用いたトリフルオメチル化[29]にて、化合物45を得た。45のニトロ基を還元後、アミノ基のアセチル化と亜硝酸アミルにおけるインダゾール環築築によりトリフルオメチルインダゾール46を得た。46は臭化水素水溶液を用いてメトキシ基とアセチル基の脱保護を行い、47へと導いた後、保護基を変換し、中間体27を得た。

Scheme 5. Preparation of 27

Reagents and conditions: (a) NBS, (PhCOO)₂, CCl₄, reflux; (b) FSO₂CF₂COOMe, CuI, DMF, 100 °C; (c) H₂, Pd/C, MeOH, rt; (d) Ac₂O, AcOK, PhCl, rt, then isoamyl nitrite, 80 °C, (e) 48% HBr aq, 110 °C; (f) TBDPSCl, imidazole, DMF, rt; (g) Boc₂O, Et₃N, DMAP, THF, rt; (h) TBAF, THF, rt.
インダゾール 3 位にエチルエステル基を持つ中間体 29 の合成ルートを Scheme 6 に示す。インダゾールカルボン酸 48 の保護基を変換し、エステル体 49 を得た。49 のインダゾールの NH を THP 基で保護して 50 へと導いた後、TBDPS 基を除去し、中間体 29 を得た。

Scheme 6. Preparation of 29^a

```
\[\text{MeO} \quad \text{N} \quad \text{H} \quad \text{48} \quad \xrightarrow{a, b, c} \quad \text{TBDPSO} \quad \text{49} \quad \xrightarrow{d} \quad \text{TBDPSO} \quad \text{50} \quad \xrightarrow{e} \quad \text{HO} \quad \text{N} \quad \text{THP} \quad \text{29}\]
```

^aReagents and conditions: (a) 48% HBr aq, reflux; (b) EtOH, SOCl₂, 60 °C; (c) TBDPSCl, imidazole, DMF, rt; (d) DHP, TsOH H₂O, toluene, 60 °C; (e) TBAF, THF, rt.

（3）アルコール中間体 17 の合成

ベンジルアミン 52 のアミノ基を化合物 51³⁰でアルキル化を行い、化合物 53 へと誘導した。続いて水素添加によりベンジル基を除去後、Boc 基へと変換し、アルコール中間体 17 を得た（Scheme 7）。

Scheme 7. Preparation of the alcohol intermediate 17^a

```
\[\text{Et₃Si} \quad \text{I} \quad \xrightarrow{a} \quad \text{Et₃Si} \quad \text{OH} \quad \text{Bn} \quad \text{51} \quad \xrightarrow{b, c} \quad \text{Et₃Si} \quad \text{Boc} \quad \text{OH} \quad \text{Bn} \quad \text{53} \quad \xrightarrow{b, c} \quad \text{Et₃Si} \quad \text{Boc} \quad \text{OH} \quad \text{Bn} \quad \text{17}\]
```

^aReagents and conditions: (a) neat. 100 °C; (b) H₂, 20% Pd(OH)₂/C, MeOH/THF, 50 °C; (c) Boc₂O, Et₃N, DMAP, THF, rt.
第7節 第1章まとめ
アリールエタノールアミンライブラリーから見出したヒット化合物5のインダゾール3位を変換することにより、β3-ARに高選択的化合物11を見出した。化合物11はマーモセットに対して用量依存的に排尿筋弛緩作用を示した。さらに、化合物11はミラベグロン（1）と比較し、ラットを用いた血圧心拍の評価において影響を与えないかった。したがって、化合物11はβ3-AR高選択的であり、心血管系に対する副作用が少ない特徴を有していることが示唆された。
第2章 スルホンアミド変換による薬物動態プロファイルの最適化

第1節 化合物11並びにその類縁体の薬物動態プロファイル

過活動膀胱の治療薬は患者が容易に服用できる経口剤が望ましいため、第1章で述べた代表的な4化合物が経口投与可能かどうか薬物動態プロファイルの評価を実施した。in vitro薬物動態の結果をTable 6に示す。第1章の第2節で述べたように、化合物5はin vitroヒトミクロソーム代謝安定性（CLint,u）が良好であったが、化合物11並びに化合物14は化合物5と比較し、ヒトミクロソーム並びにラットミクロソームに対する代謝安定性が低かった。また、in vivoの薬物動態プロファイル並びに膜透過性、水溶性のプロファイルをTable 7に示す。化合物11はin vivoの薬物動態プロファイル（Cmax and AUC）が化合物5と比較して悪かった。一方、化合物11は中程度の膜透過性、良好な水溶性を示したことから、化合物11の低いCmaxとAUCは代謝安定性が低いことに由来すると示唆された。

第1章で述べたように、インダゾールの3位の置換基がβ3-AR選択性に重要であり、β3-ARに対する選択性の高い順番はイソプロピル体8>シクロブチル体7>エチル体6>メチル体5である。一方、ヒト代謝安定性が高い順番はメチル体5>エチル体6>イソプロピル体8>シクロブチル体7であった。ゆえに、β3-AR選択性が高い化合物ほど、代謝的に不安定であり、経口剤として適さないことが示唆された。すなわち、経口投与可能な過活動膀胱治療薬に仕上げるには、化合物11の代謝的不安定性を改善する必要がある。したがって、この課題を克服するためにさらなる化合物最適化を実施した。

Table 6. AR agonist activity and in vitro metabolic stability

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC50 (nM)</th>
<th>IA (%)</th>
<th>EC50 (nM)</th>
<th>IA (%)</th>
<th>Selectivity</th>
<th>Metabolic Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Me</td>
<td>21 ± 0.67</td>
<td>82</td>
<td>219 ± 6.9</td>
<td>71</td>
<td>10</td>
<td><10</td>
</tr>
<tr>
<td>10</td>
<td>Et</td>
<td>14 ± 0.58</td>
<td>78</td>
<td>857 ± 164</td>
<td>31</td>
<td>61</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>i-Pr</td>
<td>13 ± 1.5</td>
<td>69</td>
<td>>10000</td>
<td>9.1</td>
<td>>769</td>
<td>193</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>66</td>
<td>68</td>
<td>>10000</td>
<td>4</td>
<td>>151</td>
<td>463</td>
</tr>
</tbody>
</table>

The results are shown as the mean ± SEM (n = 3) or are presented as the average of two experiments. IA: maximum response induced by isoproterenol was defined as 100%. IA: maximum response induced by noradrenaline was defined as 100%.
Table 7. In vitro ADME and in vivo pharmacokinetics in rats

<table>
<thead>
<tr>
<th>Compound</th>
<th>5</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Me</td>
<td>i-Pr</td>
</tr>
</tbody>
</table>

Physicochemical properties and in vitro ADME profiles

<table>
<thead>
<tr>
<th>Metabolic stability<sup>a</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hCL<sub>int,u</sub> (mL/min/kg)</td>
<td><10</td>
<td>193</td>
</tr>
<tr>
<td>rCL<sub>int,u</sub> (mL/min/kg)</td>
<td>103</td>
<td>211</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permeability<sup>a</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCK (x10<sup>-6</sup> cm/s)</td>
<td>2.4</td>
<td>4.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solubility<sup>a</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 1.2 solution (µM)</td>
<td>285</td>
<td>295</td>
</tr>
<tr>
<td>pH 6.8 solution (µM)</td>
<td>273</td>
<td>267</td>
</tr>
</tbody>
</table>

Pharmacokinetics parameters in rats^a

<table>
<thead>
<tr>
<th></th>
<th>5 mg/kg<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>max</sub> (µg/mL)</td>
<td>0.107 ± 0.034 0.0452</td>
</tr>
<tr>
<td>AUC (µg·hr/mL)</td>
<td>0.542 ± 0.065 0.200</td>
</tr>
</tbody>
</table>

^aThe results are shown as the mean ± SD (n = 3) or are presented as the average of two experiments. ^bCompounds were administered orally to rats in solution with saline or water.

第 2 節 高いβ₃-AR 選択性とヒト代謝安定性を両立する最適化の方針

Altenbach らは、スルホンアミドを持つα_{1A}-AR アゴニスト 54 の構造活性相関を報告している。[31] すなわち、Figure 6 に示すように、化合物 54 のスルホンアミド基のアルキルが大きくなるにつれ、α_{1A}-AR アゴニスト活性が減弱し、さらに、芳香環を持つスルホンアミド基に変換すると、α_{1A}-AR アゴニスト活性が無くなったと述べている。一方、Sawa らは、アルキルスルホンアミド 55a と芳香族スルホンアミド 55b を比較し、55a よりも 55b の方がβ₃-AR アゴニスト活性が強いことを報告している。[32] これら 2 つの文献報告を参考にして、筆者はα_{1A}/β₃-AR 選択性は低いが、ヒト代謝安定性が高い化合物 5 のスルホンアミド基の置換基の大さを変換するターゲット化合物 56 を設計した。なお、第 1 章でイナゾールメチル体 5 のラット代謝物解析から水酸化体 6 を同定したが、化合物 5 自体のヒト代謝安定性は良好であることから、ターゲット化合物 56 はヒト代謝安定性とα_{1A}/β₃-AR 選択性の両立が期待される。
Figure 6. Design strategy of the sulfonamide moiety modified analogues.

Table 8にスルホンアミド基を変換した化合物のβ3-ARアゴニスト活性を示す。メチル基5をn-プロピル基56aに変換した結果、活性が若干向上した（5, EC50 = 21 nM vs. 56a, EC50 = 6.5 nM）。しかし、イソプロピル基56bへの変換はメチル基5と比較し、活性が低下した（5, EC50 = 21 nM vs. 56b, EC50 = 70 nM）。次にシクロアルキル基へと変換した結果、シクロプロピル基56cとシクロブチル基56dはイソプロピル基56bと比較して活性が向上した（56b, EC50 = 70 nM vs. 56c, EC50 = 43 nM; 56d, EC50 = 18 nM）。しかし、シクロペンチル基56eはイソプロピル基56bよりも大きく活性が低下した（56b, EC50 = 70 nM vs. 56e, EC50 = 309 nM）。一方、フェニル基56fへの変換はEC50 = 3.9 nMを示し、アルキル基よりも活性が向上した。
以上をまとめると、β3-AR アゴニスト活性の強さの順は 56f > 56a > 56d, 5 > 56c > 56b > 56e であった。

スルホンアミドのアルキル基の変換にて n-プロピル基 56a とシクロブチル基 56d はイソプロピル基 56c やシクロペンチル基 56e と比較し、β3-AR アゴニスト活性が強いことから、n-プロピル基やシクロブチル基のサイズがβ3-AR との結合に良い効果を示していると考えた。一方、フェニル基 56f がアルキル基と比較して大幅に活性向上した結果はβ3-AR のアミノ酸残基と CH-π もしくは π-π のような相互作用をしていると推定した。

（2）構造−α1A-AR アゴニスト活性相関

Table 8 にスルホンアミド基を変換した化合物のα1A-AR アゴニスト活性を示す。n-プロピル体 56a はメチル体 5 と比較し、α1A-AR アゴニスト活性に変化は無かった（5, EC₅₀ = 219 nM vs. 56a, EC₅₀ = 163 nM）。一方、イソプロピル体 56b もしくはシクロブチル体 56d は、メチル体 5 と比較し、α1A-AR アゴニスト活性が減弱した（5, EC₅₀ = 219 nM vs. 56b, EC₅₀ = 1757 nM; 56c, EC₅₀ = 1250 nM）。さらに、シクロプロピル体 56d、シクロペンチル体 56e もしくはフェニル体 56f はα1A-AR アゴニスト活性を示さなかった（EC₅₀ >10000 nM）。以上をまとめると、α1A-AR アゴニスト活性の強さの順は 5, 56a > 56c, 56b >> 56d, 56e, 56f であった。

n-プロピル体 56a はイソプロピル体 56b よりも 10 倍α1A-AR アゴニスト活性が強いので、直鎖のアルキル基はα1A-AR との結合に適していると考えた。また、シクロプロピル基 56d、シクロペンチル基 56e もしくはフェニル基 56f は全くα1A-AR アゴニスト活性を示さなかったことから、嵩高い置換基はα1A-AR との結合に不利であると推定した。

（3）α1A/β3 選択性の構造相関

β3-AR アゴニスト活性とα1A-AR アゴニスト活性を基に、α1A-AR に対してβ3-AR の選択性の順は 56f > 56d >> 56a, 56b, 56c, 56e > 5 であった。ゆえに、α1A-AR に対するβ3-AR 選択性を考慮し、化合物 56f と化合物 56d を選択し、β1 とβ2-AR の選択性評価を実施した。

（4）β1-AR とβ2-AR のアゴニスト活性

Table 9 に示すように、化合物 56d と化合物 56f はβ1 とβ2-AR に対してアゴニスト活性を示さなかった（EC₅₀ >10000 nM）。ゆえに、化合物 56d と化合物 56f はβ3-AR に高選択性化合物であることが示唆された。
Table 8. Human β3- and α1A-AR agonistic activities of sulfonamide derivatives

<table>
<thead>
<tr>
<th>Compound</th>
<th>R1</th>
<th>β3 EC50 (nM)</th>
<th>IA (%)</th>
<th>α1A EC50 (nM)</th>
<th>IA (%)</th>
<th>Selectivity α1A / β3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-Me</td>
<td>21 ± 0.67</td>
<td>82</td>
<td>219 ± 6.9</td>
<td>71</td>
<td>10</td>
</tr>
<tr>
<td>56a</td>
<td>-n-Pr</td>
<td>6.5 ± 0.94</td>
<td>79</td>
<td>163</td>
<td>84</td>
<td>25</td>
</tr>
<tr>
<td>56b</td>
<td>-i-Pr</td>
<td>70 ± 6.4</td>
<td>90</td>
<td>1757</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>56c</td>
<td></td>
<td>43 ± 4.3</td>
<td>72</td>
<td>1250</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>56d</td>
<td></td>
<td>18 ± 2.6</td>
<td>105</td>
<td>>10000</td>
<td>0</td>
<td>>556</td>
</tr>
<tr>
<td>56e</td>
<td></td>
<td>309 ± 69</td>
<td>58</td>
<td>>10000</td>
<td>0</td>
<td>>32</td>
</tr>
<tr>
<td>56f</td>
<td>-Ph</td>
<td>3.9 ± 0.067</td>
<td>85</td>
<td>>10000</td>
<td>0</td>
<td>>2564</td>
</tr>
<tr>
<td>isoproterenol</td>
<td></td>
<td>86 ± 3.7</td>
<td>100</td>
<td>NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>noradrenaline</td>
<td></td>
<td>NT</td>
<td></td>
<td>9.1 ± 0.52</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

The results are shown as the mean ± SEM (n = 3) or are presented as the average of two experiments. Human β3- or α1A-AR agonist assay, see Experimental Section for further details. IA (intrinsic activity): maximum response induced by isoproterenol was defined as 100%. IA: maximum response induced by noradrenaline was defined as 100%. NT: not tested.
Table 9. Summary of human β- and α_1-ARs agonistic activitiesa

<table>
<thead>
<tr>
<th>Compound</th>
<th>β_3^{b}</th>
<th>IA</th>
<th>β_1^{b}</th>
<th>IA</th>
<th>β_2^{b}</th>
<th>IA</th>
<th>α_{1A}^{b}</th>
<th>IA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EC$_{50}$ (nM)</td>
<td>(%)</td>
<td>EC$_{50}$ (nM)</td>
<td>(%)</td>
<td>EC$_{50}$ (nM)</td>
<td>(%)</td>
<td>EC$_{50}$ (nM)</td>
<td>(%)</td>
</tr>
<tr>
<td>11</td>
<td>13 ± 1.5</td>
<td>69</td>
<td>>10000</td>
<td>11.9</td>
<td>>10000</td>
<td>5.6</td>
<td>>10000</td>
<td>9.1</td>
</tr>
<tr>
<td>56dc</td>
<td>18 ± 2.6</td>
<td>105</td>
<td>>10000</td>
<td>4</td>
<td>>10000</td>
<td>4</td>
<td>>10000</td>
<td>0</td>
</tr>
<tr>
<td>56f</td>
<td>3.9 ± 0.067</td>
<td>85</td>
<td>>10000</td>
<td>10</td>
<td>>10000</td>
<td>0</td>
<td>>10000</td>
<td>0</td>
</tr>
<tr>
<td>isoproterenol</td>
<td>86 ± 3.7</td>
<td>100</td>
<td>3.2 ± 0.29</td>
<td>100</td>
<td>13 ± 3.0</td>
<td>100</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>noradrenaline</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>9.1 ± 0.52</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aThe results are shown as the mean ± SEM (n = 3) or are presented as the average of two experiments. bHuman β_1-, β_2-, β_3- or α_{1A}-AR agonist assay, see Experimental Section for further details. cIA (intrinsic activity): maximum response induced by isoproterenol was defined as 100%. dIA: maximum response induced by noradrenaline was defined as 100%. eCompound 56d exhibited insignificant agonistic activity for α_{1B}-AR and α_{1D}-AR (EC$_{50}$ >10000 nM). NT: not tested.

第4節 化合物56dと化合物56fの薬物動態プロファイル

Table 10にin vitro薬物動態プロファイル並びにラットに経口投与した際のin vivo血漿中濃度を測定した結果を示す。化合物56dは化合物11と比較し、ヒトミクロソーム代謝安定性が向上した（11, hCL$_{int,u}$ = 193 mL/min/kg vs. 56d, hCL$_{int,u}$ = 57 mL/min/kg）。一方、化合物56fは化合物11よりもヒトミクロソーム代謝安定性が低下した（11, hCL$_{int,u}$ = 193 mL/min/kg vs. 56f, hCL$_{int,u}$ = 464 mL/min/kg）。ラットミクロソーム代謝安定性に関しても同様の傾向を示し、化合物56dは化合物11と比較して4倍優れていた（11, rCL$_{int,u}$ = 211 mL/min/kg vs. 56d, rCL$_{int,u}$ = 52 mL/min/kg）。また、化合物56dと化合物56fは中程度の膜透過性を示し、pH 1.2とpH 6.8の溶液に対する溶解度は優れていた。さらに、代謝安定性が向上した化合物56dは化合物11と比較してラットにおける経口吸収性（C$_{max}$、AUC並びに半減期）が向上した。

化合物56dは化合物濃度10 μMにおけるCYP阻害作用を評価した結果、7種類のCYP（CYP1A2、2B6、2C19、2C8、2C9、2D6、3A4）に対して阻害作用を示さなかった（34%未満）。一方、同濃度におけるミラベグロン（1）のCYP阻害作用評価を実施した結果、CYP2D6に対して87%の阻害作用を示した。ゆえに、化合物56dはミラベグロン（1）よりもCYP2D6にて代謝される薬に対して、薬物間相互作用のリスクが低いことが示唆された。
Table 10. *In vitro* ADME and *in vivo* pharmacokinetics of 11, 56d, and 56f in rats

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>11</th>
<th>56d</th>
<th>56f</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sup>1</sup></td>
<td>Me</td>
<td>Ph</td>
<td></td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>i-Pr</td>
<td>Me</td>
<td>Me</td>
</tr>
</tbody>
</table>

Physicochemical and *in vitro* ADMET profiles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Compound 11</th>
<th>Compound 56d</th>
<th>Compound 56f</th>
</tr>
</thead>
<tbody>
<tr>
<td>hCL<sub>int,u</sub> (mL/min/kg)</td>
<td>193</td>
<td>57</td>
<td>464</td>
</tr>
<tr>
<td>rCL<sub>int,u</sub> (mL/min/kg)</td>
<td>211</td>
<td>52</td>
<td>NT</td>
</tr>
<tr>
<td>Permeability<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDCK (x10<sup>-6</sup> cm/s)</td>
<td>4.1</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Solubility<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 1.2 solution (µM)</td>
<td>295</td>
<td>299</td>
<td>300</td>
</tr>
<tr>
<td>pH 6.8 solution (µM)</td>
<td>267</td>
<td>278</td>
<td>229</td>
</tr>
</tbody>
</table>

Pharmacokinetics parameters in rat^b

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Compound 11</th>
<th>Compound 56d</th>
<th>Compound 56f</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>max</sub> (µg/mL)</td>
<td>0.0452</td>
<td>0.119 ± 0.077</td>
<td>NT</td>
</tr>
<tr>
<td>AUC (µg·hr/mL)</td>
<td>0.200</td>
<td>0.312 ± 0.100</td>
<td>NT</td>
</tr>
<tr>
<td>Half-life (hr)</td>
<td>1.62</td>
<td>3.01 ± 1.51</td>
<td>NT</td>
</tr>
</tbody>
</table>

^aThe results are shown as the mean ± SD (n = 3) or are presented as the average of two experiments. ^bCompounds were administered orally to rats in solution with saline or water. NT: not tested.
第5節 化合物56dのラット心血管系への作用と排尿筋弛緩作用

β3-ARに高選択的で薬物動態プロファイルが改善した化合物56dとミラベグロン（1）の心血管系の安全性プロファイルの比較を行った（Table 6）。ミラベグロン（1）を投与したラットは心拍数が増加し、平均血圧が大きく低下した。一方、化合物56dを投与したラットはミラベグロン（1）と比べて心拍数や平均血圧の変動が少なかった。このデータは化合物56dがミラベグロン（1）よりも心血管系への副作用が少なく、β3-ARに高選択的であることがその要因であることを示唆している。

次に、マーモセットを用いて化合物56dの膀胱平滑筋に対する弛緩作用評価を実施した。Figure 7に示すように、化合物56dは事前に塩化カリウムで収縮させた膀胱平滑筋を用量依存的に弛緩させ、その最大薬効は陽性対象の非選択的β-ARアゴニストであるイソプロテレノールと同等であった。この結果からFigure 5で示した化合物11と同様にマーモセットの膀胱弛緩は高選択的β3-ARアゴニスト56dの作用で十分に引き起こすことができると考えられ、その弛緩作用は蓄尿時の膀胱用量の増大につながると推定される。

以上のように、β3-ARに高選択的であり、経口投与可能で、薬物間相互作用のリスクが少なく、用量依存的に膀胱平滑筋の弛緩作用を示したので、化合物56dは心血管系への副作用を軽減した過活動膀胱の治療薬になりえる有望化合物である。

Table 11. Effects of intravenous administration of 56d on HR and MBP in anaesthetized rats

<table>
<thead>
<tr>
<th>Compound</th>
<th>N</th>
<th>HR (Increase (%))</th>
<th>HR (Decrease (%))</th>
<th>MBP (Increase (%))</th>
<th>MBP (Decrease (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>5</td>
<td>1.8 ± 0.9</td>
<td>4.5 ± 0.8</td>
<td>1.0 ± 0.5</td>
<td>5.4 ± 1.9</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>10.0 ± 2.5</td>
<td>ND</td>
<td>3.5 ± 3.5</td>
<td>38.3 ± 3.4</td>
</tr>
<tr>
<td>56d</td>
<td>3</td>
<td>5.8 ± 0.4</td>
<td>0.9 ± 0.4</td>
<td>2.0 ± 0.9</td>
<td>12.9 ± 0.9</td>
</tr>
</tbody>
</table>

*Compounds were administered intravenously to rats (3 mg/kg) and HR and MBP recorded for 30 min. Maximum increase or decrease of HR or MBP is shown as the percentage change relative to baseline. The results are shown as the mean ± SEM. See Experimental Section for further details. N: Number of rats used. ND: Not detected.
Figure 7. Relaxation of marmoset urinary bladder smooth muscle by 56d. Each point represents the mean of two experiments. See Experimental Section for further details.

第6節 インダゾール化合物 56a～56f の合成

（1）ターゲット化合物 56a～56f の合成

化合物 56a～56f の合成ルートを Scheme 8 に示す。アミノアルコール 59 は 2-プロパノール中、ベンジルアミン 58 を用いてエポキシド 57 を開環させることで得た。59 の水酸基をトリエチルシリル基で保護し、60 を得た。60 のニトロ基とベンジル基を水素化分解にて還元し、その後、アミノ基選択的に Boc 保護、再び水素化分解にて O-ベンジル基の脱保護を行うことで 61 を得た。61 と 18 を DMEAD とトリフェニルホスフィンを用いた光延反応にて結合させることで 62 を得た。アニリン 62 と種々のスルホニルクロリドを反応させ、スルホンアミド体を得た後、Boc 基と TES 基の脱保護を行うことでターゲット化合物 56a～56f を得た。
Scheme 8. Synthesis of target compounds 56a-56f

Reagents and conditions: (a) 2-PrOH, reflux; (b) TESCl, imidazole, DMF, rt; (c) H₂, 10% Pd/C, EtOH, 50 °C; (d) Boc₂O, THF, rt; (e) H₂, 20% Pd(OH)₂/C, THF, MeOH, 50 °C; (f) DMEAD, PPh₃, toluene, rt; (g) R-SO₂Cl (R = n-Pr, cyclopropyl, cyclobutyl, or phenyl), pyridine, CH₂Cl₂ or R-SO₂Cl (R = i-Pr or cyclopentyl), DBU, CH₂Cl₂, rt; (h) for 56a-56c, 56e, and 56f: 4 M HCl in dioxane, rt, for 56d*: 1 M TBAF in THF, THF, rt then 4 M HCl in dioxane, rt.

Reagents and conditions: (a) 2-PrOH, reflux; (b) TESCl, imidazole, DMF, rt; (c) H₂, 10% Pd/C, EtOH, 50 °C; (d) Boc₂O, THF, rt; (e) H₂, 20% Pd(OH)₂/C, THF, MeOH, 50 °C; (f) DMEAD, PPh₃, toluene, rt; (g) R-SO₂Cl (R = n-Pr, cyclopropyl, cyclobutyl, or phenyl), pyridine, CH₂Cl₂ or R-SO₂Cl (R = i-Pr or cyclopentyl), DBU, CH₂Cl₂, rt; (h) for 56a-56c, 56e, and 56f: 4 M HCl in dioxane, rt, for 56d: 1 M TBAF in THF, THF, rt then 4 M HCl in dioxane, rt.

* 固体の化合物 56d を取得するためには塩酸を用いた脱保護の前に一度トリエチルシリル基を除去し、カラムクロマトグラフィー精製することが効果的であった。
第7節 第2章まとめ

筆者は高活性、高選択的なβ3-AR アゴニストである化合物 56d の創出に成功した。化合物 56d は用量依存的にマーモセットの膀胱平滑筋を弛緩させる優れた薬効を示し、臨床薬であるミラベグロンよりも心血管系の副作用が少なかった。さらに化合物 56d はミラベグロンよりも薬物間相互作用のリスクが低く、代謝的に安定であり、ラットにおいて十分な経口吸収が確認できた。ゆえに、化合物 56d は心血管系の副作用を軽減した過活動膀胱の治療薬として期待される。
第3章 β3-ARと化合物56dの相互作用解析

第1節 ドッキングスタディと分子動力学シミュレーションによるβ3-ARと化合物56dの結合様式的推定

第1章並びに第2章で述べたインドゾールシリーズβ3-ARアゴニストとβ2-ARとのドッキングスタディにより、結合様式を推定することはβ3-ARアゴニスト活性の構造活性相関に対する理解とα1A-AR、β1-AR、β2-ARに対する選択性を考察するために非常に有用である。β3-ARの結晶構造は報告されていないため、β3-ARのホモロジーモデルの構築を行う必要がある。これまでに、β3-ARのサブタイプであるβ2-ARのアンタゴニストもしくはインバースアゴニストとの複合体の結晶構造を基に、β3-ARホモロジーモデルを構築し、化合物の結合様式の解析並びにQSAR解析を行った文献が報告されている。

一方、近年β2-ARのアゴニストとの複合体の結晶構造が報告されたため、β3-ARのホモロジーモデルとβ3-ARアゴニストの推定結合様式を予測する精度向上が期待される。ゆえに、私はβ2-ARのアゴニストとの複合体の結晶構造(PDB entry 3P0G)を基にβ3-ARホモロジーモデルを構築することを計画した。Figure 8にβ3-ARホモロジーモデルの構築からドッキングスタディまでの流れを示す。はじめに、β1-AR、β2-AR、β3-AR並びにα1A-ARのアミノ酸配列はMOE 2015のソフトウェアを用いてアライメントを実施した。さらにホモロジーモデルの鋳型となるβ2-ARのアミノ酸配列に対してはRoyらの文献と同一のアライメントにした(Figure 9)。β3-ARとβ2-ARのアミノ酸配列の相対性は高く、56%であった。

続いて、インドゾールシリーズの中でβ3-ARアゴニスト活性が最も高い化合物56fとβ3-ARホモロジーモデルの複合体を構築した。次に、そのモデルを用いて8化合物のインドゾールシリーズとKUC-7322、化合物55の2つの類縁体、並びにイソプロテレノールの合計12化合物を用いてドッキングスタディを実施した。同様のドッキングスタディの手順は当研究室においてヒスタミンH3受容体の結合様式解析で報告している。ドッキングスコア(Glide XP)*とpEC50†の相関解析をFigure 10に示す。また、ドッキングスコアとpEC50の値をTable 12に示す。Figure 10に示した通り、ドッキングスコアとpEC50の間に正の相関が見られ、その相関係数(R)はR = 0.67であり(Figure 10A)、8つのインドゾール類縁体に限定するとR = 0.90であった(Figure 10B)。ゆえに、ドッキングスコアとpEC50の間には強い相関があることを示している。この強い相関はβ3-ARホモロジーモデルとリガンドのドッキングポーズによりβ3-ARアゴニスト活性の構造活性相関を合理的に説明できる。

*リガンドとβ3-ARの相互作用として水素結合、静電相互作用、ファンデルワールス力、クーロン力、疎水性相互作用に関してスコアを計算し、その合計からリガンドの配座安定性とリガンドの脱水和エネルギーをペンアルティとして引いた値を最終的なドッキングスコアとして算出している。
†pEC50 = -log10(EC50)
Figure 8. Flow chart of the docking procedure.
Figure 9. Multiple sequence alignment of human β3-AR (ADRB3_HUMAN), human α1A-AR (ADA1A_HUMAN), human β1-AR (ADRB1_HUMAN), and human β2-AR (ADRB2_HUMAN) using MOE 2015 software (Chemical Computing Group). Sequences were drawn from UniProt (β3-AR, P13945; α1A-AR, P35348; β1-AR, P08588; β2-AR, P07550).
Figure 10. (A) Plot of docking score calculated by Glide extra precision (XP) based on the compound 56f β3-AR model versus experimental β3-AR agonistic activity (pEC50) for all 12 compounds. The coefficient of determination, R^2, was 0.45 for the docking scores and pEC50 values of all 12 compounds. (B) Plot of docking score calculated by Glide extra precision (XP) based on the compound 56f β3-AR model versus β3-AR agonistic activity (pEC50) for eight indazole analogues. The coefficient of determination, R^2, was 0.82 for the docking scores and pEC50 values of eight indazole analogues. See Table 12 for individual pEC50 values and docking scores.
Table 12. Summary of pEC$_{50}$ values for β_3-AR and docking scores (Glide XPa)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>R^2</th>
<th>β_3-AR pEC$_{50}$</th>
<th>Docking Score (Glide XP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Me</td>
<td>Me</td>
<td>7.7</td>
<td>-14.5</td>
</tr>
<tr>
<td>6</td>
<td>Me</td>
<td>CH$_2$OH</td>
<td>7.0</td>
<td>-13.2</td>
</tr>
<tr>
<td>11</td>
<td>Me</td>
<td>i-Pr</td>
<td>7.9</td>
<td>-14.4</td>
</tr>
<tr>
<td>12</td>
<td>Me</td>
<td>t-Bu</td>
<td>6.5</td>
<td>-13.0</td>
</tr>
<tr>
<td>56a</td>
<td>n-Pr</td>
<td>Me</td>
<td>8.2</td>
<td>-14.3</td>
</tr>
<tr>
<td>56d</td>
<td></td>
<td>Me</td>
<td>7.7</td>
<td>-14.7</td>
</tr>
<tr>
<td>56e</td>
<td></td>
<td>Me</td>
<td>6.5</td>
<td>-12.4</td>
</tr>
<tr>
<td>56f</td>
<td>Ph</td>
<td>Me</td>
<td>8.4</td>
<td>-16.6</td>
</tr>
<tr>
<td>isoproterenol</td>
<td></td>
<td></td>
<td>7.1</td>
<td>-10.8</td>
</tr>
<tr>
<td>KUC-7322 (active form of ritobegron)b</td>
<td></td>
<td></td>
<td>7.1</td>
<td>-12.5</td>
</tr>
<tr>
<td>S1c</td>
<td></td>
<td></td>
<td>7.7</td>
<td>-11.6</td>
</tr>
<tr>
<td>S2c</td>
<td></td>
<td></td>
<td>7.7</td>
<td>-13.5</td>
</tr>
</tbody>
</table>

aXP, Extra precision. bReference compound$^{17, 38}$. cReference compounds32.
次に、インダゾールシリーズの中でβ3-ARに対するアゴニスト活性、選択性、薬物動態プロファイルが最も良い化合物56dとβ3-ARのドッキングポーズに対して分子動力学（Molecular Dynamics, MD）シミュレーションによる解析を行った。なぜならば、ドッキングスコアが良好にみえても、ドッキングにて得られたポーズとMDシミュレーション後に得られたポーズに大きく乖離がある例が報告されている[39]からである。Figure 11に20 ns間のMDシミュレーション中、化合物56dとβ3-ARの主鎖Caの二乗平均偏差（Root Mean Square Deviation, RMSD）の推移を示す。その結果、β3-ARの構造、並びに化合物56dの位置のRMSDは1〜3Å以内であり、さらに5 ns〜20 nsの間においてその値に変化が無く、安定な結合ポーズを定常的に保っていることが示唆された。ゆえに、20 nsのMDシミュレーション後の化合物56dとβ3-ARの結合様式に対して、詳細な相互作用解析を行った。

Figure 11. The plot showed the Root Mean Square Deviation (RMSD) evolution of β3-AR (left Y-axis) and compound 56d (right Y-axis). The RMSD was used to measure the average change in displacement of a selection of atoms for a particular frame with respect to a reference frame (the first frame was used as the reference and it is regarded as time t=0). 'Ca' shows the RMSD of Ca in β3-AR backbone. 'Lig fit Prot' shows the RMSD of a ligand (56d) when the β3-AR-56d complex is first aligned on the protein backbone of the reference and then the RMSD of the 56d heavy atoms is measured. It was calculated for all frames in the trajectory.

β3-ARと化合物56dのドッキングポーズの初期構造とし、MDシミュレーション中の各原子の二乗平均偏差を取ることで、初期構造からどのくらいβ3-ARの構造や化合物56dが動いたか示すことができる。
第2節 β3-ARと化合物56dの相互作用解析とβ3-AR選択性の考察

Figure 12に20ns MDシミュレーション後の化合物56dとβ3-ARの推定結合様式を示す。化合物56dのアミノアルコールはβ3-ARのAsp117、Asn332と水素結合が確認された。また、化合物56dのスルホンアミドNHはSer208と水素結合が確認された。これらの3つの水素結合はBI-167107-β2-AR複合体（PDB entry3P0G）の結晶構造においても確認されており、アドレナリン受容体とアンチアロストリシンの間に重要な相互作用であると考えられている。さらに、化合物56dのインドゾールNHとCys196の主鎖カルボニルの間に水素結合が見られ、インドゾール環の周辺はLeu97、Leu329、Trp333との疎水性相互作用が予測された。また、化合物56dのスルホンアミドのアミノ酸残基とAsn312の間に水素結合が想定され、フェニル環とPhe309との間にT型のπ-π相互作用が予測された。化合物56dのシクロブタン基はVal118、Ile173、Tyr204が形成する疎水性ポケットを占めていると推定された。

続いて、α1A-AR/β3-ARの選択性に関して、化合物56dとβ3-ARの推定結合様式を基にβ3-ARとα1A-ARのアミノ酸残基の違いから考察した。Figure 4とTable 3に示した通り、インドゾール3位置換基を変換した結果、α1A-ARに対するβ3-AR選択性の順番はイソプロピル11＞シクロブチル14＞エチル10＞メチル5＞ヒドロキシメチル6であった。この構造活性相関は疎水性相互作用がα1A-ARに対するβ3-AR選択性を高めることを示唆している。先に述べたように、インドゾール基はβ3-ARの疎水性残基であるLeu97、Leu329、Trp333と相互作用している。一方、α1A-ARにおいてβ3-ARのLeu329に対応する残基は極性残基であるLys309である。したがって、α1A-ARにおいてインドゾール環が相互作用しているポケットの環境はβ3-ARよりもより極性が高いと推測される。ゆえに、α1A-AR/β3-AR選択性の構造活性相関は化合物56dとβ3-ARの推定結合ポーズから得られた結果を支持している。一方、スルホンアミド基の置換基を変えた時のα1A-ARに対するβ3-AR選択性の順番はフェニル56f＞シクロブチル56d＞n-プロピル56a＞メチル5であった（Table 8）。この構造活性相関はより高い置換基がα1A-AR/β3-AR選択性を向上させていることを示す。化合物56dのシクロブチル基はβ3-ARのVal118、Ile173、Tyr204側鎖と疎水性相互作用をしている。一方、α1A-ARにおいてβ3-ARのIle173に対応する残基はそれぞれIle178、Asn179、Glu180である。さらに、スルホンアミド基のスルホンの近くにはβ3-ARの細胞外第2ループ（Extracellular Loop 2, ECL2）に含まれるPhe198、Ala199、Ser200があり、α1A-ARにおける対応する残基はそれぞれIle178、Asn179、Glu180である。したがって、シクロブチルスルホンアミド基の置換基周辺はα1A-ARとβ3-ARで対応する残基の種類が異なり、ポケットのサイズや水素結合に関する性質が違うため、その相互作用はα1A-ARとβ3-ARの間で大きく異なると予想される。ゆえに、これらの違いが、スルホンアミド基の置換基を嵩高くした時にα1A-AR/β3-AR選択性が大きく向上することに関係していると推測される。さらに、β1-ARとβ2-ARに対するβ3-AR選択性に関しても化合物56dとβ3-ARの推定結合ポーズを基に考察した。Edmondonらは化合物4のアミルのカルボニルがβ2-ARのAla197の近傍にあり、そのAla197はβ1-ARとβ2-ARにおけるAsp残基と対応し、静電的性質とサイズが異なる理由で化合物4がβ2-ARに高選択性であると報告している。化合物56dのインドゾールNHはβ3-ARのCys196の主鎖のカルボニルと水素結合しており、Ala197はインドゾール基の近くにある。Edmondonらの報告と同様に、β3-ARのAla197はβ1-ARとβ2-ARにおけるAsp残基と対応する（Asp217 in β1-AR, Asp192 in β2-AR）ため、このAsp残基の側鎖は静電的性質とサイズがAla197と大きく異なる。ゆえに、化合物56dのインドゾール基はβ1-AR並びにβ2-ARと水素結合形成において不利に働くと推測される。したがって、このインドゾール基はβ1-ARとβ2-ARに対して高いβ3-AR選択性を有するために重要な置換基であると考えられる。
Figure 12. (A-1 and A-2) Proposed model of compound 56d binding to the homology model of β3-AR after MD refinement. Receptor residues within 4.0 Å of compound 56d are represented by lines. Compound 56d is shown as a ball and stick model. All nonpolar hydrogen atoms of the receptor residues are omitted for clarity. Hydrogen bonding and salt bridges to side chains of Asp117, Ser208, Asn312, and Asn332 are depicted by blue dots. Hydrogen bonding to the backbone of Cys196 is also depicted by blue dots. (B) Schematic representation of the interactions between compound 56d and β3-AR residues using the Maestro Ligand Interaction Diagram module (Schrödinger, LLC). Hydrogen bonding is indicated with dashed arrows, salt bridge with purple lines, cation-π interactions with red lines, and π-π interactions with green lines.
第3節 第3章まとめ

β1-AR のホモロジーモデルを作成し、12 種のβ3-AR アゴニストとドッキングスタディを実施した。その結果、pEC_{50} とドッキングスコアに高い相関が確認できた。したがって、β3-AR ホモロジーモデルとリガンドのドッキングポーズが妥当であることが示唆された。また、化合物 56d の MD シミュレーションを実施し、β3-AR と化合物 56d は安定に結合していることが示唆された。化合物 56d とβ3-AR の相互作用解析を実施し、さらにα1A-AR、β1-AR、β2-AR に対するβ3-AR 選択性に関して考察した。β3-AR と化合物 56d の相互作用に重要なアミノ酸残基を明らかにしたことにより、今後、本成果は高選択的β3-AR アゴニストの設計に有用な情報になり得る。
結語

1. アリールエタノールアミンライブラリーから見出したヒット化合物（β3-AR アゴニスト）5 のインダゾール 3 位を変換することにより、β3-AR に高選択的なアゴニスト 11 を見出した。化合物 11 はマーモセットに対して用量依存的に排尿筋弛緩作用を示した。さらに、化合物 11 は過活動膀胱治療薬として上市されているミラベグロン（1）と比較し、ラット静脈内投与における血圧心拍に対して影響を与えなかった。β3-AR に対する高選択性がミラベグロン（1）よりも心血管系に対する副作用が少ない要因と考えられる。

\[\beta_3\text{-AR EC}_{50} = 21 \text{nM} \]
\[\alpha_1\text{-AR EC}_{50} = 219 \text{nM} \]

2. 化合物 11 は経口剤としての薬物動態プロファイアルに問題があったので、その最適化を実施した結果、化合物 56d の創出に成功した。化合物 56d はラットにおいて顕著な経口吸収が確認できた。さらに、化合物 11 と同様に化合物 56d は用量依存的にマーモセットの膀胱平滑筋を弛緩させる優れた薬効を示し、ミラベグロン（1）よりも心血管系の副作用が少なかった。さらに化合物 56d はミラベグロン（1）よりも薬物間相互作用のリスクが低くことも示された。ゆえに、化合物 56d は心血管系の副作用を軽減した経口投与可能なβ3-AR 高選択的アゴニストである。

\[\beta_3\text{-AR EC}_{50} = 13 \text{nM} \]
Poor metabolic stability
Poor pharmacokinetics（C_{max} and AUC）

\[\beta_3\text{-AR EC}_{50} = 18 \text{nM} \]
Improved metabolic stability
Orally available
No cardiovascular side effects
3. β3-AR のホモロジーモデルを作成し、12 種のβ3-AR アゴニストに対するドッキングスタディを実施した。その結果、pEC50 とドッキングスコアに高い相関が確認できた。さらに、β3-AR と化合物 56d の複合体に対して MD シミュレーションを実施した結果、β3-AR と化合物 56d は安定に結合していることが示唆された。得られた化合物 56d と β3-AR の推定結合様式を基に相互作用解析を実施し、結合に重要なアミノ酸残基の推定と β3-AR 選択性に関して考察した。これら解析により、β3-AR に高選択性な化合物 56d の相互作用に重要なアミノ酸残基を明らかにした結果は、今後、高選択性β3-AR アゴニストの設計に有用な情報になり得る。

β3-AR と化合物 56d の推定結合様式
実験の部

General Methods

All reagents and solvents were purchased from commercial sources and were used as received. Anhydrous solvents were obtained from commercial sources. Thin layer chromatography (TLC) was carried out using the Merck GmbH Precoated silica gel 60 F254. Compounds were visualized by irradiation under a 254 nm UV light. Chromatography on silica gel was carried out using pre-packed silica gel cartridges (Yamazen Hi-Flash Column Silicagel or Purifpack-Si series) and the indicated solvent system on either a Yamazen Multi Prep YFLC or a Moritex Purif-α2 (50F). 1H NMR spectra were recorded on either a JEOL AL-300 (300 MHz) or a Bruker BIOspin AVANCE3HD (400 MHz), with chemical shifts reported in δ values (ppm) relative to trimethylsilane. The following abbreviations are used to describe peak patterns where appropriate: s; singlet, d; doublet, t; triplet, q; quartet, qu; quintet, dd; doublet doublet, td; triplet doublet, qd; quartet doublet, qud; quintet doublet, m; multiplet, and brs; broad singlet. Electrospray ionization (ESI) high-resolution mass spectra were recorded using a Thermo Fisher Orbitrap Velos Pro. Liquid chromatography-mass spectrometry (LC/MS) data were recorded using either a Micromass platform-LC type mass spectrometer or a Waters single quadrupole type mass spectrometer, the UPLC/SQD system, by an electrospray ionization (ESI) method. HPLC analyses were performed following conditions: (Method A) Shiseido CAPCELL CORE ADME column (2.7 μm, 2.1 x 50 mm), 40 °C column temperature, 1.0 mL/min flow rate, photodiode array detection (254 nm), linear mobile phase gradient of 10-95% B over 2 min, holding 1.5 min at 95% B, holding 1.5 min at 10% B (mobile phase A: 10 mM ammonium acetate in water; mobile phase B: acetonitrile). (Method B) YMC Meteoric Core C18 column (2.7 μm, 3.0 x 50 mm), 40 °C column temperature, 1.0 mL/min flow rate, photodiode array detection (254 nm), linear mobile phase gradient of 10-95% B over 2 min, holding 2 min at 95% B, holding 2 min at 10% B (mobile phase A: 10 mM ammonium acetate in water; mobile phase B: acetonitrile). All animal experiments were approved by the Committee on Ethics in Animal Experiments of Asahi Kasei Pharma Corporation.

Chemistry

N-(3-((1R)-1-Hydroxy-2-(2-((3-methyl-1H-indazol-6-yl)oxy)ethylamino)ethyl)phenyl)methanesulfonamide (5).

To a stirred solution of **18** (128 mg, 0.52 mmol), **17** (2 mL, 1.0 mmol, 0.5 M toluene solution), and triphenylphosphine (261 mg, 1.0 mmol) in anhydrous toluene (5 mL) was added **N,N,N’,N’-**tetramethylazodicarboxamide (195 mg, 1.1 mmol) at room temperature, and the solution was stirred for 4 days. The reaction solution was then purified by flash column chromatography on silica gel (74:26 to 53:47 n-hexane/ethyl acetate) to give 371 mg (90% yield) of the coupling product. 1H-NMR (400 MHz, CDCl3, 1:1 rotamers): δ 0.54 (6H, q, J = 8.0), 0.89 (9H, t, J = 8.0), 1.44 (9H, s), 1.48 and 1.52 (9H, each s), 1.69 and 1.70 (9H, each s), 2.52 and 2.53 (3H, each s), 3.24-3.26 (7H, m), 4.03-4.11 (2H, m), 4.94-4.97 and 5.10-5.13 (1H, each m), 6.86 (1H, dd, J = 1.7, 8.6), 7.12-7.16 (1H, m), 7.21-7.47 (4H, m), 7.54 (1H, s); LC/MS (ESI, [M+H]+, m/z) 819. To the solution of the obtained product (287 mg, 0.35 mmol) in 1,4-dioxane (0.4 mL) was added 4 M HCl in 1,4-dioxane (4 mL), and the mixture was stirred at room temperature for 6.5 h. The resultant solid was collected by suction filtration and dried. The crude solid (170 mg) was treated with water (0.5 mL) and ethanol (2.0 mL) to promote crystallization. The crystals were filtered, and washed with ethanol to afford 61 mg (37% yield) of the title compound as dihydrochloride salt.
1H-NMR (400 MHz, DMSO-d6): δ 2.46 (3H, s), 3.00 (3H, s), 3.04-3.10 (1H, m), 3.24-3.28 (1H, m), 3.44-3.47 (2H, m), 4.34-4.41 (2H, m), 5.02 (1H, dd, J = 2.1, 10.1), 6.80 (1H, dd, J = 2.1, 8.8), 6.92 (1H, d, J = 2.1), 7.12-7.17 (2H, m), 7.31 (1H, s), 7.35 (1H, t, J = 7.8), 7.63 (1H, d, J = 8.8), 9.05 (1H, brs), 9.38 (1H, brs), 9.86 (1H, brs); 13C-NMR (100 MHz, DMSO-d6): δ 11.3, 39.1, 45.9, 53.6, 63.4, 67.9, 92.1, 111.9, 116.9, 117.0, 118.9, 121.0, 121.1, 129.3, 138.5, 140.7, 141.6, 143.0, 157.4; HRMS calculated for C19H24N4O4S + H + 405.1591, found (ESI, [M+H] +) 405.1588; LC/MS (ESI, [M+H]+, m/z) 405; HPLC (Method A): purity 100% RT 1.7 min.

N-(3-((1R)-1-Hydroxy-2-(2-((3-(hydroxymethyl)-1H-indazol-6-yl)oxy)ethylamino)ethyl)phenyl)methanesulfonamide (6). To a stirred solution of 30 (139 mg, 0.16 mmol) in THF (1.2 mL) and methanol (2.0 mL) was added 2 M NaOH (1.6 mL, 3.2 mmol) at 40 °C, and the solution was stirred for 5 h. The reaction mixture was poured into water (50 mL) and washed twice with diethyl ether. The aqueous layer was added 5 M HCl (5 mL) and extracted three times with ethyl acetate. The combined organic layers were dried over magnesium sulfate and filtered. The solution was concentrated to give carboxylic acid (95 mg), which was used without further purification. This material (77 mg, 0.11 mmol) was dissolved in anhydrous THF (4.3 mL) under nitrogen and the solution was added borane tetrahydrofuran complex (0.5 mL, 0.6 mmol, 1.2 M in THF) at 0 °C. The resulting solution was allowed to warm to room temperature and was then stirred overnight. The reaction mixture was added methanol (0.5 mL) at 0 °C. The solution was poured into water and extracted twice with ethyl acetate. The combined organic layers were washed twice with water, dried over sodium sulfate, and filtered. The organic layer was concentrated to give alcohol (95 mg), which was used without further purification. This material (68 mg, 0.1 mmol) was dissolved in ethanol (0.5 mL), hydrochloric acid (0.17 mL) was then added at room temperature and the mixture was stirred for 24 h. The resultant solid was collected by filtration and dried to give 39 mg (80% yield) of the title compound as dihydrochloride salt. 1H-NMR (400 MHz, DMSO-d6): δ 3.00 (3H, s), 3.04-3.11 (1H, m), 3.24-3.28 (1H, m), 3.41-3.46 (2H, m), 4.32-4.41 (2H, m), 4.73 (2H, s), 5.02 (1H, dd, J = 2.1, 10.2), 6.79 (1H, d, J = 2.1, 8.8), 6.93 (1H, d, J = 2.1), 7.12-7.17 (2H, m), 7.31 (1H, s), 7.35 (1H, t, J = 7.8), 7.74 (1H, d, J = 8.8), 9.02 (1H, brs), 9.32 (1H, brs), 9.86 (1H, s), 12.65 (1H, brs); 13C-NMR (100 MHz, DMSO-d6): δ 39.1, 45.9, 53.6, 56.6, 63.3, 67.9, 92.1, 111.6, 116.5, 116.9, 118.9, 121.2, 121.5, 129.3, 138.5, 141.9, 143.0, 145.4, 156.9; HRMS calculated for C19H24N4O5S + H + 421.1540, found (ESI, [M+H] +) 421.1537; LC/MS (ESI, [M+H]+, m/z) 421; HPLC (Method A): purity 100% RT 1.5 min.

N-(3-((1R)-1-Hydroxy-2-(2-((3-methoxy-1H-indazol-6-yl)oxy)ethylamino)ethyl)phenyl)methanesulfonamide (7). To a stirred solution of 19 (215 mg, 0.8 mmol), 17 (942 mg, 1.6 mmol), and triphenylphosphine (448 mg, 1.7 mmol) in anhydrous toluene (12 mL) was added N,N,N',N'-tetramethylazodicarboxamide (288 mg, 1.7 mmol) at room temperature, and the solution was stirred overnight. The reaction solution was then purified by flash column chromatography on silica gel (100:0 to 74:26 n-hexane/ethyl acetate) to give 587 mg (87% yield) of the coupling product. 1H-NMR (300 MHz, CDCl3, 1:1 rotamers): δ 0.53 (6H, q, J = 7.9), 0.87 (9H, t, J = 7.9), 1.42 (9H, s), 1.46 and 1.51 (9H, each s), 1.67 (9H, s), 3.20-3.60 (7H, m), 3.99-4.04 (m, 2H), 4.12 (3H, s), 4.92-4.96 and 5.08-5.12 (1H, each m), 6.80 (1H, dd, J = 2.1, 8.7), 7.11-7.47 (6H, m); LC/MS (ESI, [M+H]+, m/z) 835. To the solution of the obtained product (580 mg, 0.7 mmol) in tert-butyl methyl ether (1 mL) was added 4 M HCl in 1,4-dioxane (7 mL), 42
and the mixture was stirred overnight at room temperature. The resultant solid was collected by suction filtration, washed with tert-butyl methyl ether, and dried to afford 321 mg (93% yield) of the title compound as dihydrochloride salt. \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 3.00 (3H, s), 3.03-3.10 (1H, m), 3.23-3.27 (1H, m), 3.44-3.46 (2H, m), 3.96 (3H, s), 4.33-4.41 (2H, m), 5.04 (1H, dd, \(J = 2.1, 10.2\)), 6.70 (1H, dd, \(J = 2.0, 8.8\)), 6.81 (1H, d, \(J = 2.0\)), 7.13 (1H, d, \(J = 7.8\)), 7.16 (1H, dd, \(J = 1.3, 7.8\)), 7.30 (1H, s), 7.35 (1H, t, \(J = 7.8\)), 7.48 (1H, d, \(J = 8.8\)), 9.09 (1H, brs), 9.47 (1H, brs), 9.87 (1H, s), 11.83 (1H, brs); \(^1\)3C-NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 39.7, 46.4, 54.2, 56.1, 63.9, 66.8, 92.8, 106.5, 111.4, 117.5, 119.5, 120.5, 121.8, 129.8, 139.1, 143.5, 143.6, 156.7, 158.4; HRMS calculated for C\(_{19}\)H\(_{24}\)N\(_4\)O\(_5\)S + H + 421.1540, found (ESI, [M+H]+) 421.1538; LC/MS (ESI, [M+H]+, m/z) 421; HPLC (Method A): purity 100% RT 1.8 min.

\(\text{N-(3-((1R)}-2-(2-(3-Ethoxy-1H-indazol-6-yl)oxy)ethylamino)-1-hydroxy-ethyl)phenyl)methanesulfonamide (8). To a stirred solution of 20 (51 mg, 0.18 mmol), 17 (212 mg, 0.36 mmol), and triphenylphosphine (94 mg, 0.36 mmol) in anhydrous toluene (2.7 mL) was added \(\text{N,N,N',N'-tetramethylazodicarboxamide (62 mg, 0.36 mmol)}\) at room temperature, and the solution was stirred overnight. The reaction solution was then purified by flash column chromatography on silica gel (88:12 to 67:33 n-hexane/ethyl acetate) to give 137 mg (89% yield) of the coupling product. \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): \(\delta\) 0.54 (6H, t, \(J = 7.9\)), 0.89 (9H, q, \(J = 7.9\)), 1.44-1.47 (12H, m), 1.48 and 1.52 (9H, each s), 1.68 (9H, s), 3.22-3.61 (7H, m), 4.01-4.11 (2H, m), 4.51 (2H, q, \(J = 7.0\)), 4.93-4.98 and 5.09-5.13 (1H, each m), 6.80 (1H, dd, \(J = 2.1, 8.7\)), 7.13-7.50 (6H, m); LC/MS (ESI, [M+H]+, m/z) 849. To the solution of the obtained product (130 mg, 0.15 mmol) in tert-butyl methyl ether (0.2 mL) was added 4 M HCl in 1,4-dioxane (1.5 mL), and the mixture was shaken (600 min\(^{-1}\)) for overnight at room temperature. Nitrogen gas was blown into the reaction solution to evaporate the solvent. Subsequently, water was added to dissolve the residue and the solution was freeze-dried to give 76 mg (98 % yield) of the title compound as dihydrochloride salt. \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 1.39 (3H, t, \(J = 7.0\)), 3.00 (3H, s), 3.03-3.10 (1H, m), 3.23-3.27 (1H, m), 3.43-3.49 (2H, m), 4.33 (2H, q, \(J = 7.0\)), 4.34-4.41 (2H, m), 5.03 (1H, dd, \(J = 2.1, 10.2\)), 6.70 (1H, dd, \(J = 2.0, 8.8\)), 6.81 (1H, d, \(J = 2.0\)), 7.13 (1H, d, \(J = 7.7\)), 7.15-7.18 (1H, m), 7.30 (1H, s), 7.35 (1H, t, \(J = 7.8\)), 7.47 (1H, d, \(J = 8.8\)), 9.07 (1H, brs), 9.42 (1H, brs), 9.87 (1H, s), 11.78 (1H, s); \(^1\)3C-NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 14.7, 39.1, 45.8, 53.6, 63.3, 63.8, 67.9, 92.2, 106.1, 110.8, 117.0, 119.0, 120.0, 121.2, 129.2, 138.5, 142.7, 143.0, 155.5, 157.7; HRMS calculated for C\(_{20}\)H\(_{26}\)N\(_4\)O\(_5\)S + H + 435.1967, found (ESI, [M+H]+) 435.1696; LC/MS (ESI, [M+H]+, m/z) 435; HPLC (Method A): purity 100% RT 1.9 min.

\(\text{N-(3-((1R)}-2-(2-(3-Chloro-1H-indazol-6-yl)oxy)ethylamino)-1-hydroxy-ethyl)phenyl)methanesulfonamide (9). To a stirred solution of 21 (26 mg, 0.1 mmol), 17 (118 mg, 0.2 mmol), and triphenylphosphine (55 mg, 0.2 mmol) in anhydrous toluene (1.5 mL) was added \(\text{N,N,N',N'-tetramethylazodicarboxamide (35 mg, 0.2 mmol)}\) at room temperature, and the solution was stirred overnight. Then the reaction solution was then purified by flash column chromatography on silica gel (81:19 to 60:40 n-hexane/ethyl acetate) to give 71 mg (85% yield) of the coupling product. \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): \(\delta\) 0.54 (6H, q, \(J = 7.9\)), 0.89 (9H, t, \(J = 7.9\)), 1.44 (9H, s), 1.49 and 1.52 (9H, each s), 1.69 (9H, s), 3.25-3.63 (7H, m), 4.03-4.11 (2H, m), 4.94-4.98 and 5.10-5.14 (1H, each m), 6.93 (1H, dd, \(J = 2.0, 8.8\)), 7.12-7.44 (4H, m), 7.50 (1H, dd, \(J = 3.6, 8.8\)), 7.57 (1H, d, \(J = 1.5\)); LC/MS
(ESI, [M+H]+; m/z) 839. To the solution of the obtained product (71 mg, 0.085 mmol) in tert-butyl methyl ether (0.2 mL) was added 4 M HCl in 1,4-dioxane (1.2 mL), and the mixture was shaken (600 min⁻¹) overnight at room temperature. The resultant solid was collected by suction filtration, washed with tert-butyl methyl ether, and dried to afford 41 mg (96% yield) of the title compound as dihydrochloride salt. 1H-NMR (400 MHz, DMSO-d6): δ 3.00 (3H, s), 3.04-3.10 (1H, m), 3.24-3.28 (1H, m), 3.46-3.48 (2H, m), 4.38-4.43 (2H, m), 5.03 (1H, dd, J = 2.1, 10.2), 6.91 (1H, dd, J = 2.0, 8.9), 7.01 (1H, d, J = 2.0), 7.12-7.17 (2H, m), 7.31 (1H, s), 7.35 (1H, t, J = 7.8), 7.56 (1H, d, J = 8.9), 9.08 (1H, brs), 9.43 (1H, brs), 9.86 (1H, s), 13.21 (1H, brs); 13C-NMR (100 MHz, DMSO-d6): δ 39.1, 45.8, 53.6, 63.5, 67.9, 92.6, 113.8, 114.4, 116.9, 118.9, 119.5, 121.2, 129.2, 132.0, 138.5, 142.1, 143.0, 157.9; HRMS calculated for C18H21ClN4O4S + H+ 425.1045, found (ESI, [M+H]+) 425.1045; LC/MS (ESI, [M+H]+, m/z) 425; HPLC (Method A): purity 100% RT 1.9 min.

N-(3-((1R)-2-(2-((3-Ethyl-1H-indazol-6-yl)oxy)ethylamino)-1-hydroxy-ethyl)phenyl)methanesulfonamide (10). To a stirred solution of 22 (1.326 g, 5 mmol), 17 (10 mL, 10 mmol, 1 M toluene solution), and triphenylphosphine (2.905 g, 11 mmol) in anhydrous toluene (15 mL) was added N,N,N',N'-tetramethylazodicarboxamide (1.953 g, 11 mmol) at room temperature, and the solution was stirred overnight. Triphenylphosphine (1.344 g) and N,N,N',N'-tetramethylazodicarboxamide (0.973 g) were further added to the reaction solution, and the mixture was stirred for 2 h at room temperature. Triphenylphosphine (1.24 g) and N,N,N',N'-tetramethylazodicarboxamide (0.923 g) were further added to the reaction solution, and the mixture was stirred for 0.5 h at room temperature. The reaction solution was then purified by flash column chromatography on silica gel (88:12 to 67:33 n-hexane/ethyl acetate) to give 3.71 g (88% yield) of the coupling product. 1H-NMR (300 MHz, CDCl3, 1:1 rotamers): δ 0.54 (6H, q, J = 7.9), 0.89 (9H, t, J = 7.9), 1.38 (3H, t, J = 7.6), 1.43 (9H, s), 1.48 and 1.52 (9H, each s), 1.70 (9H, s), 2.95 (2H, q, J = 7.6), 3.22-3.62 (7H, m), 4.93-4.97 and 5.09-5.13 (1H, each m), 6.77 (1H, dd, J = 2.1, 8.7), 7.13-7.60 (6H, m); LC/MS (ESI, [M+H]+, m/z) 833. The obtained product (3.56 g, 4.3 mmol) and 4 M HCl in ethyl acetate (70 mL) were stirred overnight at room temperature. The resultant solid was collected by suction filtration, washed with diethyl ether, and dried to afford 2.056 g (97% yield) of the title compound as dihydrochloride salt. 1H-NMR (400 MHz, DMSO-d6): δ 1.31 (3H, t, J = 7.6), 2.93 (2H, q, J = 7.6), 3.00 (3H, s), 3.04-3.11 (1H, m), 3.23-3.27 (1H, m), 3.43-3.48 (2H, m), 4.37-4.43 (2H, m), 5.05 (1H, dd, J = 2.1, 10.2), 6.83 (1H, dd, J = 2.1, 8.8), 6.95 (1H, d, J = 2.1), 7.13 (1H, d, J = 7.8), 7.16-7.18 (1H, m), 7.31 (1H, s), 7.35 (1H, t, J = 7.8), 7.70 (1H, d, J = 8.8), 9.13 (1H, brs), 9.54 (1H, brs), 9.88 (1H, s); 13C-NMR (100 MHz, DMSO-d6): δ 13.3, 19.2, 39.1, 45.8, 53.7, 63.4, 67.9, 92.1, 112.4, 115.8, 117.0, 119.0, 121.2, 121.3, 129.2, 138.5, 141.6, 143.0, 145.9, 157.8; HRMS calculated for C20H26N4O4S + H+ 419.1748, found (ESI, [M+H]+) 419.1748; LC/MS (ESI, [M+H]+, m/z) 419; HPLC (Method A): purity 100% Rr 1.9 min.

N-(3-((1R)-1-Hydroxy-2-(2-((3-isopropyl-1H-indazol-6-yl)oxy)ethylamino)ethyl)phenyl)methanesulfonamide (11). To a stirred solution of 23 (146 mg, 0.5 mmol), 17 (1.19 g, 2.0 mmol), and triphenylphosphine (574 mg, 2.2 mmol) in anhydrous toluene (5 mL) was added N,N,N',N'-tetramethylazodicarboxamide (371 mg, 2.1 mmol) at room temperature and the solution was stirred overnight. The reaction solution was then purified by flash column chromatography on silica gel (100:0 to 67:33 n-hexane/ethyl acetate) to give 400 mg (95% yield) of the coupling product.
N-(3-((1R)-2-(2-((3-tert-Butyl-1H-indazol-6-yl)oxy)ethylamino)-1-hydroxy-ethyl)phenyl)methanesulfonamide (12). To a stirred solution of 24 (141 mg, 0.5 mmol), 17 (0.92 mL, 0.9 mmol, 1 M toluene solution), and triphenylphosphine (401 mg, 1.5 mmol) in anhydrous toluene (5 mL) was added N,N,N′,N′-tetramethylazodicarboxamide (284 mg, 1.6 mmol) at room temperature, and the solution was stirred overnight. The reaction solution was then purified by flash column chromatography on silica gel (95:5 to 74:26 n-hexane/ethyl acetate) to give 354 mg (82% yield) of the coupling product. \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): δ 0.54 (6H, q, \(J = 7.9\)), 0.89 (9H, t, \(J = 7.9\)), 1.43-1.45 (15H, m), 1.47 and 1.51 (9H, each s), 1.50 (9H, s), 3.22-3.62 (8H, m), 4.02-4.11 (2H, m), 4.94-4.98 and 5.10-5.14 (1H, each m), 6.83 (1H, d, \(J = 8.8\)), 7.13-7.17 (1H, m), 7.31 (1H, s), 7.35 (1H, t, \(J = 7.8\)), 7.80 (1H, d, \(J = 8.9\)), 9.08 (1H, brs), 9.45 (1H, brs), 9.87 (1H, s); \(^13\)C-NMR (100 MHz, DMSO-\(d_6\)): δ 22.1, 26.6, 39.3, 45.9, 53.9, 63.6, 68.1, 92.4, 113.0, 115.0, 117.2, 119.2, 121.4, 121.9, 129.4, 138.7, 141.9, 143.2, 149.8, 158.1; HRMS calculated for C\(_{21}\)H\(_{28}\)N\(_4\)O\(_4\)S + H\(^+\) 433.1904, found (ESI, [M+H]\(^+\)) 433.1903; LC/MS (ESI, [M+H]\(^+\), m/z) 433; HPLC (Method A): purity 100% RT 1.9 min.

N-(3-((1R)-2-(2-((3-Cyclopropyl-1H-indazol-6-yl)oxy)ethylamino)-1-hydroxy-ethyl)phenyl)methanesulfonamide (13). To a stirred solution of 25 (1.415 g, 5 mmol), 17 (10 mL, 10 mmol, 1 M toluene solution), and triphenylphosphine (401 mg, 1.5 mmol) in anhydrous toluene (5 mL) was added N,N,N′,N′-tetramethylazodicarboxamide (284 mg, 1.6 mmol) at room temperature, and the solution was stirred overnight. The reaction solution was then purified by flash column chromatography on silica gel (95:5 to 74:26 n-hexane/ethyl acetate) to give 354 mg (82% yield) of the coupling product. \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): δ 0.54 (6H, q, \(J = 7.9\)), 0.89 (9H, t, \(J = 7.9\)), 1.43 (9H, s), 1.47 and 1.51 (9H, each s), 1.50 (9H, s), 3.22-3.62 (8H, m), 4.02-4.11 (2H, m), 4.94-4.98 and 5.10-5.14 (1H, each m), 6.83 (1H, d, \(J = 8.8\)), 7.13-7.17 (1H, m), 7.31 (1H, s), 7.35 (1H, t, \(J = 7.8\)), 7.80 (1H, d, \(J = 8.9\)), 9.08 (1H, brs), 9.45 (1H, brs), 9.87 (1H, s); \(^13\)C-NMR (100 MHz, DMSO-\(d_6\)): δ 22.1, 26.6, 39.3, 45.9, 53.9, 63.6, 68.1, 92.4, 113.0, 115.0, 117.2, 119.2, 121.4, 121.9, 129.4, 138.7, 141.9, 143.2, 149.8, 158.1; HRMS calculated for C\(_{22}\)H\(_{30}\)N\(_4\)O\(_4\)S + H\(^+\) 447.2061, found (ESI, [M+H]\(^+\)) 447.2061; LC/MS (ESI, [M+H]\(^+\), m/z) 447; HPLC (Method A): purity 100% RT 2.0 min.
triphenylphosphine (2.910 g, 11 mmol) in anhydrous toluene (50 mL) was added \(N,N,N',N'\)-tetramethylazodicarboxamide (1.915 g, 11 mmol) at room temperature, and the solution was stirred overnight. The reaction solution was purified by flash column chromatography on silica gel (95:5 to 74:26 n-hexane/ethyl acetate) to give 3.779 g (89% yield) of the coupling product. \(^{1}\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): \(\delta\) 0.54 (6H, q, \(J = 7.9\)), 0.89 (9H, t, \(J = 7.9\)), 1.03-1.05 (2H, m), 1.15-1.20 (2H, m), 1.44 (9H, s), 1.48 and 1.52 (9H, each s), 1.68 (9H, s), 2.13-2.21 (1H, m), 3.22-3.63 (7H, m), 4.02-4.13 (2H, m), 4.94-4.98 and 5.10-5.14 (1H, each m), 6.84 (1H, dd, \(J = 2.0, 8.7\)), 7.13-7.53 (6H, m); LC/MS (ESI, [M+H] +, \(m/z\)) 845. To the solution of the obtained product (3.770 g, 4.5 mmol) in 1,4-dioxane (9 mL) was added 4 M HCl in 1,4-dioxane (20 mL), and the mixture was stirred overnight at room temperature. Then, 4 M HCl in 1,4-dioxane (14 mL) was further added to the reaction solution, and the mixture was stirred for 2 h at room temperature. The resultant solid was collected by suction filtration, washed with diethyl ether, and dried under reduced pressure. The solid was dissolved with water, and the solution was freeze-dried to give 2.033 g (90 % yield) of the title compound as dihydrochloride salt. \(^{1}\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 0.96-1.02 (4H, m), 2.23-2.30 (1H, m), 3.00 (3H, s), 3.04-3.10 (1H, m), 3.24-3.28 (1H, m), 3.44-3.47 (2H, m), 4.34-4.42 (2H, m), 5.04 (1H, dd, \(J = 2.1, 10.2\)), 6.80 (1H, dd, \(J = 2.1, 8.8\)), 6.91 (1H, d, \(J = 2.1\)), 7.13 (1H, d, \(J = 8.0\)), 7.17 (1H, dd, \(J = 1.3, 8.0\)), 7.31 (1H, s), 7.34 (1H, t, \(J = 8.0\)), 7.70 (1H, d, \(J = 8.8\)), 9.11 (1H, brs), 9.50 (1H, brs), 9.87 (1H, s); \(^{13}\)C-NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 7.6, 7.7, 39.1, 45.8, 53.7, 63.4, 67.9, 92.2, 112.1, 116.2, 117.0, 119.0, 121.0, 121.2, 129.2, 138.5, 141.7, 143.0, 146.1, 157.6; HRMS calculated for C\(_{21}\)H\(_{26}\)N\(_4\)O\(_4\)S + H + 431.1748, found (ESI, [M+H] +) 431.1743; LC/MS (ESI, [M+H] +, \(m/z\)) 431; HPLC (Method B): purity 96% RT 1.9 min.

\(N\)-(3-((1R)-2-(2-((3-Cyclobutyl-1H-indazol-6-yl)oxy)ethylamino)-1-hydroxy-ethyl)phenyl)methanesulfonamide (14).\) To a stirred solution of \(\text{26 (1.426 g, 5 mmol), 17 (10 mL, 10 mmol, 1 M toluene solution), and triphenylphosphine (2.914 g, 11 mmol) in anhydrous toluene (25 mL) was added} \(N,N,N',N'\)-tetramethylazodicarboxamide (1.911 g, 11 mmol) at room temperature, and the solution was stirred overnight. The reaction solution was purified by flash column chromatography on silica gel (88:12 to 67:33 n-hexane/ethyl acetate) to give 3.848 g (90% yield) of the coupling product. \(^{1}\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): \(\delta\) 0.54 (6H, q, \(J = 7.9\)), 0.89 (9H, t, \(J = 7.9\)), 1.44 (9H, s), 1.48 and 1.52 (9H, each s), 1.70 (9H, s), 1.95-2.02 (1H, m), 2.11-2.20 (1H, m), 2.39-2.59 (4H, m), 3.22-3.63 (7H, m), 3.87 (1H, qu, \(J = 8.8\)), 4.02-4.08 (2H, m), 4.94-4.98 and 5.10-5.14 (1H, each m), 6.84 (1H, dd, \(J = 1.7, 8.6\)), 7.13-7.54 (6H, m); LC/MS (ESI, [M+H] +, \(m/z\)) 859. The obtained product (3.840 g, 4.3 mmol) and 4 M HCl in ethyl acetate (80 mL) were stirred overnight at room temperature. The resultant solid was collected by suction filtration, washed with diethyl ether, and dried to afford 2.166 g (93% yield) of the title compound as dihydrochloride salt. \(^{1}\)H-NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 1.90-1.98 (1H, m), 2.02-2.13 (1H, m), 2.35-2.43 (4H, m), 3.00 (3H, s), 3.04-3.11 (1H, m), 3.23-3.28 (1H, m), 3.45-3.48 (2H, m), 3.90 (1H, qu, \(J = 8.7\)), 4.37-4.44 (2H, m), 5.05 (1H, dd, \(J = 2.0, 10.2\)), 6.82 (1H, dd, \(J = 2.1, 8.8\)), 6.95 (1H, d, \(J = 2.1\)), 7.14 (1H, d, \(J = 7.8\)), 7.16-7.18 (1H, m), 7.31 (1H, s), 7.35 (1H, t, \(J = 7.8\)), 7.69 (1H, d, \(J = 8.8\)), 9.15 (1H, brs), 9.56 (1H, brs), 9.89 (1H, s); \(^{13}\)C-NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) 18.4, 27.9, 32.0, 39.1, 45.8, 53.7, 63.4, 67.9, 92.2, 112.4, 116.2, 117.0, 119.0, 121.2, 121.3, 129.2, 138.5, 141.8, 143.0, 147.6, 157.7; HRMS calculated for C\(_{22}\)H\(_{28}\)N\(_4\)O\(_4\)S + H + 445.1904, found (ESI, [M+H] +) 445.1897; LC/MS (ESI, [M+H] +, \(m/z\)) 445; HPLC (Method A): purity 96% RT 2.0 min.
N-(3-((1R)-1-Hydroxy-2-((3-(trifluoromethyl)-1H-indazol-6-yl)oxy)ethylamino)ethyl)phenyl)methanesulfonamide (15). To a stirred solution of 27 (1.511 g, 5 mmol), 17 (10 mL, 10 mmol, 1 M toluene solution), and triphenylphosphine (2.600 g, 9.9 mmol) in anhydrous toluene (15 mL) was added \(N,N,N',N'-\)tetramethylazodicarboxamide (1.733 g, 10 mmol) at room temperature, and the solution was stirred overnight. The reaction solution was then purified by flash column chromatography on silica gel (82:18 to 61:39 n-hexane/ethyl acetate) to give 3.544 g (81% yield) of the coupling product. \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): \(\delta\) 0.54 (6H, q, \(J = 8.1\)), 0.89 (9H, t, \(J = 8.1\)), 1.44 (9H, s), 1.49 and 1.53 (9H, each s), 1.71 (9H, s), 3.22-3.64 (7H, m), 4.04-4.13 (2H, m), 4.94-4.99 and 5.10-5.14 (1H, each m), 6.98 (1H, dd, \(J = 2.2, 8.8\)), 7.14-7.45 (4H, m) 7.59 (1H, d, \(J = 1.8\)), 7.64(1H, dd, \(J = 4.0, 8.8\)); LC/MS (ESI, [M+H]\(^+\), m/z) 873. The obtained product (3.514 g, 4 mmol) and 4 M HCl in ethyl acetate (80 mL) were stirred overnight at room temperature. The resultant solid was collected by suction filtration, washed with tert-butyl methyl ether, and dried to afford 1.930 g (93% yield) of the title compound as dihydrochloride salt. \(^1\)H-NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 3.00 (3H, s), 3.05-3.12 (1H, m), 3.24-3.28 (1H, m), 3.49 (2H, brs), 4.40-4.47 (2H, m), 5.02 (1H, d, \(J = 9.8\)), 6.28 (1H, brs), 7.03 (1H, dd, \(J = 2.1, 8.8\)), 7.13-7.18 (1H, m) 7.31 (1H, s), 7.35 (1H, t, \(J = 7.8\)), 7.71 (1H, d, \(J = 8.8\)), 9.11 (1H, brs), 9.46 (1H, brs), 9.87 (1H, s), 13.96 (1H, s); \(^{13}\)C-NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 39.2, 45.8, 53.6, 63.6, 67.9, 92.8, 113.7, 115.4, 117.0, 119.0, 119.6, 121.2, 122.2 (q, \(J = 268\)), 129.2, 133.0 (q, \(J = 36\)), 138.5, 141.9, 143.0, 157.7; HRMS calculated for C\(_{19}\)H\(_{21}\)F\(_3\)N\(_4\)O\(_4\)S + H\(^+\) 459.1308, found (ESI, [M+H]+) 459.1307; LC/MS (ESI, [M+H]+, m/z) 459; HPLC (Method A): purity 99% RT 2.0 min.

N-(3-((1R)-1-Hydroxy-2-((3-phenyl-1H-indazol-6-yl)oxy)ethylamino)ethyl)phenyl)methanesulfonamide (16). To a stirred solution of 28 (34 mg, 0.13 mmol), 17 (0.5 mL, 0.20 mmol, 0.4 M toluene solution), and triphenylphosphine (56 mg, 0.21 mmol) in anhydrous toluene (1 mL) was added \(N,N,N',N'-\)tetramethylazodicarboxamide (40 mg, 0.23 mmol) at room temperature, and the solution was stirred overnight. The reaction solution was then purified by flash column chromatography on silica gel (88:12 to 67:33 n-hexane/ethyl acetate) to give 77 mg (87% yield) of the coupling product. \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): \(\delta\) 0.55 (6H, q, \(J = 7.9\)), 0.89 (9H, t, \(J = 7.9\)), 1.44 (9H, s), 1.46 and 1.49 (9H, each s), 1.73 (9H, s), 3.24-3.64 (7H, m), 4.06-4.15 (2H, m), 4.95-4.99 and 5.10-5.15 (1H, each m), 6.93 (1H, dd, \(J = 1.9, 8.8\)), 7.13-7.52 (7H, m), 7.64 (1H, d, \(J = 1.9\)), 7.79 (1H, dd, \(J = 3.0, 8.8\)), 7.96 (2H, dd, \(J = 1.5, 8.0\)); LC/MS (ESI, [M+H]+, m/z) 881. To the solution of the obtained product (75 mg, 0.09 mmol) in tert-butyl methyl ether (0.2 mL) was added 4 M HCl in 1,4-dioxane (1 mL) and the mixture was stirred overnight at room temperature. The resultant solid was collected by suction filtration, washed with tert-butyl methyl ether, and dried to afford 48 mg (quantitative yield) of the title compound as dihydrochloride salt. \(^1\)H-NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 3.00 (s, 3H), 3.08-3.12 (1H, m), 3.25-3.30 (1H, m), 3.47-3.50 (2H, m), 4.42-4.44 (2H, m), 5.04 (1H, dd, \(J = 2.0, 10.2\)), 6.91 (1H, dd, \(J = 2.0, 8.9\)), 7.05 (1H, d, \(J = 2.0\)), 7.13-7.18 (2H, m), 7.32 (1H, s), 7.35 (1H, t, \(J = 7.9\)), 7.38-7.42 (1H, m), 7.49-7.53 (2H, m), 7.96-7.99 (3H, m), 9.08 (1H, brs), 9.41 (1H, brs), 9.87 (1H, s); \(^{13}\)C-NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 39.1, 45.9, 53.6, 63.4, 67.9, 92.5, 113.0, 115.1, 115.4, 117.0, 119.2, 119.6, 118.9, 121.2, 121.5, 126.5, 127.6, 128.7, 129.2, 133.6, 138.5, 142.6, 142.9, 143.0, 156.9; HRMS calculated for C\(_{24}\)H\(_{26}\)N\(_4\)O\(_4\)S + H\(^+\) 467.1748, found (ESI, [M+H]+) 467.1746; LC/MS (ESI, [M+H]+, m/z) 467; HPLC (Method A): purity 99% RT 2.0 min.

47
tert-Butyl N-(3-((1R)-2-(2-hydroxyethylamino)-1-triethylsilyloxy-ethyl)phenyl)-N-methylsulfonyl-carbamate (17). A stirred mixture of 53 (494 mg, 0.88 mmol) and 20% palladium hydroxide on carbon (103 mg) in THF (1.8 mL) and methanol (1.8 mL) was evacuated, placed under a hydrogen atmosphere, and stirred overnight at 50 °C. The reaction mixture was passed through a membrane filter, and the solvent was concentrated under reduced pressure to give N-(3-((1R)-2-(2-hydroxyethylamino)-1-triethylsilyloxy-ethyl)phenyl)-methanesulfonamide (364 mg), which was used without further purification. \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 0.50-0.58 (6H, m), 0.81-0.91 (9H, t, \(J = 7.9\)), 2.71-2.86 (4H, m), 2.99 (3H, s), 3.59 (2H, \(t, J = 5.2\)), 4.79 (1H, dd, \(J = 4.5, 7.2\)), 7.11-7.23 (3H, m), 7.31 (1H, \(t, J = 7.8\)); LC/MS (ESI, [M+H]\(^+\), m/z) 291. The N-(3-((1R)-2-(2-hydroxyethylamino)-1-triethylsilyloxy-ethyl)phenyl)methanesulfonamide (337 mg, 0.86 mmol) was dissolved in anhydrous THF (4 mL). The solution was added triethylamine (0.12 mL, 0.86 mmol), Boc\(_2\)O (0.44 mL, 1.9 mmol) and 4-\(N, N\)-dimethylaminopyridine (21 mg, 0.17 mmol) at room temperature under a nitrogen atmosphere, and was stirred overnight. The reaction mixture was added ethyl acetate, washed twice with water, washed with brine, dried over Na\(_2\)SO\(_4\), and concentrated in vacuo. The residue (524 mg) was purified by flash column chromatography (71:29 to 50:50 n-hexane/ethyl acetate) to give the title compound (254 mg, 50% yield). \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers): \(\delta\) 0.49-0.58 (6H, m), 0.85-0.91 (9H, m), 1.44 (9H, s), 1.49 and 1.53 (9H, each s), 3.03-3.72 (9H, m), 5.00-5.04 and 5.27-5.29 (1H, each m), 7.12-7.16 (1H, m), 7.20-7.42 (3H, m); LC/MS (ESI, [M+H]\(^+\), m/z) 589.

tert-Butyl 6-hydroxy-3-methyl-1\(H\)-indazole-1-carboxylate (18). To a stirred mixture of 34a (16.74 g, 70 mmol) and 10% palladium on activated charcoal (5.12 g, PE-type, N.E.Chemcat.) in ethanol (166 mL) was added concentrated hydrochloric acid (5.83 mL, 70 mmol). The reaction was evacuated, placed under a hydrogen atmosphere and stirred for 10 h at 60 °C. The reaction mixture was added 10% palladium on activated charcoal (1.51 g, PE-type, N.E.Chemcat.). The mixture was evacuated, placed under a hydrogen atmosphere and stirred for 5 h at 60 °C. The reaction mixture was cooled to room temperature, passed through a membrane filter, and the solvent was concentrated under reduced pressure. The residue was partitioned between ethyl acetate and saturated aq NaHCO\(_3\). The organic layer was dried over Na\(_2\)SO\(_4\) and concentrated under reduced pressure to give 3-methyl-1\(H\)-indazol-6-ol (10.816 g). \(^1\)H-NMR (300 MHz, DMSO-\(d_6\)): \(\delta\) 2.38 (3H, s), 6.58 (1H, dd, \(J = 2.0, 8.6\)), 6.67 (1H, d, \(J = 2.0\)), 7.44 (1H, d, \(J = 8.6\)), 9.47 (1H, brs), 12.10 (1H, brs). LC/MS (ESI, [M+H]\(^+\), m/z) 149. To a stirred solution of 3-methyl-1\(H\)-indazol-6-ol (10.72 g, 70 mmol) and imidazole (9.55 g, 140 mmol) in anhydrous DMF (140 mL) was added TBDPSCl (38.53 g, 140 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was poured into water and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na\(_2\)SO\(_4\), and concentrated in vacuo. The residue (41.36 g) was dissolved in dichloromethane (350 mL). The solution was added triethylamine (8.55 g, 84 mmol), Boc\(_2\)O (18.36 g, 84 mmol) and 4-\(N, N\)-dimethylaminopyridine (0.85 g, 7 mmol) at room temperature, and the mixture was stirred overnight. The reaction solution was washed twice with 1 M HCl and washed with brine. The organic layer was dried over Na\(_2\)SO\(_4\) and concentrated under reduced pressure. The residue (52.57 g) was dissolved in anhydrous THF (350 mL). The solution was added 1 mol/L TBAF-THF solution
(140 mL, 140 mmol) at room temperature, and the mixture was stirred for 1 h. The reaction mixture was added ethyl acetate, and the organic layer was washed with brine and water. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (74:26 to 47:53 n-hexane/ethyl acetate) to afford the product (10.934 g, 63% yield). ¹H-NMR (300 MHz, CDCl₃): δ 1.66 (9H, s), 2.52 (3H, s), 6.42 (1H, brs), 6.88 (1H, dd, J = 2.2, 8.6), 7.48 (1H, d, J = 8.6), 7.57 (1H, d, J = 2.2); LC/MS (ESI, [M+H]⁺, m/z) 249.

tert-Butyl 6-hydroxy-3-methoxy-1H-indazole-1-carboxylate (19). A stirred mixture of 42a (206 mg, 0.58 mmol) and 5% palladium on activated charcoal (113 mg, STD-type, N.E.Chemcat.) in THF (5.8 mL) was evacuated, placed under a hydrogen atmosphere, and stirred overnight at room temperature. The reaction mixture was passed through a membrane filter, and the solvent was concentrated under reduced pressure to give the title compound (164 mg, quantitative yield). ¹H-NMR (300 MHz, CDCl₃): δ 1.65 (9H, s), 4.11 (3H, s), 6.48 (1H, brs), 6.83 (1H, dd, J = 2.1, 8.6), 7.43 (1H, brs), 7.47 (1H, d, J = 8.6); LC/MS (ESI, [M+H]⁺, m/z) 265.

tert-Butyl 3-ethoxy-6-hydroxy-1H-indazole-1-carboxylate (20). A stirred mixture of 42b (67 mg, 0.18 mmol) and 5% palladium on activated charcoal (35 mg, STD-type, N.E.Chemcat.) in THF (2 mL) was evacuated, placed under a hydrogen atmosphere, and stirred overnight at room temperature. The reaction mixture was passed through a membrane filter, and the solvent was concentrated under reduced pressure to give the title compound (54 mg, quantitative yield). ¹H-NMR (300 MHz, CDCl₃, 3:2 rotamers): δ 1.42 and 1.42 (3H, each t, J = 7.0), 1.62 and 1.63 (9H, each s), 4.47 and 4.47 (2H, each q, J = 7.1), 6.84 (1H, dd, J = 1.5, 8.6), 7.43 (1H, brs), 7.48 (1H, d, J = 8.6); LC/MS (ESI, [M+H]⁺, m/z) 279.

tert-Butyl 3-chloro-6-hydroxy-1H-indazole-1-carboxylate (21). 38a (17.42 g, 34 mmol) was dissolved in anhydrous THF (150 mL). The solution was added 1 mol/L TBAF-THF solution (42 mL, 42 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was added ethyl acetate, washed with brine, washed with water, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was added n-hexane (150 mL), and the precipitates were collected by suction filtration to give the product (6.38 g, 70% yield). ¹H-NMR (300 MHz, CDCl₃): δ 1.69 (9H, s), 6.03 (1H, s), 6.95 (1H, dd, J = 2.0, 8.7), 7.53 (1H, d, J = 8.7), 7.60 (1H, d, J = 2.0). LC/MS (ESI, [M+H]⁺, m/z) 269.

tert-Butyl 3-ethyl-6-hydroxy-1H-indazole-1-carboxylate (22). To a stirred mixture of 34b (4.78 g, 19 mmol) and 10% palladium on activated charcoal (1.953 g, PE-type, N.E.Chemcat.) in ethanol (189 mL) was added concentrated hydrochloric acid (1.58 mL, 19 mmol). The mixture was stirred for 1.2 h at 60 °C. The reaction mixture was cooled to room temperature, passed through a membrane filter, and the precipitate was collected by suction filtration to give 3-ethyl-1H-indazol-6-ol hydrochloride (3.918 g). ¹H-NMR (300 MHz, DMSO-d₆): δ 1.69 (9H, s), 6.03 (1H, s), 6.95 (1H, dd, J = 2.0, 8.7), 7.53 (1H, d, J = 8.7), 7.60 (1H, d, J = 2.0). LC/MS (ESI, [M+H]⁺, m/z) 269.
(5.98 g, 74% yield). 1H-NMR (300 MHz, CDCl3): δ 1.11 (9H, s), 1.35 (3H, t, $J = 7.6$), 2.90 (2H, q, $J = 7.6$), 6.61 (1H, d, $J = 2.0$), 6.74 (1H, dd, $J = 2.0$, 8.7), 7.33-7.45 (7H, m), 7.72-7.76 (4H, m); LC/MS (ESI, [M+H]$^+$, m/z) 401. The 6-((tert-butyldiphenylsilyloxy)-3-ethyl-1H-indazole (5.98 g, 15 mmol) was dissolved in THF (150 mL). The solution was added triethylamine (2.5 mL, 18 mmol), Boc$_2$O (4.1 mL, 18 mmol), and 4-N,N-dimethylaminopyridine (1.01 g, 8 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was concentrated under reduced pressure, and remaining oil was partitioned between ethyl acetate and water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue (8.02 g, 89%). LC/MS (ESI, [M+H]$^+$, m/z) 501. The residue (8.02 g, 16 mmol) was dissolved in anhydrous THF (53 mL). The solution was added 1 mol/L TBAF-THF solution (24.4 mL, 26 mmol) at room temperature, and the mixture was stirred for 0.5 h. The reaction mixture was concentrated under reduced pressure, and remaining oil was partitioned between ethyl acetate and water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, and dried over Na$_2$SO$_4$. The organic solution was concentrated under reduced pressure to give tert-buty 6-((tert-butyldiphenylsilyloxy)-3-ethyl-1H-indazole-1-carboxylate (8.02 g, 89%). LC/MS (ESI, [M+H]$^+$, m/z) 263.

tert-Butyl 6-hydroxy-3-isopropyl-1H-indazole-1-carboxylate (23). To a stirred mixture of 34c (6.51 g, 24 mmol) and 10% palladium on activated charcoal (2.69 g, PE-type, N.E.Chemcat.) in ethanol (244 mL) was added concentrated hydrochloric acid (2.0 mL, 24 mmol). The reaction was evacuated and placed under a hydrogen atmosphere, and stirred for 1.5 h at 60 °C. The reaction mixture was cooled to room temperature, passed through a membrane filter, and the solvent was concentrated under reduced pressure to give 3-isopropyl-1H-indazol-6-ol hydrochloride (6.17 g). 1H-NMR (300 MHz, DMSO-d_6): δ 1.35 (6H, d, $J = 7.0$), 3.33 (1H, septet, $J = 7.0$), 6.67 (1H, dd, $J = 2.0$, 8.8), 6.75 (1H, d, $J = 1.8$), 7.64 (1H, d, $J = 8.8$); LC/MS (ESI, [M+H]$^+$, m/z) 177. To a stirred solution of 3-isopropyl-1H-indazol-6-ol hydrochloride (6.17 g) and imidazole (4.15 g, 61 mmol) in anhydrous DMF (122 mL) was added TBDPSCI (16.77 g, 61 mmol) at 0 °C. The mixture was allowed to warm to room temperature and was then stirred overnight. The reaction mixture was added imidazole (2.47 g, 36 mmol) and TBDPSCI (9.4 mL, 36 mmol) at 20 °C, and the mixture was stirred for 3 h at 30 °C. The reaction mixture was poured into water, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue (33.17 g)
was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford 6-((tert-butyldiphenylsilyl)oxy)-3-isopropyl-1H-indazole (6.65 g, 67% yield). \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 1.07 (9H, s), 1.39 (6H, d, \(J\) = 7.0), 3.30 (1H, septet, \(J\) = 7.0), 6.61 (1H, d, \(J\) = 1.8), 6.73 (1H, dd, \(J\) = 2.0, 8.7), 7.33-7.50 (7H, m), 7.72-7.76 (4H, m); LC/MS (ESI, [M+H]\(^+\), \(m/z\) 415. The 6-((tert-butyldiphenylsilyl)oxy)-3-isopropyl-1H-indazole (6.65 g, 16 mmol) was dissolved in CH\(_3\)CN (160 mL). The solution was added triethylamine (2.68 mL, 19 mmol), Boc\(_2\)O (4.4 mL, 19 mmol) and 4-N,N-dimethylaminopyridine (0.98 g, 8 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (100:0 to 90:10 n-hexane/ethyl acetate) to afford tert-butyl 6-((tert-butyldiphenylsilyl)oxy)-3-isopropyl-1H-indazole-1-carboxylate (8.12 g, 98%). \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 1.11 (9H, s), 1.40 (9H, s), 1.41 (6H, d, \(J\) = 7.0), 3.30 (1H, septet, \(J\) = 7.0), 6.79 (1H, dd, \(J\) = 2.1, 8.6), 7.33-7.46 (8H, m), 7.71-7.74 (4H, m); LC/MS (ESI, [M+H]^+, \(m/z\) 515. The tert-butyl 6-((tert-butyldiphenylsilyl)oxy)-3-isopropyl-1H-indazole-1-carboxylate (8.12 g, 16 mmol) was dissolved in anhydrous THF (56 mL). The solution was added 1 mol/L TBAF-THF solution (31.5 mL, 32 mmol) at 0 °C, and the mixture was allowed to warm to room temperature. After the reaction mixture was stirred for 1 h, the mixture was added water and brine. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na\(_2\)SO\(_4\), and concentrated in vacuo. The residue was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford the product (3.39 g, 78%). \(^1\)H-NMR (300 MHz, CDCl\(_3\)): \(\delta\) 1.43 (6H, d, \(J\) = 7.0), 1.64 (9H, s), 3.35 (1H, septet, \(J\) = 7.0), 6.22 (1H, brs), 6.85 (1H, dd, \(J\) = 2.2, 8.6), 7.53 (1H, s), 7.59 (1H, d, \(J\) = 8.6); LC/MS (ESI, [M+H]^+, \(m/z\) 277.

tert-Butyl 3-((tert-butyl)-6-hydroxy-1H-indazole-1-carboxylate (24). To a stirred mixture of 34d (1.51 g, 5.4 mmol) and 10% palladium on activated charcoal (0.30 g, PE-type, N.E.Chemcat.) in ethanol (54 mL) was added concentrated hydrochloric acid (0.45 mL, 5.4 mmol). The reaction was evacuated, placed under a hydrogen atmosphere, and stirred for 1.5 h at 60 °C. The reaction mixture was cooled to room temperature, passed through a membrane filter, and the solvent was concentrated under reduced pressure to give 3-(tert-butyl)-1H-indazol-6-ol hydrochloride (1.27 g). LC/MS (ESI, [M+H]^+, \(m/z\) 191. To a stirred solution of 3-(tert-butyl)-1H-indazol-6-ol hydrochloride (1.22 g) and imidazole (1.29 g, 19 mmol) in anhydrous DMF (27 mL) was added TBDPSCI (4.85 mL, 19 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was poured into water, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na\(_2\)SO\(_4\), and concentrated in vacuo. The residue (7.8 g) was purified by flash column chromatography (100:0 to 87:13 n-hexane/ethyl acetate) to afford 3-(tert-butyl)-6-((tert-butyldiphenylsilyl)oxy)-1H-indazole (1.35 g, 58% yield). LC/MS (ESI, [M+H]^+, \(m/z\) 429. The 3-(tert-butyl)-6-((tert-butyldiphenylsilyl)oxy)-1H-indazole (1.35 g, 3.1 mmol) was dissolved in CH\(_3\)CN (31 mL). The solution was added triethylamine (0.53 mL, 3.8 mmol), Boc\(_2\)O (0.87 mL, 3.8 mmol) and 4-N,N-dimethylaminopyridine (0.22 g, 0.18 mmol) at room temperature, and the mixture was stirred for 4 h. The reaction mixture was added water, concentrated under reduced pressure, and the remaining oil was partitioned between ethyl acetate and water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine. The organic layer was dried over Na\(_2\)SO\(_4\), and
concentrated under reduced pressure to give tert-butyl 3-((tert-butylidiphenylsilyl)oxy)-1H-indazole-1-carboxylate (1.71 g). LC/MS (ESI, [M+H]^+, m/z) 529. The residue (1.66 g, 3.1 mmol) was dissolved in anhydrous THF (11.2 mL). The solution was added 1 mol/L TBAF-THF solution (6.3 mL, 6.3 mmol) at room temperature, and the mixture was stirred for 2 h. The reaction mixture was added water and brine. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na_2SO_4, and concentrated in vacuo. The residue was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford the product (0.73 g, 79%). 1H-NMR (300 MHz, CDCl_3): δ 1.50 (9H, s), 1.67 (9H, s), 5.79 (1H, brs), 6.82 (1H, dd, J = 2.0, 8.7), 7.51 (1H, d, J = 2.0), 7.70 (1H, d, J = 8.7); LC/MS (ESI, [M-H]^+, m/z) 289.

tert-Butyl 3-cyclopropyl-6-hydroxy-1H-indazole-1-carboxylate (25). To a stirred mixture of 34e (6.68 g, 25 mmol) and 10% palladium on activated charcoal (2.68 g, PE-type, N.E.Chemcat.) in ethanol (246 mL) was added concentrated hydrochloric acid (2.0 mL, 24 mmol). The reaction was evacuated, placed under a hydrogen atmosphere, and stirred for 2.5 h at 60 °C. The reaction mixture was cooled to room temperature, passed through a membrane filter, and the solvent was concentrated under reduced pressure to give 3-cyclopropyl-1H-indazol-6-ol hydrochloride (5.82 g). LC/MS (ESI, [M+H]^+, m/z) 175. To a stirred solution of 3-cyclopropyl-1H-indazol-6-ol hydrochloride (5.18 g) and imidazole (4.21 g, 61 mmol) in anhydrous DMF (122 mL) was added TBDPSCl (15.67 mL, 61 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was added imidazole (1.8 g, 26 mmol) and TBDPSCI (6.3 mL, 24 mmol) at room temperature, and the mixture was stirred for 1.5 h. The reaction mixture was then poured into water, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na_2SO_4, and concentrated in vacuo. The residue (31.38 g) was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford 6-((tert-butylidiphenylsilyl)oxy)-3-cyclopropyl-1H-indazole (4.71 g, 47% yield). 1H-NMR (300 MHz, CDCl_3): δ 0.95-1.00 (4H, m), 1.11 (9H, s), 2.04-2.14 (1H, m), 6.59 (1H, d, J = 2.0), 6.73 (1H, dd, J = 2.0, 8.7), 7.33-7.49 (7H, m), 7.72-7.75 (4H, m); LC/MS (ESI, [M+H]^+, m/z) 413. The 6-((tert-butylidiphenylsilyl)oxy)-3-cyclopropyl-1H-indazole (4.70 g, 11 mmol) was dissolved in THF (120 mL). The solution was added triethylamine (1.9 mL, 14 mmol), Boc_2O (3.1 mL, 14 mmol) and 4-N,N-dimethylamino-pyridine (0.69 g, 5.7 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (100:0 to 90:10 n-hexane/ethyl acetate) to afford tert-butyl 6-((tert-butylidiphenylsilyl)oxy)-3-cyclopropyl-1H-indazole-1-carboxylate (5.08 g, 87%). 1H-NMR (300 MHz, CDCl_3): δ 0.97-1.28 (13H, m), 1.41 (9H, s), 2.07-2.15 (1H, m), 6.78 (1H, dd, J = 2.0, 8.7), 7.33-7.45 (8H, m), 7.66-7.74 (4H, m); LC/MS (ESI, [M+H]^+, m/z) 513. The tert-butyl 6-((tert-butylidiphenylsilyl)oxy)-3-cyclopropyl-1H-indazole-1-carboxylate (5.08 g, 9.9 mmol) was dissolved in anhydrous THF (35 mL). The solution was added 1 mol/L TBAF-THF solution (19.8 mL, 20 mmol) at room temperature, and the mixture was stirred for 0.5 h. The reaction mixture was added water and brine. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na_2SO_4, and concentrated in vacuo. The residue was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford the product (2.54 g, 93% yield). 1H-NMR (300
53 MHz, CDCl$_3$): δ 0.99-1.06 (2H, m), 1.16-1.21 (2H, m), 1.64 (9H, s), 2.12-2.21 (1H, m), 6.25 (1H, brs), 6.86 (1H, dd, $J = 2.0, 8.7$), 7.52 (1H, brs), 7.53 (1H, d, $J = 8.7$); LC/MS (ESI, [M+H]$^+$, m/z) 275.

tert-Butyl 3-cyclobutyl-6-hydroxy-1H-indazole-1-carboxylate (26). To a stirred mixture of 34f (8.00 g, 29 mmol) and 10% palladium on activated charcoal (3.22 g, PE-type, N.E.Chemcat.) in ethanol (287 mL) was added concentrated hydrochloric acid (2.4 mL, 29 mmol). The reaction was evacuated, placed under a hydrogen atmosphere, and stirred for 1.5 h at 60 °C. The reaction mixture was cooled to room temperature, passed through a membrane filter, and the solvent was concentrated under reduced pressure to give 3-cyclobutyl-1H-indazol-6-ol hydrochloride (6.50 g). 1H-NMR (300 MHz, DMSO-d_6): δ 1.84-2.14 (2H, m), 2.25-2.42 (4H, m), 3.89 (1H, q, $J = 8.7$), 6.66 (1H, dd, $J = 1.9, 8.7$), 6.73 (1H, d, $J = 1.9$), 7.56 (1H, d, $J = 8.7$); LC/MS (ESI, [M+H]$^+$, m/z) 189.

To a stirred solution of 3-cyclobutyl-1H-indazol-6-ol hydrochloride (6.45 g) and imidazole (5.04 g, 74 mmol) in anhydrous DMF (100 mL) was added TBDPSCl (18.4 mL, 72 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was poured into water, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were concentrated in vacuo. The residue (27.90 g) was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford 6-((tert-butyldiphenylsilyl)oxy)-3-cyclobutyl-1H-indazole (9.93 g, 83% yield).

1H-NMR (300 MHz, CDCl$_3$): δ 1.10 (9H, s), 1.94-2.18 (2H, m), 2.39-2.49 (4H, m), 3.82 (1H, q, $J = 8.8$), 6.61 (1H, d, $J = 2.0$), 6.72 (1H, dd, $J = 2.0, 8.8$), 7.33-7.47 (7H, m), 7.72-7.75 (4H, m); LC/MS (ESI, [M+H]$^+$, m/z) 427.

The 6-((tert-butyldiphenylsilyl)oxy)-3-cyclobutyl-1H-indazole (9.93 g, 23 mmol) was dissolved in anhydrous THF (233 mL). The solution was added triethylamine (3.9 mL, 28 mmol), Boc$_2$O (6.4 mL, 28 mmol) and 4-N,N-dimethylaminopyridine (1.51 g, 12 mmol) at room temperature, and the mixture was stirred for 4 h. The reaction mixture was concentrated under reduced pressure, and the residue was partitioned between ethyl acetate and 1 M HCl. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue (27.90 g) was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford 6-((tert-butyldiphenylsilyl)oxy)-3-cyclobutyl-1H-indazole-1-carboxylate (12.92 g, 12.92 mmol). 1H-NMR (300 MHz, CDCl$_3$): δ 1.11 (9H, s), 1.42 (9H, s), 1.94-2.20 (2H, m), 2.34-2.60 (4H, m), 3.82 (1H, q, $J = 8.8$), 6.77 (1H, d, $J = 2.0$), 8.8), 7.32-7.44 (8H, m), 7.70-7.74 (4H, m); LC/MS (ESI, [M+H]$^+$, m/z) 527. The tert-butyl 6-((tert-butyldiphenylsilyl)oxy)-3-cyclobutyl-1H-indazole-1-carboxylate (12.26 g, 23 mmol) was dissolved in THF (80 mL). The solution was added 1 mol/L TBAF-THF solution (46 mL, 46 mmol) at room temperature, and the mixture was stirred for 1 h. The reaction mixture was concentrated under reduced pressure, and the residue was partitioned between ethyl acetate and 1 M HCl. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue (15.1 g) was purified by flash column chromatography (95:5 to 74:26 n-hexane/ethyl acetate) to afford tert-butyl 6-hydroxy-3-(trifluoromethyl)-1H-indazole-1-carboxylate (27). To a stirred mixture of 47 (1.82 g, 9.1 mmol) and imidazole (1.36 g, 20 mmol) in anhydrous DMF (22 mL) was added TBDPSCl (5.14 mL, 20 mmol) at
room temperature, and the mixture was stirred overnight. The reaction mixture was added ethyl acetate. The organic layer was washed twice with water, washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue (22.86 g) was purified by flash column chromatography (97:3 to 76:2 n-hexane/ethyl acetate) to afford 6-((tert-butyldiphenylsilyl)oxy)-3-(trifluoromethyl)-1H-indazole (3.37 g, 83% yield). 1H-NMR (300 MHz, DMSO-d₆): δ 1.06 (9H, s), 6.76 (1H, d, J = 2.0), 6.93 (1H, dd, J = 2.0, 8.9), 7.37-7.54 (6H, m), 7.62 (1H, d, J = 8.9), 7.69-7.73 (4H, m), 13.49 (1H, brs). To a solution of 6-((tert-butyldiphenylsilyl)oxy)-3-(trifluoromethyl)-1H-indazole (3.35 g, 7.6 mmol), triethylamine (1.3 mL, 9.1 mmol) and Boc₂O (2.1 mL, 9.1 mmol) in anhydrous THF (35 mL) was added 4-N,N-dimethylaminopyridine (93 mg, 0.76 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was added ethyl acetate, washed twice with 1 M HCl, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue (4.48 g) was dissolved in THF (40 mL). The solution was added 1 mol/L TBAF-THF solution (12 mL, 12 mmol) at room temperature, and the mixture was stirred for 20 min. The reaction mixture was poured into brine and extracted with ethyl acetate. The organic layer was washed twice with water, washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue (4.30 g) was purified by flash column chromatography (86:24 to 65:35 n-hexane/ethyl acetate) to afford the product (1.65 g, 72%). 1H-NMR (300 MHz, CDCl₃): δ 1.72 (9H, s), 5.39 (1H, s), 6.98 (1H, dd, J = 2.2, 8.8), 7.63 (1H, d, J = 2.2), 7.69 (1H, d, J = 8.8); LC/MS (ESI, [M-H]⁺, m/z) 301.

tert-Butyl 6-hydroxy-3-phenyl-1H-indazole-1-carboxylate (28). 38b (183 mg, 0.3 mmol), phenylboronic acid (78 mg, 0.6 mmol), Pd₂(dba)₃ (28 mg, 0.03 mmol), P(o-Tol)₃ (48 mg, 0.15 mmol) and K₂PO₄ (128 mg) were dissolved in DMF (1.4 mL) and water (0.14 mL) under a nitrogen atmosphere. The mixture was stirred for 2 h at 80 °C, and was then cooled at room temperature. The mixture was added ethyl acetate. The organic layer was washed with water, washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (88:12 to 67:33 n-hexane/ethyl acetate) to give the product (79 mg, 83% yield). 1H-NMR (300 MHz, CDCl₃): δ 1.69 (9H, s), 5.93 (1H, s), 6.98 (1H, dd, J = 2.2, 8.8), 7.63 (1H, d, J = 2.2), 7.77 (1H, d, J = 8.7), 7.90-7.94 (2H, m). LC/MS (ESI, [M+H]⁺, m/z) 311.

Ethyl 6-hydroxy-1-(tetrahydro-2H-pyran-2-yl)-1H-indazole-3-carboxylate (29). To a solution of ethyl 50 (1.30 g, 2.5 mmol) in THF (12 mL) was added 1 mol/L TBAF-THF solution (12 mL, 12 mmol) at room temperature under a nitrogen atmosphere, and the mixture was stirred for 2 h. The reaction mixture was added ethyl acetate, washed three times with brine, dried over MgSO₄, and concentrated in vacuo. The residue (2.95 g) was purified by flash column chromatography (100:0 to 81:19 n-hexane/ethyl acetate) to give the product (0.66 g, 92% yield). 1H-NMR (300 MHz, CDCl₃): δ 1.46 (3H, t, J = 7.1), 1.63-1.76 (3H, m), 2.03-2.11 (2H, m), 2.42-2.53 (1H, m), 3.67-3.75 (1H, m), 4.01-4.05 (1H, m), 4.49 (2H, q, J = 7.1), 5.40 (1H, brs), 5.69-5.74 (1H, m), 6.88 (1H, dd, J = 2.1, 8.8), 7.07 (1H, d, J = 2.1), 8.04 (1H, d, J = 8.8); LC/MS (ESI, [M+H]⁺, m/z) 291.

Ethyl 6-(2-((tert-butoxycarbonyl-((2R)-2-(3-(tert-butoxycarbonyl(methylsulfonyl)amino)phenyl)-2-triethylsilyloxy-ethyl)amino)ethoxy)-1-tetrahydropyran-2-yl-indazole-3-carboxylate (30). To a stirred solution of 17 (506 mg, 0.86 mmol), 29 (124 mg, 0.43 mmol), and triphenylphosphine (229 mg, 0.87 mmol) in anhydrous THF
(4.3 mL) under nitrogen was added diethyl azodicarboxylate (0.39 mL, 0.86 mmol, 2.2 M toluene solution) at 0 °C. The resulting solution was allowed to warm to room temperature and was then stirred overnight. The solution was concentrated and purified by flash column chromatography on silica gel (85:15 to 64:36 n-hexane/ethyl acetate) to afford 238 mg (64% yield) of the title compound. 1H-NMR (300 MHz, CDCl3, 2:3 rotamers): ð 0.48-0.61 (6H, m), 0.87-0.97 (12H, m), 1.22-1.33 (2H, m), 1.43-1.52 (18H, m), 1.64-1.78 (3H, m), 2.04-2.14 (2H, m), 2.47-2.59 (1H, m), 3.22-3.62 (6H, m), 3.71-3.78 (1H, m), 4.01-4.07 (2H, m), 4.48 (2H, q, ð_J = 7.1), 4.95-4.99 and 5.10-5.15 (1H, each m), 5.72-5.77 (1H, m), 6.89-7.00 (2H, m), 7.12-7.44 (4H, m), 7.98-8.04 (1H, m); LC/MS (ESI, [M+H]^+, m/z) 861.

4-(tert-Butyldimethylsilyloxy)-2-fluorobenzonitrile (32). To a stirred mixture of 2-fluoro-4-hydroxybenzonitrile 31 (30.13 g, 220 mmol) and imidazole (18.37 g, 270 mmol) in anhydrous DMF (436 mL) was added TBSCI (48.32 g, 320 mmol) at 0 °C. The resulting solution was allowed to warm to room temperature, and the mixture was stirred for 1 h. The mixture was concentrated under reduced pressure and remaining oil was partitioned between ethyl acetate and water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (100:0 to 94:6 n-hexane/ethyl acetate) to give the product (40.36 g, 73% yield). 1H-NMR (300 MHz, CDCl3): ð 0.25 (6H, s), 0.98 (9H, s), 6.64 (1H, dd, ð_J = 2.2, 10.5), 6.69 (1H, dd, ð_J = 2.2, 8.4), 7.47 (1H, t, ð_J = 8.4).

1-(2-Fluoro-4-hydroxyphenyl)propan-1-one (33b). 32 (10.06 g, 40 mmol) was dissolved in anhydrous diethyl ether (100 mL) under an argon atmosphere, and the solution was added 3 mol/L ethylmagnesium bromide-diethyl ether solution (35 mL, 105 mmol) at room temperature. The reaction mixture was stirred for 20 min at room temperature, and the mixture was stirred for 1.5 h at reflux. The mixture was added water (36 mL) and 5 M HCl (36 mL) at 0 °C. The mixture was stirred overnight at reflux. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was dissolved in anhydrous THF (100 mL), and the solution was added 1 mol/L TBAF-THF solution (31.5 mL, 31.5 mmol) at room temperature. The reaction mixture was stirred for 20 min, and the mixture was added brine. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was dissolved in diethyl ether, and the solution was added with 2 M NaOH. The aqueous layer was washed three times with diethyl ether and added 2 M HCl. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with water, washed with brine, and dried over Na2SO4. The solvent was evaporated under reduced pressure to give the title compound (5.63 g, 84 %). 1H-NMR (300 MHz, CDCl3+DMSO-d6): ð 1.14 (3H, t, ð_J = 7.2), 2.90 (2H, qd, ð_J = 3.3, 7.2), 6.55 (1H, dd, ð_J = 2.2, 13.3), 6.67 (1H, dd, ð_J = 2.2, 8.8), 7.74 (1H, d, ð_J = 8.8), 10.22 (1H, brs); LC/MS (ESI, [M-H]^-, m/z) 167.

1-(2-Fluoro-4-hydroxyphenyl)-2-methylpropan-1-one (33c). 32 (14.02 g, 56 mmol) was dissolved in anhydrous THF (5 mL) under an argon atmosphere, and the solution was added 0.78 mol/L isopropylmagnesium
bromide-THF solution (89 mL, 70 mmol) at room temperature. The reaction mixture was stirred for 20 min at room temperature. The mixture was added CuBr (140 mg), and stirred for 1.5 h at 60 °C. The reaction mixture was cooled to 0 °C, and added water (21 mL) and 5 M HCl (21 mL). The mixture was stirred for 6 h at 60 °C. The reaction mixture was then added 5 M HCl (21 mL), and stirred for 13 h at 60 °C. The reaction mixture was cooled at room temperature. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was added n-hexane, and the precipitates were collected by suction filtration to afford the product (7.91 g, 79% yield). 1H-NMR (300 MHz, DMSO-d₆): ð 1.07 (6H, d, J = 6.8), 3.31 (1H, septetdoublet, J = 0.8, 6.8), 6.62 (1H, dd, J = 2.3, 13.6), 6.71 (1H, dd, J = 2.3, 8.7), 7.70 (1H, d, J = 8.7); LC/MS (ESI, [M−H]+, m/z) 181.

1-(2-Fluoro-4-hydroxyphenyl)-2,2-dimethylpropan-1-one (33d). 32 (1.60 g, 6.2 mmol) was added 1.01 mol/L tert-butylmagnesium chloride-THF solution (15.6 mL, 15 mmol) at room temperature under an argon atmosphere. The reaction mixture was stirred for 15 min at room temperature. The mixture was added CuBr (16 mg), and stirred for 1.5 h at 60 °C. The reaction mixture was cooled to room temperature, and added water (6 mL) and 5 M HCl (9 mL). The mixture was stirred overnight at 60 °C. The reaction mixture was then cooled at room temperature. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was dissolved in anhydrous THF (22 mL), and the solution was added 1 mol/L TBAF-THF solution (6.2 mL, 6.2 mmol) at room temperature. The mixture was stirred for 1 h, and then added brine. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (15:1 to 5:1 n-hexane/ethyl acetate) to afford the product (1.13 g, 92% yield). 1H-NMR (300 MHz, CDCl₃): ð 1.25 (9H, d, J = 0.7), 6.55 (1H, dd, J = 2.2, 11.1), 6.59 (1H, dd, J = 2.2, 8.1), 7.11 (1H, t, J = 8.1); LC/MS (ESI, [M−H]+, m/z) 195.

Cyclopropyl(2-fluoro-4-hydroxyphenyl)methanone (33e). Preparation of a cyclopropylmagnesium bromide-diethyl ether solution: To a stirred mixture of magnesium (9.18 g, 378 mmol) in anhydrous diethyl ether (20 mL) was added a catalytic amount of iodine and anhydrous diethyl ether (20 mL). The mixture was stirred for 15 min at
room temperature. The mixture was then added a catalytic amount of dibromoethane and anhydrous diethyl ether (20 mL). The mixture was stirred for 15 min at room temperature. The reaction mixture was added bromocyclobutane (7.0 mL, 74 mmol) dissolved in anhydrous diethyl ether (30 mL). The mixture was stirred for 15 min and was then used directly in the next step. 32 (9.49 g, 38 mmol) was dissolved in anhydrous THF (30 mL) under an argon atmosphere, and the solution was added cyclobutylmagnesium bromide-diethyl ether solution (60 mL) at room temperature. The reaction mixture was stirred for 15 min at room temperature. The mixture was added CuBr (140 mg), and was stirred for 0.5 h at 60 °C. The reaction mixture was cooled to 0 °C, and added water (30 mL) and 5 M HCl (30 mL). After the reaction mixture was stirred for 1 h at 60 °C, the mixture was cooled at room temperature. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was dissolved in anhydrous THF (76 mL), and the solution was added 1 mol/L TBAF-THF solution (38 mL, 38 mmol) at room temperature. The mixture was stirred for 5 min, and was added water and brine. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was dissolved in diethyl ether, and the solution was extracted with 2 M NaOH. The aqueous layer was washed six times with diethyl ether, and was added 2 M HCl. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with water, washed with brine, and dried over Na₂SO₄. The solvent was evaporated under reduced pressure to give the title compound (6.97 g, 95% yield). ¹H-NMR (300 MHz, DMSO-d₆): δ 1.71-1.82 (1H, m), 1.89-2.04 (1H, m), 2.15-2.23 (4H, m), 3.76-3.88 (1H, m), 6.61 (1H, dd, J = 2.2, 13.5), 6.72 (1H, dd, J = 2.2, 8.9), 7.73 (1H, t, J = 8.9), 10.80 (1H, brs); LC/MS (ESI, [M+H]+, m/z) 195.

1-Benzyl-3-methyl-1H-indazol-6-ol (34a). To a stirred mixture of 1-(2-Fluoro-4-hydroxyphenyl)ethanone 33a (771 mg, 5 mmol) and sodium acetate (1.23 g, 15 mmol) in anhydrous xylene (35 mL) was added benzylhydrazine dihydrochloride (1.19 g, 7.5 mmol). The mixture was stirred overnight at 160 °C. The reaction mixture was cooled to room temperature and added water (15 mL) and n-hexane (15 mL). The resultant solid was collected by suction filtration and washed with toluene and n-hexane to afford 1.125 g (94% yield) of the title compound. ¹H-NMR (400 MHz, CDCl₃): δ 2.52 (3H, s), 5.39 (2H, s), 5.77 (1H, brs), 6.59 (1H, d, J = 2.0), 6.68 (1H, dd, J = 2.0, 8.6), 7.13-7.15 (2H, m), 7.19-7.28 (m, 3H), 7.49 (1H, d, J = 8.6); LC/MS (ESI, [M+H]+, m/z) 239.

1-Benzyl-3-ethyl-1H-indazol-6-ol (34b). To a stirred mixture of 33b (5.37 g, 32 mmol) and sodium acetate (2.75 g, 155 mmol) in anhydrous xylene (76 mL) was added benzylhydrazine dihydrochloride (9.45 g, 48 mmol). The mixture was stirred overnight at reflux using a Dean-Stark apparatus. The reaction mixture was cooled to room temperature, and added water (50 mL). The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with water, washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Before completely evaporating the solvent, the precipitates were filtered, and the solids were washed with n-hexane to give the title compound (4.76 g, 59% yield). ¹H-NMR (300 MHz, DMSO-d₆): δ 1.28 (3H, t, J = 7.6), 2.84 (2H, q, J = 7.6), 5.42 (2H, s), 6.62 (1H, dd, J = 1.9, 8.7), 6.72 (1H, d, J = 1.9) 7.14-7.17 (2H, m), 7.21-7.40 (3H, m), 7.51 (1H, d, J = 8.7), 9.58 (1H, brs); LC/MS (ESI, [M+H]+, m/z) 253.
1-Benzyl-3-isopropyl-1H-indazol-6-ol (34c). To a stirred mixture of 33c (0.76 g, 4.3 mmol) and sodium acetate (1.72 g, 21 mmol) in anhydrous xylene (43 mL) was added benzylhydrazine dihydrochloride (1.25 g, 48 mmol). The mixture was stirred overnight at reflux. The reaction mixture was cooled to room temperature and added water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, and dried over anhydrous Na$_2$SO$_4$. The organic layer was concentrated under reduced pressure. The residue was added n-hexane, and the precipitates were collected by suction filtration to afford the product (0.91 g, 80% yield). 1H-NMR (300 MHz, DMSO-d_6): δ 1.35 (6H, d, J = 6.9), 3.26 (1H, septet, J = 6.9), 5.42 (2H, s), 6.61 (1H, dd, J = 1.9, 8.7), 6.70 (1H, d, J = 1.7), 7.12-7.14 (2H, m), 7.20-7.32 (3H, m), 7.56 (1H, d, J = 8.7), 9.57 (1H, brs); LC/MS (ESI, [M+H]$^+$, m/z) 267.

1-Benzyl-3-(tert-butyl)-1H-indazol-6-ol (34d). To a stirred mixture of 33d (1.13 g, 5.9 mmol) and sodium acetate (2.31 g, 28 mmol) in anhydrous xylene (29 mL) was added benzylhydrazine dihydrochloride (1.72 g, 8.8 mmol). The mixture was stirred overnight at reflux using a Dean-Stark apparatus. The reaction mixture was cooled to room temperature, and added water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, and dried over anhydrous Na$_2$SO$_4$. The organic layer was concentrated under reduced pressure. The residue was added n-hexane, and the precipitates were collected by suction filtration to afford the product (1.51 g, 91% yield). 1H-NMR (300 MHz, DMSO-d_6): δ 0.69 (9H, s), 4.62 (2H, s), 5.79-5.80 (1H, m), 5.84 (1H, dd, J = 2.0, 8.8), 6.27-6.29 (2H, m), 6.33-6.55 (5H, m), 6.90 (1H, d, J = 8.8); LC/MS (ESI, [M-H]$^-$, m/z) 279.

1-Benzyl-3-cyclopropyl-1H-indazol-6-ol (34e). To a stirred mixture of 33e (1.20 g, 6.7 mmol) and sodium acetate (2.62 g, 32 mmol) in anhydrous xylene (61 mL) was added benzylhydrazine dihydrochloride (1.95 g, 10 mmol). The mixture was stirred overnight at reflux using a Dean-Stark apparatus. The reaction mixture was cooled to room temperature, and added water. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with water, washed with brine, and dried over anhydrous Na$_2$SO$_4$. The organic layer was concentrated under reduced pressure. The residue was added n-hexane/ethyl acetate=10/1, and the precipitates were collected by suction filtration to afford the product (0.89 g, 51% yield). 1H-NMR (300 MHz, DMSO-d_6): δ 0.87-0.99 (4H, m), 2.14-2.26 (1H, m), 5.38 (2H, s), 6.61 (1H, dd, J = 1.8, 8.7), 6.69 (1H, d, J = 1.8), 7.11-7.13 (2H, m), 7.20-7.31 (3H, m), 7.53 (1H, d, J = 8.7), 9.57 (1H, brs); LC/MS (ESI, [M-H]$^-$, m/z) 263.

1-Benzyl-3-cyclobutyl-1H-indazol-6-ol (34f). To a stirred mixture of 33f (6.97 g, 36 mmol) and sodium acetate (14.16 g, 172 mmol) in anhydrous xylene (85 mL) was added benzylhydrazine dihydrochloride (10.55 g, 54 mmol). The mixture was stirred overnight at reflux using a Dean-Stark apparatus. The reaction mixture was cooled to room temperature, and the precipitates were collected by suction filtration. The solid was dissolved in ethyl acetate. The organic layer was washed with water, washed with brine, and dried over Na$_2$SO$_4$. The solvent was evaporated under reduced pressure to give the title compound to afford the product (8.00 g, 80% yield). 1H-NMR (300 MHz, DMSO-d_6): δ 1.89-2.12 (2H, m), 2.32-2.41 (4H, m), 3.81 (1H, q, J = 8.7), 5.44 (2H, s), 6.62 (1H, dd, J = 1.9, 8.7),
6.72 (1H, d, J = 1.9), 7.14-7.17 (2H, m), 7.21-7.32 (3H, m), 7.51 (1H, d, J = 8.7), 9.59 (1H, brs); LC/MS (ESI, [M+H]+, m/z) 279.

6-((tert-Butyldiphenylsilyl)oxy)-1H-indazole (36). 1H-indazol-6-amine (35) (24.33 g, 181 mmol) and 48% HBF₄ solution (242 mL) were dissolved in water (100 mL) and cooled to 0 °C. A solution of sodium nitrite (13.87 g, 201 mmol) in water (20 mL) was added dropwise to the reaction mixture at 0 °C. The mixture was stirred for 30 min at 0 °C. The precipitates were collected by suction filtration, and washed with chloroform. The solid was dissolved in acetic acid (250 mL) and was stirred for 10 min at 50 °C, 10 min at 110 °C, and then 10 min at 130 °C. The solution was cooled at room temperature, and added saturated Na₂CO₃ solution. The aqueous layer was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was dissolved in ethanol (240 mL). The solution was added 2 M NaOH (365 mL) at room temperature, and the mixture was stirred for 1 h. The mixture was concentrated under reduced pressure. After neutralization with 2 M HCl (200 mL) and NH₄Cl solution until pH 7, the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was added chloroform, and the precipitates were collected by suction filtration to give 1H-indazol-6-ol (13.54 g, 56% yield). 1H-NMR (400 MHz, DMSO-d₆): δ 6.64 (1H, dd, J = 2.0, 8.6), 6.77 (1H, s), 7.52 (1H, d, J = 8.6), 7.85 (1H, d, J = 0.5), 9.67 (1H, s), 12.56 (1H, s); LC/MS (ESI, [M+H]+, m/z) 135. To a stirred mixture of 1H-indazol-6-ol (4.03 g, 30 mmol) and imidazole (4.49 g, 66 mmol) in anhydrous DMF (60 mL) was added TBDPSCl (17.1 mL, 66 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was poured into water, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed three times with water, dried over MgSO₄, and concentrated in vacuo. The residue (22.86 g) was purified by flash column chromatography (92:8 to 71:29 n-hexane/ethyl acetate) to afford the title compound (9.21 g, 82% yield). 1H-NMR (300 MHz, CDCl₃): δ 1.11 (9H, s), 6.66-6.67 (1H, m), 6.78 (1H, dd, J = 2.0, 8.7), 7.33-7.45 (6H, m), 7.71-7.74 (4H, m), 7.88 (1H, s); LC/MS (ESI, [M+H]+, m/z) 373.

6-((tert-Butyldiphenylsilyl)oxy)-3-chloro-1H-indazole (37a). 36 (29.25 g, 79 mmol) was dissolved in anhydrous THF (200 mL) under a nitrogen atmosphere, and was cooled to 0 °C. The solution was added potassium tert-butoxide (18.22 g, 162 mmol) and N-chlorosuccinimide (17.05 g, 128 mmol) at 0 °C. The mixture was allowed to warm to room temperature, and was stirred for 4 h. The reaction mixture was added a saturated NH₄Cl solution, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue (22.86 g) was purified by flash column chromatography (88:12 to 67:33 n-hexane/ethyl acetate) to afford the title compound (9.21 g, 82% yield). 1H-NMR (300 MHz, CDCl₃): δ 1.11 (9H, s), 6.60 (1H, d, J = 2.0), 6.83 (1H, dd, J = 2.0, 8.8), 7.33-7.45 (6H, m), 7.71-7.74 (4H, m), 7.88 (1H, s); LC/MS (ESI, [M+H]+, m/z) 373.

6-((tert-Butyldiphenylsilyl)oxy)-3-iodo-1H-indazole (37b). 36 (9.21 g, 25 mmol) was dissolved in anhydrous THF (247 mL) under a nitrogen atmosphere and was cooled to 0 °C. The solution was added potassium tert-butoxide (5.56 g, 50 mmol) and iodine (12.62 g, 50 mmol) at 0 °C. The mixture was allowed to warm to room
temperature, and was stirred for 40 min. The reaction mixture was added a solution of sodium thiosulfate, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (88:12 to 67:33 n-hexane/ethyl acetate) to afford the product (11.05 g, 90% yield). ¹H-NMR (300 MHz, CDCl₃): δ 1.10 (9H, s), 6.71-6.72 (1H, m), 6.84 (1H, dd, J = 1.9, 8.8), 7.24 (1H, d, J = 9.3), 7.32-7.45 (6H, m), 7.70-7.73 (4H, m), 10.69 (1H, brs); LC/MS (ESI, [M+H]+, m/z) 499.

tert-Butyl 6-((tert-butyldiphenylsilyloxy)-3-chloro-1H-indazole-1-carboxylate (38a). To a solution of 37a (18.46 g, 46 mmol), triethylamine (7.7 mL, 55 mmol) and Boc₂O (12.56 g, 58 mmol) in anhydrous THF (200 mL) was added 4-Ν,Ν-dimethylaminopyridine (0.55 g, 4.6 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was added ethyl acetate. The organic layer was washed twice with 1 M HCl, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (97:3 to 80:20 n-hexane/ethyl acetate) to give the product (17.51 g, 75% yield). ¹H-NMR (300 MHz, CDCl₃): δ 1.12 (9H, s), 1.48 (9H, s), 6.83 (1H, dd, J = 1.9, 8.6), 7.34-7.43 (7H, m), 7.70-7.73 (5H, m).

tert-Butyl 6-((tert-butyldiphenylsilyloxy)-3-iodo-1H-indazole-1-carboxylate (38b). To a solution of 37b (2.43 g, 5 mmol), triethylamine (0.77 mL, 6 mmol) and Boc₂O (1.37 mL, 6 mmol) in anhydrous acetonitrile (25 mL) was added 4-Ν,Ν-dimethylaminopyridine (0.61 g, 5 mmol) at room temperature, and the mixture was stirred overnight. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (100:0 to 87:13 n-hexane/ethyl acetate) to give the product (2.30 g, 76% yield). ¹H-NMR (300 MHz, CDCl₃): δ 1.11 (9H, s), 1.47 (9H, s), 6.83 (1H, dd, J = 2.1, 8.7), 7.17 (1H, d, J = 8.7), 7.32-7.45 (6H, m), 7.69-7.72 (5H, m).

6-(Benzyloxy)-1H-indazol-3-ol (40). To a stirred mixture of methyl 2-fluoro-4-hydroxybenzoate 39 (1.47 g, 8.6 mmol) and K₂CO₃ powder (3.69 g, 27 mmol) in anhydrous DMF (21 mL) was added benzyl bromide (1.2 mL 10 mmol) at room temperature under a nitrogen atmosphere, and the mixture was stirred overnight at 50 °C. The reaction mixture was poured into water, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue (2.42 g) was purified by flash column chromatography (97:3 to 77:23 n-hexane/ethyl acetate) to afford methyl 4-(benzyloxy)-2-fluorobenzoate (2.20 g, 98% yield). ¹H-NMR (300 MHz, CDCl₃): δ 3.89 (3H, s), 5.09 (2H, s), 6.70 (1H, dd, J = 2.4, 12.6), 6.79 (1H, dd, J = 2.4, 8.8), 7.33-7.41 (5H, m), 7.89 (1H, s). The methyl 4-(benzyloxy)-2-fluorobenzoate (1.72 g, 6.6 mmol) was dissolved in n-butanol (32.5 mL). The solution was added hydrizine monohydrate (3.14 mL, 65 mmol) and was irradiated in a microwave for 1 h at 160 °C. The reaction mixture was cooled and the precipitates were collected by suction filtration to give the product (1.25 g, 79% yield). ¹H-NMR (300 MHz, DMSO-d₆): δ 5.13 (2H, s), 6.67 (1H, dd, J = 2.0, 8.7), 6.75 (1H, d, J = 2.0), 7.30-7.49 (6H, m); LC/MS (ESI, [M+H]⁺, m/z) 241.

tert-Butyl 6-(benzyloxy)-3-hydroxy-1H-indazole-1-carboxylate (41). To a solution of 40 (1.92 g, 8 mmol),
triethylamine (2.8 mL, 20 mmol) and Boc₂O (4.6 mL, 20 mmol) in dichloromethane (80 mL) was added 4-\(\text{N},\text{N}\)-dimethylaminopyridine (0.49 g, 4 mmol) at room temperature under a nitrogen atmosphere, and the mixture was stirred overnight. The reaction mixture was washed twice with 1 M HCl, washed with water, dried over MgSO₄, and concentrated in vacuo. The residue (3.65 g) was dissolved in methanol (64 mL). The solution was added 7 M NH₃-MeOH (16 mL) at room temperature, and was stirred for 4 h. The reaction mixture was concentrated under reduced pressure. The residue was added ethanol, and the precipitates were collected by suction filtration to give the product (1.58 g, 58% yield). \(^1\)H-NMR (300 MHz, CDCl₃): \(\delta\) 1.70 (9H, s), 5.15 (2H, s), 6.96 (1H, dd, \(J = 2.1, 8.7\)), 7.33-7.47 (6H, m), 7.69 (1H, d, \(J = 8.7\)); LC/MS (ESI, [M+H]⁺, \(m/z\) 341.

tert-Butyl 6-(benzyloxy)-3-methoxy-1H-indazole-1-carboxylate (42a). A mixture of 41 (207 mg, 0.6 mmol), Ag₂CO₃ (509 mg, 1.8 mmol) and methyl iodide (0.37 mL, 6 mmol) in anhydrous toluene (6 mL) was irradiated in a microwave for 2 h at 60 °C. The reaction mixture was filtered and concentrated in vacuo. The residue (226 mg) was purified by flash column chromatography (99:1 to 78:22 n-hexane/ethyl acetate) to afford the title compound (153 mg, 72% yield). \(^1\)H-NMR (300 MHz, CDCl₃): \(\delta\) 1.68 (9H, s), 4.14 (3H, s), 5.13 (2H, s), 6.94 (1H, dd, \(J = 2.2, 8.7\)), 7.31-7.46 (5H, m), 7.51 (1H, d, \(J = 8.7\)), 7.57 (1H, brs); LC/MS (ESI, [M+H]⁺, \(m/z\) 355)

tert-Butyl 6-(benzyloxy)-3-ethoxy-1H-indazole-1-carboxylate (42b). A mixture of 41 (69 mg, 0.2 mmol), Ag₂CO₃ (168 mg, 0.6 mmol) and ethyl iodide (0.16 mL, 2 mmol) in anhydrous toluene (2 mL) was irradiated in a microwave for 2 h at 90 °C. The reaction mixture was purified by flash column chromatography (99:1 to 78:22 n-hexane/ethyl acetate) to afford the title compound (68 mg, 90% yield). \(^1\)H-NMR (300 MHz, CDCl₃): \(\delta\) 1.47 (3H, t, \(J = 7.1\)), 1.70 (9H, s), 4.52 (2H, q, \(J = 7.1\)), 5.13 (2H, s), 6.94 (1H, dd, \(J = 2.2, 8.7\)), 7.31-7.46 (5H, m), 7.53 (1H, d, \(J = 8.7\)), 7.56 (1H, brs); LC/MS (ESI, [M+H]⁺, \(m/z\) 369).

1-(Bromomethyl)-4-methoxy-2-nitrobenzene (44). To a stirred mixture of 4-methoxy-1-methyl-2-nitrobenzene 43 (2.7 mL, 20 mmol) and N-bromosuccinimide (4.05 g, 23 mmol) in CCl₄ (20 mL) was added 70% benzoyl peroxide (348 mg, 1 mmol) at room temperature under a nitrogen atmosphere, and the mixture was stirred for 3 h at reflux. The reaction mixture was filtered and the reaction solution was washed with saturated aq NaHCO₃, washed with water, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (94:6 to 74:27 n-hexane/ethyl acetate) to give the title compound (3.25 g, 66% yield). \(^1\)H-NMR (300 MHz, CDCl₃): \(\delta\) 3.88 (3H, s), 4.80 (2H, s), 7.13 (1H, dd, \(J = 2.7, 8.6\)), 7.46 (1H, d, \(J = 8.6\)), 7.56 (1H, d, \(J = 2.7\)).

4-Methoxy-2-nitro-1-(2,2,2-trifluoroethyl)benzene (45). To a stirred mixture of 44 (2.71 g, 11 mmol) and 2,2-difluoro-2-(fluorosulfonyl)acetate (3.1 mL, 24 mmol) in DMF (22 mL) was added CuI (0.52 g, 2.8 mmol) at room temperature under a nitrogen atmosphere, and the mixture was stirred for 4 h at 100 °C. The reaction mixture was added ethyl acetate, and the organic layer was washed with 28% NH₃ solution, brine and water. The organic layer was dried over MgSO₄, and concentrated in vacuo. The residue (2.95 g) was purified by flash column chromatography (97:3 to 77:23 n-hexane/ethyl acetate) to give the title compound (1.58 g, 61% yield). \(^1\)H-NMR (300 MHz, CDCl₃): \(\delta\) 3.83 (2H, q, \(J = 10.4\)), 3.89 (3H, s), 7.14 (1H, dd, \(J = 2.7, 8.6\)), 7.35 (1H, d, \(J = 8.6\)), 7.52
1-(6-Methoxy-3-(trifluoromethyl)-1H-indazol-1-yl)ethan-1-one (46). A stirred mixture of 45 (1.81 g, 7.7 mmol) and 5% palladium on activated charcoal (0.93 g, STD-type, N.E.Chemcat.) in methanol (30 mL) was evacuated, placed under a hydrogen atmosphere, and stirred overnight at room temperature. The reaction mixture was added 5% palladium on activated charcoal (2.30 g, STD-type, N.E.Chemcat.), and was then evacuated and placed under a hydrogen atmosphere, and stirred for 9 h at room temperature. The reaction mixture was passed through a membrane filter, and the solvent was concentrated under reduced pressure to give 5-methoxy-2-(2,2,2-trifluoroethyl)benzenamine (1.41 g, 90% yield). LC/MS (ESI, [M+H]+, m/z) 206. To a stirred mixture of 5-methoxy-2-(2,2,2-trifluoroethyl)benzenamine (1.40 g, 6.9 mmol) and potassium acetate (1.70 g, 17 mmol) in chlorobenzene (23 mL) was added acetic anhydride (3.26 mL, 35 mmol) at room temperature, and the mixture was stirred for 20 min at 80 °C. The reaction mixture was added isoamyl nitrite (2.8 mL, 21 mmol), and was stirred for 15 h at 80 °C. This mixture was added isoamyl nitrite (1 mL, 7.5 mmol), and was stirred for 4 h at 80 °C. The reaction mixture was partitioned between saturated aq NaHCO₃ and ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue (1.96 g) was purified by flash column chromatography (100:0 to 80:20 n-hexane/ethyl acetate) to give the title compound (1.61 g, 90% yield). 1H-NMR (300 MHz, CDCl₃): δ 2.81 (3H, s), 3.93 (3H, s), 7.06 (1H, dd, J = 2.2, 8.9), 7.67 (1H, d, J = 8.9), 7.91 (1H, d, J = 2.2); LC/MS (ESI, [M+H]+, m/z) 259.

3-(Trifluoromethyl)-1H-indazol-6-ol (47). A mixture of 46 (2.58 g, 10 mmol) in 48% hydrobromic acid (100 mL) was stirred overnight at 110 °C. After neutralization with 2 M NaOH until pH 7 the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, and concentrated in vacuo to give the product (1.86 g, 92% yield). 1H-NMR (300 MHz, DMSO-d₆): δ 6.85 (1H, dd, J = 2.0, 8.8), 6.88 (1H, d, J = 2.0), 7.57 (1H, d, J = 8.8), 9.98 (1H, brs), 13.46 (1H, brs); LC/MS (ESI, [M+H]+, m/z) 203.

Ethyl 6-((tert-butyldiphenylsilyl)oxy)-1H-indazole-3-carboxylate (49). A mixture of 6-methoxy-1H-indazole-3-carboxylic acid 48 (1.01 g, 5.2 mmol) in 48% hydrobromic acid (52 mL) was stirred overnight at reflux. The reaction mixture was concentrated in vacuo to give 6-methoxy-1H-indazole-3-carboxylic acid (1.50 g) which was used without further purification; LC/MS (ESI, [M+H]+, m/z) 179. The 6-methoxy-1H-indazole-3-carboxylic acid (1.50 g) was dissolved in ethanol (52 mL). The solution was added dropwise thionyl chloride (7.6 mL, 104 mmol) at 0 ºC, and the mixture was stirred overnight at 60 ºC. The reaction mixture was concentrated under reduced pressure to give ethyl 6-hydroxy-1H-indazole-3-carboxylate (1.46 g) which was used without further purification; LC/MS (ESI, [M+H]+, m/z) 207. The ethyl 6-hydroxy-1H-indazole-3-carboxylate (1.46 g) was dissolved in anhydrous DMF (16 mL). The solution was added imidazole (1.43 g, 21 mmol) and TBDPSCl (4.06 mL, 16 mmol) at room temperature, and was stirred overnight. The reaction mixture was poured into saturated aq NaHCO₃ and extracted twice with ethyl acetate. The combined organic layers were washed with brine, washed twice with water, dried over MgSO₄, and concentrated in vacuo. The residue (5.51 g) was purified by flash column chromatography (81:19 to 60:40 n-hexane/ethyl acetate) to afford the title compound (1.47 g, 63% yield). 1H-NMR (300 MHz,
Ethyl 6-((tert-butyldiphenylsilyl)oxy)-1-(tetrahydro-2H-pyran-2-yl)-1H-indazole-3-carboxylate (50). To a stirred mixture of 49 (1.46 g, 3.3 mmol) and 3,4-dihydro-2H-pyran (0.6 mL, 6.6 mmol) in toluene (17 mL) was added p-toluenesulfonic acid monohydrate (0.13 g, 0.7 mmol) at room temperature under a nitrogen atmosphere, and the mixture was stirred overnight at 60 °C. The reaction mixture was poured into saturated aq NaHCO₃ and extracted with ethyl acetate. The organic layer was washed with water, washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (96:4 to 75:25 n-hexane/ethyl acetate) to afford the title compound (1.33 g, 76%). 1H-NMR (300 MHz, CDCl₃): δ 1.14 (9H, s), 1.42 (3H, t, J = 7.1), 1.47-1.57 (2H, m), 1.82-2.18 (3H, m), 3.46-3.54 (1H, m), 3.84-3.87 (1H, m), 4.45 (2H, q, J = 7.1), 5.48 (1H, dd, J = 2.7, 9.8), 6.86-6.91 (2H, m), 7.33-7.46 (6H, m), 7.72-7.77 (4H, m), 7.91 (1H, d, J = 8.7); LC/MS (ESI, [M+H]+, m/z) 529.

N-Benzyl-N-(3-((1R)-2-(benzyl(2-hydroxyethyl)amino)-1-triethylsilyloxy-ethyl)phenyl)methanesulfonamide (53). A mixture of N-benzyl-N-((1R)-2-iodo-1-triethylsilyloxy-ethyl)phenyl)methanesulfonamide[30] 51 (77.99 g, 143 mmol) and 2-(benzylamino)ethanol 52 (119 mL, 795 mmol) was stirred overnight at 100 °C under a nitrogen atmosphere. The reaction mixture was added toluene (100 mL) and diethyl ether (500 mL), was washed three times with water, dried over MgSO₄, and concentrated in vacuo. The residue (2.95 g) was purified by column chromatography (2:1 to 81:19 n-hexane/ethyl acetate) to give the title compound (80.40 g, 99% yield). 1H-NMR (300 MHz, CDCl₃): δ 0.36-0.44 (6H, m), 0.79 (9H, t, J = 7.9), 2.49-2.80 (4H, m), 2.93 (3H, s), 3.37 (2H, brs), 3.58 (1H, d, J = 13.6), 3.66 (1H, d, J = 13.6), 3.82 (1H, d, J = 2.3), 4.49 (1H, d, J = 6.2), 4.80 (1H, d, J = 14.5), 4.89 (1H, d, J = 14.5), 7.11-7.34 (14H, m); LC/MS (ESI, [M+H]+, m/z) 569.

(R)-N-(3-(1-Hydroxy-2-((2-((3-methyl-1H-indazol-6-yl)oxy)ethyl)amino)ethyl)phenyl)propane-1-sulfonamide (56a). To a solution of 62 (95 mg, 0.15 mmol) and pyridine (75 µL, 0.9 mmol) in anhydrous CH₂Cl₂ (1 mL) was added propane-1-sulfonyl chloride (86 mg, 0.6 mmol) at room temperature, and the solution was shaken (600 min⁻¹) overnight. The mixture was purified by flash column chromatography (4:3 n-hexane/ethyl acetate). The sulfonamide product was diluted with MTBE (100 µL) and 4 M HCl in 1,4-dioxane (1.5 mL, 6.0 mmol) was added at room temperature. The mixture was shaken (600 min⁻¹) overnight and nitrogen gas was blown into the reaction solution to evaporate the solvent. The residue was dried to give compound 56a (40.9 mg, 0.095 mmol, 63% yield) as dihydrochloride salt. 1H-NMR (400 MHz, DMSO-d₆) δ 0.93 (3H, t, J = 7.6), 1.68 (2H, quin, J = 7.6), 2.44 (3H, s), 3.03-3.09 (1H, m), 3.07 (2H, t, J = 7.6), 3.23-3.27 (1H, m), 3.46 (2H, t, J = 5.1), 4.33-4.37 (2H, m), 4.99 (1H, dd, J = 2.2, 10.2), 6.21 (1H, brs), 6.77 (1H, dd, J = 1.8, 8.7), 6.90 (1H, d, J = 1.8), 7.11 (1H, d, J = 7.8), 7.15 (1H, dd, J = 1.3, 7.8), 7.30 (1H, s), 7.33 (1H, t, J = 7.8), 7.60 (1H, d, J = 8.7), 8.97 (1H, brs), 9.22 (1H, brs), 9.88 (1H, s); 13C-NMR (100 MHz, DMSO-d₆) δ 11.4, 12.5, 16.7, 45.9, 52.2, 53.6, 63.4, 67.9, 92.1, 111.6, 116.6, 117.1, 118.6, 120.9, 121.0, 129.3, 138.5, 140.7, 141.7, 143.0, 157.2; HRMS calculated for C₂₁H₂₅N₄O₄S + H⁺, 433.1904, found ESI: [M+H]+, 443.1897; LC/MS-ESI (m/z): [M+H]+, 433; HPLC: purity 100%, Rₚ 2.0 min.
Step 1. To a solution of 62 (96 mg, 0.15 mmol) and pyridine (18 µL, 0.23 mmol) in anhydrous CH₂Cl₂ (2 mL) was added propane-2-sulfonyl chloride (26 mg, 0.18 mmol) at room temperature, and the solution was stirred overnight. To the mixture was added DBU (134 µL, 0.9 mmol) and propane-2-sulfonyl chloride (20 µL, 0.18 mmol) at room temperature. The mixture was stirred overnight and DBU (33.5 µL, 0.23 mmol) and propane-2-sulfonyl chloride (30 µL, 0.26 mmol) were added at room temperature. The mixture was stirred for 4 days and DBU (33.5 µL, 0.23 mmol) and propane-2-sulfonyl chloride (30 µL, 0.26 mmol) were added at room temperature. The mixture was stirred overnight and purified by flash column chromatography (81:19 to 60:40 n-hexane/ethyl acetate) to give a mixture of 62 and sulfonamide product (41.5 mg). The mixture was diluted with CH₂Cl₂ (1.5 mL) and 1.7 mmol/g MP-Isocyanate (118 mg, 0.2 mmol) was added at room temperature. The mixture was stirred overnight, filtered, and concentrated to give **tert-butyl (R)-6-(2-((tert-butoxycarbonyl)(2-((triethylsilyl)oxy)ethyl)amino)ethoxy)-3-methyl-1H-indazole-1-carboxylate** (40 mg). LC/MS-ESI (m/z): [M+H]+, 747.

Step 2. To **tert-butyl (R)-6-(2-((tert-butoxycarbonyl)(2-((triethylsilyl)sulfonamido)phenyl)-2-((triethylsilyl)oxy)ethyl)amino)ethoxy)-3-methyl-1H-indazole-1-carboxylate** (40 mg) was added 4 M HCl in 1,4-dioxane (1.5 mL, 6.0 mmol) at room temperature. The mixture was shaken (600 min⁻¹) overnight and nitrogen gas was blown into the reaction solution to evaporate the solvent. The residue was dried to give compound **56b** (28 mg, 0.055 mmol, 36% yield) as dihydrochloride salt. ¹H-NMR (400 MHz, DMSO-d₆) δ 1.24 (6H, d, J = 6.8), 2.44 (3H, s), 3.02-3.09 (1H, m), 3.23 (1H, septet, J = 6.8), 3.24-3.26 (1H, m), 3.44-3.47 (2H, m), 4.31-4.40 (2H, m), 4.98 (1H, dd, J = 2.2, 10.3), 6.22 (1H, brs), 6.77 (1H, dd, J = 2.1, 8.7), 6.90 (1H, d, J = 2.1), 7.09 (1H, d, J = 7.7), 7.17 (1H, dd, J = 1.3, 8.1), 7.30-7.34 (2H, m), 7.60 (1H, d, J = 8.7), 8.95 (1H, brs), 9.20 (1H, brs), 9.82 (1H, s); ¹³C-NMR (100 MHz, DMSO-d₆) δ 11.4, 16.0, 45.9, 51.2, 53.6, 63.4, 68.0, 92.1, 111.6, 116.5, 117.1, 118.5, 120.8, 120.9, 129.3, 138.8, 140.8, 141.6, 143.0, 157.0; HRMS calculated for C₂₁H₂₈N₄O₄S + H⁺, 433.1904, found ESI: [M+H]+, 433.1895; LC/MS-ESI (m/z): [M+H]+, 433; HPLC: purity 100%, RT 1.9 min.

Step 2. To **tert-butyl (R)-6-(2-((tert-butoxycarbonyl)(2-((triethylsilyl)sulfonamido)phenyl)-2-((triethylsilyl)oxy)ethyl)amino)ethoxy)-3-methyl-1H-indazole-1-carboxylate** (40 mg) was added 4 M HCl in 1,4-dioxane (1.5 mL, 6.0 mmol) at room temperature. The mixture was shaken (600 min⁻¹) overnight and nitrogen gas was blown into the reaction solution to evaporate the solvent. The residue was dried to give compound **56b** (28 mg, 0.055 mmol, 36% yield) as dihydrochloride salt. ¹H-NMR (400 MHz, DMSO-d₆) δ 1.24 (6H, d, J = 6.8), 2.44 (3H, s), 2.58-2.64 (1H, m), 3.03-3.10 (1H, m), 3.23-3.28 (1H, m), 3.46 (2H, t, J = 5.0), 4.32-4.44 (2H, m), 5.01 (1H, dd, J = 2.2, 10.3), 6.25 (1H, brs), 6.77 (1H, dd, J = 2.1, 8.8), 6.79 (1H, d, J = 2.1), 7.12 (1H, d, J = 7.8), 7.18 (1H, dd, J = 1.3, 7.8), 7.32-7.36 (2H, m), 7.60 (1H, d, J = 8.8), 8.99 (1H, brs), 9.26 (1H, brs), 9.82 (1H, s);
\(^{13}\)C-NMR (100 MHz, DMSO-\(d_6\)) \(\delta 4.9, 11.5, 29.5, 53.6, 63.4, 67.9, 92.1, 111.5, 117.2, 117.4, 119.4, 120.8, 121.1, 129.1, 138.5, 141.7, 142.9, 157.1\); HRMS calculated for \(\text{C}_{21}\text{H}_{26}\text{N}_4\text{O}_4\text{S} + \text{H}^+\), 431.1748, found ESI: [M+H]\(^+\), 431.1754; LC/MS-ESI (m/z): [M+H]\(^+\), 431; HPLC: purity 100%, \(R_t\) 1.9 min.

(R)-N-(3-(1-Hydroxy-2-((2-((3-methyl-1H-indazol-6-yl)oxy)ethyl)amino)ethyl)phenyl)cyclobutanesulfonamide (56d). Step 1. To a solution of 62 (14.95 g, 23.4 mmol) and pyridine (13.2 mL, 164 mmol) in anhydrous CH\(_2\)Cl\(_2\) (100 mL) was added cyclobutanesulfonyl chloride (12.73 g, 81.9 mmol) at room temperature, and the solution was stirred overnight. The mixture was diluted with ethyl acetate, washed twice with 0.5 M HCl, washed with brine, dried over Mg\(_2\)SO\(_4\), and concentrated in vacuo. The residue (28.72 g) was purified by flash column chromatography (73:27 to 52:48 n-hexane/ethyl acetate) to afford the sulfonamide product (11.14 g, 14.7 mmol, 63% yield). \(^1\)H-NMR (300 MHz, CDCl\(_3\), 1:1 rotamers) \(\delta 0.54 (6\text{H}, \text{q, } J = 7.8), 0.88 (9\text{H}, \text{t, } J = 7.8), 1.23-1.31 (2\text{H}, \text{m}), 1.47 (9\text{H}, \text{s}), 1.71 (9\text{H}, \text{s}), 1.88-2.02 (2\text{H}, \text{m}), 2.19-2.23 (2\text{H}, \text{m}), 2.47-2.60 (5\text{H}, \text{m}), 3.21-4.16 (5\text{H}, \text{m}), 4.88-4.93 and 5.02-5.06 (1\text{H}, \text{each m}), 6.03 and 6.44 (1\text{H}, \text{each s}), 6.86 (1\text{H}, \text{d, } J = 8.7), 7.09-7.12 (1\text{H}, \text{m}), 7.15-7.30 (2\text{H}, \text{m}), 7.47 (1\text{H}, \text{d}, \text{d, } J = 1.6, 8.7), 7.54 (1\text{H}, \text{s}); LC/MS-ESI (m/z): [M+H]\(^+\), 759.

Step 2. To a solution of sulfonamide (11.14 g, 14.7 mmol) in anhydrous THF (100 mL) was added 1 M TBAF in THF (30 mL, 30 mmol) at room temperature, and the mixture was stirred for 2 h. The mixture was diluted with ethyl acetate and the organic layer was washed with brine, water, and brine. The organic layer was dried over Na\(_2\)SO\(_4\) and concentrated in vacuo. The residue was purified by flash column chromatography (39:61 to 18:82 n-hexane/ethyl acetate) to give the alcohol product (8.99 g, 13.9 mmol, 95% yield). LC/MS-ESI (m/z): [M+H]\(^+\), 645.

Step 3. To a solution of the alcohol (8.99 g, 13.9 mmol) in anhydrous 1,4-dioxane (13.9 mL) was added 4 M HCl in 1,4-dioxane (139 mL, 556 mmol) at room temperature, and the mixture was stirred for 2 h. The sticky precipitate was allowed to settle to the bottom of the flask, and the supernatant solution was decanted. The residue was diluted with ethanol (150 mL) and water (15 mL). The solution was concentrated under reduced pressure. To the residue was added ethanol, and the precipitate was collected by suction filtration to give compound 56d (5.15 g, 10 mmol, 72% yield) as dihydrochloride salt. \(^1\)H-NMR (400 MHz, DMSO-\(d_6\)) \(\delta 1.81-1.93 (2\text{H}, \text{m}), 2.11-2.19 (2\text{H}, \text{m}), 2.27-2.36 (2\text{H}, \text{m}), 2.48 (3\text{H}, \text{s}), 3.02-3.09 (1\text{H}, \text{m}), 3.22-3.25 (1\text{H}, \text{m}), 3.46 (2\text{H}, \text{t, } J = 5.0), 3.86-3.94 (1\text{H}, \text{quintet, } J = 8.2), 4.34-4.43 (2\text{H}, \text{m}), 5.81 (1\text{H}, \text{brs}), 5.02 (1\text{H}, \text{dd, } J = 1.9, 10.2), 6.82 (1\text{H}, \text{dd, } J = 2.0, 8.8), 6.93 (1\text{H}, \text{dd, } J = 2.0), 7.11 (1\text{H}, \text{d, } J = 7.8), 7.14 (1\text{H}, \text{d, } J = 7.8), 7.29 (1\text{H}, \text{s}), 7.31 (1\text{H}, \text{t, } J = 7.8), 7.65 (1\text{H}, \text{d, } J = 8.8), 9.09 (1\text{H}, \text{brs}), 9.47 (1\text{H}, \text{brs}), 9.80 (1\text{H}, \text{s}); \(^{13}\)C-NMR (100 MHz, DMSO-\(d_6\)) \(\delta 11.2, 16.2, 23.2, 45.8, 53.1, 53.7, 63.4, 67.9, 92.1, 112.2, 116.8, 117.2, 119.1, 121.1, 121.2, 129.1, 138.5, 140.7, 141.5, 142.9, 157.6; HRMS calculated for \(\text{C}_{22}\text{H}_{28}\text{N}_4\text{O}_4\text{S} + \text{H}^+\), 445.1904, found ESI: [M+H]\(^+\), 445.1895; LC/MS-ESI (m/z): [M+H]\(^+\), 445; HPLC: purity 100%, \(R_t\) 2.0 min.

(R)-N-(3-(1-Hydroxy-2-((2-((3-methyl-1H-indazol-6-yl)oxy)ethyl)amino)ethyl)phenyl)cyclopentanesulfonamide (56e). Step 1. To a solution of 62 (95 mg, 0.15 mmol) and DBU (134 µL, 0.9 mmol) in anhydrous CH\(_2\)Cl\(_2\) (1 mL) was added cyclopentanesulfonyl chloride (111 mg, 0.6 mmol) in CH\(_2\)Cl\(_2\) (1 mL) at room temperature, and the mixture was stirred for 2 days. Nitrogen gas was blown into the reaction solution to evaporate the solvent. The
residue was diluted with methanol (2 mL) and 5 M NaOH (200 µL, 1 mmol) was added at room temperature. The mixture was stirred for 3 days and poured into saturated aq NH₄Cl. The aqueous layer was extracted twice with ethyl acetate. The organic layers were washed twice with 2 M HCl, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (47:53 to 20:80 n-hexane/ethyl acetate) and preparative TLC (10:1 CH₃Cl/MeOH) to give tert-butyl (R)-(2-(3-(cyclopentanesulfonamido)phenyl)-2-hydroxyethyl)(2-((3-methyl-1H-indazol-6-yl)oxy)ethyl)carbamate (35 mg, 0.063 mmol, 42% yield). LC/MS-ESI (m/z): [M+H]+, 559.

Step 2. To the tert-butyl (R)-(2-(3-(cyclopentanesulfonamido)phenyl)-2-hydroxyethyl)(2-((3-methyl-1H-indazol-6-yl)oxy)ethyl)carbamate (35 mg, 0.063 mmol) was added 4 M HCl in 1,4-dioxane (1.5 mL) at room temperature. The mixture was shaken (600 min⁻¹) overnight and nitrogen gas was blown into the reaction solution to evaporate the solvent. The residue was dried to provide the product (34 mg, 0.064 mmol, quant.) as dihydrochloride salt.

1H-NMR (400 MHz, DMSO-d₆) δ 1.48-1.57 (2H, m), 1.61-1.70 (2H, m), 1.79-1.95 (4H, m), 2.43 (3H, s), 3.02-3.09 (1H, m), 3.22-3.28 (1H, m), 3.46 (2H, t, J = 4.7), 3.50-3.56 (1H, m), 4.32-4.40 (2H, m), 4.98 (1H, dd, J = 2.0, 10.1), 6.23 (1H, brs), 6.76 (1H, dd, J = 2.1, 8.7), 6.90 (1H, d, J = 2.1), 7.10 (1H, d, J = 7.8), 7.17 (1H, dd, J = 1.4, 7.8), 7.31 (1H, s), 7.33 (1H, t, J = 7.8), 7.59 (1H, d, J = 8.7), 8.94 (1H, brs), 9.16 (1H, brs), 9.82 (1H, s); 13C-NMR (100 MHz, DMSO-d₆) δ 11.5, 25.3, 27.2, 45.9, 53.6, 59.6, 63.4, 67.9, 92.1, 111.5, 116.9, 117.2, 118.9, 120.9, 121.0, 129.2, 138.7, 140.1, 141.6, 143.0, 157.1; HRMS calculated for C₂₃H₃₀N₄O₄S + H+, 459.2061, found ESI: [M+H]⁺, 459.2068; LC/MS-ESI (m/z): [M+H]+, 459; HPLC: purity 100%, RT 2.0 min.

2-(Benzyl(2-(benzyloxy)ethyl)amino)-1-(3-nitrophenyl)ethan-1-ol (59). To a solution of 62 (96 mg, 0.15 mmol) and pyridine (18 µL, 0.23 mmol) in anhydrous CH₂Cl₂ (2 mL) was added benzenesulfonyl chloride (32 mg, 0.18 mmol) at room temperature, and the solution was stirred overnight. The mixture was purified by flash column chromatography (4:3 n-hexane/ethyl acetate). The sulfonamide product was diluted with 1,4-dioxane (0.2 mL) and 4 M HCl in 1,4-dioxane (1.6 mL, 6.4 mmol) was added at room temperature. The mixture was shaken (600 min⁻¹) overnight and nitrogen gas was blown into the reaction solution to evaporate the solvent. The residue was dried to provide the product (67 mg, 0.12 mmol, 83% yield) as dihydrochloride salt.

1H-NMR (400 MHz, DMSO-d₆) δ 2.44 (3H, s), 2.88-2.99 (1H, m), 3.14-3.17 (1H, m), 3.43 (2H, t, J = 4.9), 4.29-4.38 (2H, m), 4.92 (1H, dd, J = 2.0, 10.4), 6.20 (1H, brs), 6.76 (1H, dd, J = 2.1, 8.8), 6.90 (1H, d, J = 2.1), 7.02 (1H, d, J = 8.0), 7.05 (1H, d, J = 8.0), 7.22 (1H, s), 7.23 (1H, t, J = 8.0), 7.52-7.56 (2H, m), 7.58-7.62 (2H, m), 7.77-7.79 (2H, m), 8.93 (1H, brs), 9.17 (1H, brs), 10.41 (1H, s); 13C-NMR (100 MHz, DMSO-d₆) δ 11.4, 45.9, 53.5, 63.4, 67.8, 92.1, 111.6, 117.1, 117.2, 119.0, 120.9, 121.4, 126.6, 129.1, 132.8, 137.8, 139.4, 140.8, 141.6, 142.9, 157.2; HRMS calculated for C₂₃H₂₉N₄O₄S + H⁺, 467.1748, found ESI: [M+H]⁺, 467.1735; LC/MS-ESI (m/z): [M+H]+, 467; HPLC: purity 95% Rₜ 2.0 min.

2-(Benzyl(2-(benzyloxy)ethyl)amino)-1-(3-nitrophenyl)ethan-1-ol (59). **Step 1.** A mixture of 2-(benzyloxy)ethan-1-amine (12.31 g, 81 mmol), benzaldehyde (8.72 g, 82 mmol), and Na₂SO₄ (67.79 g, 477 mmol) in CH₂Cl₂ (150 mL) was stirred overnight at ambient temperature. The mixture was filtered and concentrated under reduced pressure. The residue was diluted with methanol (150 mL) and sodium borohydride
(3.41 g, 90 mmol) was added at 0 °C. The mixture was allowed to warm to ambient temperature and was stirred for 2 h. The mixture was concentrated under reduced pressure, quenched with water, and diluted with ethyl acetate. The layers were separated, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude N-benzyl-2-(benzyloxy)ethan-1-amine 58 (20.19 g, >100% yield) was carried forward without further purification.

1H-NMR (300 MHz, CDCl₃) δ 1.72 (1H, brs), 2.84 (2H, t, J = 5.2), 3.62 (2H, t, J = 5.2), 3.80 (2H, s), 4.52 (2H, s), 7.20-7.37 (10H, m).

Step 2. A mixture of (R)-2-(3-nitrophenyl)oxirane[33] 57 (13.65 g, 83 mmol) and 58 (20.21 g, 84 mmol) in 2-propanol (205 mL) was stirred for 36 h at reflux. The mixture was concentrated under reduced pressure. The residue was diluted with toluene (100 mL) and concentrated under reduced pressure. The residue was purified by flash column chromatography (85:15 to 80:20 n-hexane/ethyl acetate) to give compound 59 (30.76 g, 76 mmol, 92% yield). 1H-NMR (300 MHz, CDCl₃) δ 2.62 (1H, dd, J = 10.2, 13.1), 2.75-2.87 (2H, m), 2.92-3.01 (1H, m), 3.51-3.64 (2H, m), 3.78 (2H, dd, J = 13.6, 69.1), 4.54 (2H, s), 4.70 (1H, dd, J = 3.3, 10.2), 7.27-7.39 (10H, m), 7.45 (1H, t, J = 7.9), 7.59 (1H, d, J = 7.9), 8.09 (1H, dd, J = 1.1, 2.3, 7.9), 8.16 (1H, d, J = 2.3); LC/MS-ESI (m/z): [M+H]+, 407.

(R)-N-Benzyl-N-(2-(benzylxyo)ethyl)-2-(3-nitrophenyl)-2-((triethylsilyl)oxy)ethan-1-amine (60). To a solution of 59 (30.37 g, 75 mmol) and imidazole (6.13 g, 90 mmol) in anhydrous DMF (150 mL) was added chlorotriethylsilane (15.1 mL, 90 mmol) at room temperature, and the solution was stirred overnight. The mixture was quenched with water and extracted twice with ethyl acetate. The combined organic layers were washed twice with water, washed with anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (100:0 to 87:13 n-hexane/ethyl acetate) to give compound 60 (36.66 g, 70 mmol, 93% yield). 1H-NMR (300 MHz, CDCl₃) δ 0.42-0.56 (6H, m), 0.85 (9H, t, J = 7.9), 2.65-2.85 (4H, m), 2.92-3.01 (1H, m), 3.37-3.47 (2H, m), 3.62 (2H, dd, J = 13.6, 42.9), 4.43 (2H, s), 4.68 (1H, dd, J = 5.4, 7.4), 7.06-7.11 (2H, m), 7.16-7.20 (3H, m), 7.26-7.37 (6H, m), 7.56 (1H, d, J = 7.7), 8.05 (1H, dd, J = 1.1, 2.3, 7.7), 8.12 (1H, dd, J = 2.3, 2.3); LC/MS-ESI (m/z): [M+H]+, 521.

tert-Butyl (R)-(2-(3-aminophenyl)-2-((triethylsilyl)oxy)ethyl)(2-hydroxyethyl)carbamate (61). **Step 1.** A mixture of 60 (36.46 g, 70 mmol) and 10% palladium on activated charcoal (15.12 g, PE-type, NE Chemcat) in ethanol (175 mL) was evacuated, placed under a hydrogen atmosphere, and stirred for 9 h at 50 °C. The mixture was evacuated, placed under a hydrogen atmosphere, and stirred for 4 h at 50 °C. The reaction mixture was cooled to room temperature, passed through a membrane filter, and the solvent was concentrated under reduced pressure to give (R)-3-(2-(2-benzyloxyethylamino)-1-triethylsilyloxy-ethyl)aniline (25.08 g). LC/MS-ESI (m/z): [M+H]+, 401.

Step 2. To a solution of (R)-3-(2-(2-benzyloxyethylamino)-1-triethylsilyloxy-ethyl)aniline (25.08 g, 70 mmol) in THF (175 mL) was added Boc₂O (14.60 g, 67 mmol) at room temperature, and the solution was stirred for 1.5 h. The mixture was concentrated under reduced pressure. The residue was added to Pd(OH)₂ on activated charcoal (15.02 g, NE Chemcat), THF (80 mL), and MeOH (80 mL). The mixture was evacuated, placed under a hydrogen atmosphere, and stirred for 8 h at 50 °C. The reaction mixture was cooled to room temperature, passed through a
membrane filter, and the solvent was concentrated under reduced pressure. The residue was purified by flash column chromatography (75:25 to 54:46 n-hexane/ethyl acetate) to give compound 61 (17.94 g, 44 mmol, 62% yield). ¹H-NMR (300 MHz, CDCl₃, 3:2 rotamers) δ 0.44-0.63 (6H, m), 0.88 (9H, t, J = 7.9), 1.49 and 1.51 (9H, each s), 2.95-3.87 (8H, m), 4.90-4.95 and 5.17-5.21 (1H, each m), 6.57-6.78 (3H, m), 7.09 (1H, t, J = 7.7); LC/MS-ESI (m/z): [M+H]+, 411.

_{tert-Butyl (R)-6-2-((2-(3-Aminophenyl)-2-((triethylsilyl)oxy)ethyl)(tert-butoxycarbonyl)amino)ethoxy)-3-methyl-1H-indazole-1-carboxylate (62).} To a solution of 61 (2.51 g, 6.1 mmol), 18 (1.99 g, 8.0 mmol), and triphenylphosphine (1.61 g, 6.1 mmol) in anhydrous toluene (25 mL) was added DMEAD ²⁹ (1.43 g, 6.1 mmol) at room temperature, and the solution was stirred overnight at 50 °C under a nitrogen atmosphere. The reaction mixture was cooled to room temperature and washed three times with water. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography (74:26 to 53:47 n-hexane/ethyl acetate) to give a mixture of 18 and 62 (2.29 g). The mixture was diluted with CH₂Cl₂ (25 mL), to which 2.91 mmol/g MP-Carbonate (3.4 g, 9.9 mmol) was added at room temperature. The mixture was stirred overnight and 2.91 mmol/g MP-Carbonate (2.0 g, 5.8 mmol) was added at room temperature. The mixture was stirred for 5 h and filtered to give compound 62 (1.52 g, 2.4 mmol, 47% yield). ¹H-NMR (300 MHz, CDCl₃, 3:2 rotamers) δ 0.53 (6H, t, J = 7.9), 0.89 (9H, q, J = 7.9), 1.48 (9H, s), 1.70 (9H, s), 2.53 (3H, s), 3.16-3.78 (6H, m), 4.02-4.14 (2H, m), 4.80-4.84 and 4.96-5.00 (1H, each m), 6.57-6.60 (1H, m), 6.66 (1H, d, J = 2.3), 6.70 and 6.78 (1H, each d, J = 8.7 and 7.6), 6.87 (1H, dt, J = 2.3, 8.7), 7.09 (1H, t, J = 7.6), 7.46 (1H, dd, J = 1.8, 8.7), 7.55 (1H, s); LC/MS-ESI (m/z): [M+H]+, 641.

Results of ion chromatography.

Regarding compounds 5 to 16, ion chromatographic analyses were performed using the following conditions; (Anion) ICS-1000 (Dionex), Dionex IonPac AS14 (Dionex or Thermo Scientific), 30 °C column temperature, 1.2 mL/min flow rate, electrical conductivity detection, mobile phase of 1.0 mmol/L sodium hydrogen carbonate and 3.5 mmol/L sodium carbonate in water and standard solution of Mixed Anion Standard Solution IV (Kanto Chemical Industry Co., Ltd.); (Cation) DX500 (Dionex), Dionex IonPac CS14 (Dionex), 30 °C column temperature, 1.0 mL/min flow rate, electrical conductivity detection, mobile phase of 10 mmol/L methanesulfonic acid in water, standard solution of Mixed Cation Standard Solution II (Kanto Chemical Industry Co., Ltd.).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cl⁻ content rate (%)</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15.52</td>
<td>2.1 HCl</td>
</tr>
<tr>
<td>6</td>
<td>13.77</td>
<td>1.9 HCl</td>
</tr>
<tr>
<td>7</td>
<td>14.46</td>
<td>2.0 HCl</td>
</tr>
<tr>
<td>8</td>
<td>11.04</td>
<td>1.5 HCl</td>
</tr>
<tr>
<td>9</td>
<td>14.01</td>
<td>2.0 HCl</td>
</tr>
<tr>
<td>10</td>
<td>14.26</td>
<td>2.0 HCl</td>
</tr>
<tr>
<td>11</td>
<td>14.37</td>
<td>2.1 HCl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>12</td>
<td>11.70</td>
<td>1.7 HCl</td>
</tr>
<tr>
<td>13</td>
<td>14.56</td>
<td>2.1 HCl</td>
</tr>
<tr>
<td>14</td>
<td>13.12</td>
<td>1.9 HCl</td>
</tr>
<tr>
<td>15</td>
<td>9.77</td>
<td>1.4 HCl</td>
</tr>
<tr>
<td>16</td>
<td>11.25</td>
<td>1.7 HCl</td>
</tr>
</tbody>
</table>

Regarding compounds 56a to 56f, ion chromatographic analyses were performed using the following conditions: (Anion) ICS-5000+ (Thermo Scientific, Waltham, MA, USA), IonPac AS18-4μm (Thermo Scientific), 30 °C; 1.0 mL/min flow rate; electrical conductivity detection; mobile phase of 23 to 40 mM KOH in water; standard solution of Mixed Anion Standard Solution IV (Kanto Chemical Industry Co., Ltd., Tokyo, Japan); (Cation) ICS-1100 (Thermo Scientific), IonPac CS12A (Thermo Scientific), 30 °C; 1.0 mL/min flow rate; electrical conductivity detection; mobile phase of 20 mmol/L methanesulfonic acid in water; standard solution of Mixed Cation Standard Solution II (Kanto Chemical Industry Co., Ltd.).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cl⁻ Content Rate (%)</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>56a</td>
<td>12.44</td>
<td>1.7 HCl</td>
</tr>
<tr>
<td>56b</td>
<td>11.28</td>
<td>1.6 HCl</td>
</tr>
<tr>
<td>56c</td>
<td>11.27</td>
<td>1.5 HCl</td>
</tr>
<tr>
<td>56d</td>
<td>12.86</td>
<td>1.9 HCl</td>
</tr>
<tr>
<td>56e</td>
<td>11.31</td>
<td>1.7 HCl</td>
</tr>
<tr>
<td>56f</td>
<td>10.53</td>
<td>1.6 HCl</td>
</tr>
</tbody>
</table>

Biology

Human β₁⁺, β₂⁺, β₃ or marmoset β₃-AR Agonist Assay. The measurement of human β₁⁺, β₂⁺, β₃, or marmoset β₃-AR agonist activity was carried out using stably transfected Chinese Hamster Ovary (CHO) cells expressing recombinant human β₁⁺, β₂⁺, or β₃-AR. The cells were cultured in Ham's F-12 medium containing 10% fetal bovine serum, 400 μg/mL geneticin (Invitrogen, Waltham, MA, USA), 100 U/mL penicillin, and 100 μg/mL streptomycin. Cells were seeded on a 96-well plate at a density of 2 × 10⁴ cells/well and cultured for approximately 20 h. The medium was then aspirated from each well and replaced with 80 μL of serum-free Ham's F-12 medium, in which the cells were incubated for a further 15 min. The compound to be tested was initially dissolved in DMSO and then diluted with Ham's F-12 medium containing 100 mmol/L HEPES and 1 mmol/L isobutylmethylxanthine. The diluted compound (20 μL) was added to the cells and the cells were incubated with it for 30 min. The medium was removed and 0.1 mL of the Assay/Lysis Buffer from the cAMP-Screen kit (Applied Biosystems, Waltham, MA, USA) was added, and the cells were then incubated at 37 °C for 30 min. The cAMP level in the resulting cell lysate was quantified using the cAMP-Screen kit. The maximum response to the positive control, isoproterenol, was defined as 100%. The maximum response of each test compound was calculated as a percentage of this maximum response; this was defined as each compound’s Intrinsic Activity [IA (%)]. The concentration of the compound that induced a response that was 50% of the maximum (EC₅₀) was also determined.
Rat β3-AR Agonist Assay. The measurement of rat β3 adrenergic receptor agonist activity was carried out using stably transfected Chinese Hamster Ovary (CHO) cells expressing recombinant rat β3 adrenergic receptor. The cells were cultured in Ham's F-12 medium containing 10% fetal bovine serum, 400 μg/ml geneticin (Invitrogen), 100 U/ml penicillin and 100 μg/ml streptomycin. These cells were transfected with a cAMP-response element / luciferase reporter gene plasmid using the FuGENE 6 Transfection Reagent (Roche). Transfected cells were seeded on a 96-well white plate at a density of 3×10^4 cells/well and were cultured for 20 hours. Following test compound addition to the cells and culture for a further 6 hours, the medium was removed. The PicaGene LT2.0 Luciferase Assay System solution (30 μL, Wako) was added to the cells, and chemiluminescence was analyzed using ARVOsx plate reader (PerkinElmer). The maximum response to the positive control isoproterenol was taken as 100%. The maximum response to each test compound was calculated as a percentage of the response of isoproterenol, and is termed the Intrinsic Activity [IA (%)]. The concentration of the compound solution that results in a response that was 50% of the maximum for that compound (EC50) was determined.

Human α1A-AR Agonist Assay. Human α1A-AR agonist activity was measured using stably transfected HEK293 cells expressing recombinant human α1A-AR. The cells were cultured in DMEM containing 10% fetal bovine serum, 400 μg/mL hygromycin B (Gibco BRL, Waltham, MA, USA), 100 U/mL penicillin, and 100 μg/mL streptomycin. Subsequently, the cells were prepared at a density of 5×10^6 cells/mL in a solution of Assay Buffer [20 mmol/L HEPES-KOH (pH 7.4), 115 mmol/L NaCl, 5.4 mmol/L KCl, 0.8 mmol/L MgCl2, 1.8 mmol/L CaCl2, 13.8 mmol/L D-glucose, and 0.1% bovine serum albumin] containing 0.2% Pluronic F-127 (Invitrogen) and 20 μmol/L Fura-2AM (Dojindo Laboratories, Kumamoto, Japan). The cells were incubated in a CO2 incubator for 30 min, washed twice with the Assay Buffer to remove excess Fura-2AM, and resuspended at a density of 5×10^6 cells/mL with the Assay Buffer. Subsequently, the cells were dispensed into a 96-well plate at a volume of 80 μL/well. In addition to the cell plate, a sample plate was provided in which wells contained a test compound that had been diluted 10 times with the Assay Buffer to concentrations ranging from 10^-5 to 10^-12 M. The plates were loaded into an FDSS4000 kinetic plate reader (Hamamatsu Photonics K.K., Shizuoka, Japan), and were pre-incubated for 180 s at 37 °C. Fluorescence intensity (excitation wavelengths 340 nm and 380 nm, measurement wavelength 500 nm) was measured at intervals of 2 s. After baseline measurements were taken for approximately 30 s, 20 μL of the test sample from the sample plate was added to the cell plate, and measurements were collected for a further 270 s. The Ca^{2+} flux caused by the test compound was calculated as the peak height, which represented the difference between the maximum value of the fluorescence intensity ratio at wavelengths 340 nm and 380 nm after addition of the test compound, and the fluorescence intensity ratio at baseline. Maximum response to the positive control, noradrenaline, was defined as 100%. The maximum response to each test compound was calculated as a percentage of the maximum response to noradrenaline, and is termed the Intrinsic Activity [IA (%)]. The compound’s EC50 was also determined.

Human α1B or α1D-AR Agonist Assay. Human α1B or α1D-AR agonist activity was measured using transiently transfected HEK293 cells expressing recombinant human α1B or α1D-AR, and NFAT-Luciferase reporter gene
Cells were cultured in DMEM containing 10% fetal bovine serum, 100 U/mL penicillin and 100 μg/mL streptomycin. Cells were transfected using Lipofectamine 3000 Transfection Reagent (Life Technologies, CA, USA) according to the manufacturer’s protocol. Transfected cells were seeded on a 96-well white plate at a density of 1×10^5 cells/well and were cultured for 20 hours. Following test compound addition to the cells and culture for a further 6 hours, the medium was removed. The PicaGene LT2.0 Luciferase Assay System solution (30 μL, Wako, Osaka, Japan) was added to the cells, and chemiluminescence was analyzed using ARVOsx plate reader (PerkinElmer, MA, USA). The maximum response to the positive control noradrenaline was taken as 100%. The maximum response to each test compound was calculated as a percentage of the response of noradrenaline, and is termed the Intrinsic Activity [IA (%)]. The concentration of the compound solution that results in a response that was 50% of the maximum for that compound (EC_{50}) was determined. The EC_{50} of noradrenaline for α_{1B}-AR and α_{1D}-AR was 359 nM and 101 nM, respectively.

Effects on Blood Pressure and HR in Rats. Male Sprague-Dawley rats (Japan SLC, Inc., Shizuoka, Japan) weighing 200-300 g were used. Rats were housed in an air-conditioned room (20-26 °C and 30-75% relative humidity with a 12-h light-dark cycle), fed a standard laboratory diet (CRF-1; Oriental Yeast, Tokyo, Japan), and given water ad libitum. Rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p., and 25 mg/kg, s.c.). The left femoral vein and artery were exposed by a small incision. A polyethylene tube (SP10; Natsume Seisakusyo Co., Ltd., Tokyo, Japan) was inserted into the vein for injection of the compound. A polyethylene tube (SP31; Natsume Seisakusyo Co., Ltd.) was inserted into the artery and connected to a pressure transducer. Blood pressure was measured from the pressure transducer through a pressure amplifier (AP-641G; Nihon Koden Corp., Tokyo, Japan). HR was measured by the Heart Rate Counter (AT-601G; Nihon Koden Corp.), using the pulse wave of the blood pressure as the trigger. The blood pressure, MBP, and HR were recorded. Once the blood pressure and HR were almost constant, the test compound was administered through the left femoral vein and the parameters were recorded for 30 min. The maximum increase or decrease of HR and MBP is shown as a percentage change (%) relative to baseline.

Relaxant Activity on Isolated Marmoset Urinary Bladder Smooth Muscle. Three female common marmosets (Callithrix jacchus) aged 11-14 months were purchased from CLEA Japan Inc. (Tokyo, Japan) and were used between the ages of 19 and 20 months. Marmosets were housed in an air-conditioned room (27 ± 3 °C, 45 ± 15% humidity, 12-h light-dark cycle), fed 30 g daily of balanced marmoset food pellets (CMS-1; CLEA Japan), and given water ad libitum. Marmosets were anesthetized with an intramuscular injection of ketamine hydrochloride (15 mg/kg), and were sacrificed by exsanguination. The urinary bladder was carefully isolated and immersed in ice-cold Krebs–Henseleit solution that was gassed with 95% O₂ and 5% CO₂. The bladder was opened with a midline incision and six muscle strips of the bladder body, approximately 10-15 mm long and 2-5 mm wide, were prepared. The strips were suspended in a 10 mL glass organ bath filled with Krebs–Henseleit solution that was aerated with 95% O₂ and 5% CO₂ at 37 °C, and were allowed to equilibrate for over 30 min under a resting tension of 1 g. Strip tension was measured isometrically using a TB-612T force displacement transducer (Nihon Koden Corp.). Following the equilibration period, the strips were pre-contracted with KCl (40 mmol/L) three times and
strips that exhibited three equivalent contractions were used. These strips were again pre-contracted with 40 mmol/L KCl and, after the tension had stabilized, a test compound was added cumulatively at intervals of 20 min. When the relaxation response at the maximum concentration of the test compound was achieved, papaverine at a final concentration of 10^{-4} mol/L was added, and the maximum relaxation response of each strip was determined.

Solubility Assay. Stock solutions (10 mM) of each compound were prepared in DMSO, and 5 µL/well of the 10 mM stock solution was transferred into a 96-well plate. The plate was freeze-dried overnight, and to each well was added a pH 1.2 buffer solution (167 µL of Dissolution Test Solution 1, 11500-76; Kanto Chemical Co., Inc., Tokyo, Japan) or a pH 6.8 buffer solution (167 µL, Dissolution Test Solution 2 11499-76; Kanto Chemical Co., Inc.). The plate was sealed and shaken for over 18 h at 37 °C. Samples were filtered through a 0.4-µm multiscreen HTS-PCF filter plate (Millipore/Merck, Darmstadt, Germany) mounted on 96-well plate by centrifugation at 2000 rpm for 1 min at room temperature. Standards were created by initially preparing a 5 µL solution from the combination of the 10 mM stock solution and aqueous acetonitrile (162 µL, acetonitrile/water = 95:5) in a 96-well plate. The sample was then analyzed by HPLC. Water solubility was calculated according to the equation: Solubility (µM) = peak area_{sample} / peak area_{standard} x 300.

The HPLC analysis was performed with the following conditions: Waters ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 x 50 mm), 40 °C; 0.6 mL/min flow rate; photodiode array detection (254 nm); solvent A consisting of 10 mM ammonium acetate in water; solvent B consisting of acetonitrile; a linear gradient of 5-98% B (2.5 min), 98% B (0.5 min), 5% B (1.5 min).

Madin-Darby Canine Kidney (MDCK) Permeability Assay. In vitro membrane permeability was determined using the MDCK cell monolayer system. The MDCK cell line (CCL-34™) was obtained from ATCC (Manassas, VA, USA). The cells were seeded on 24-well cell culture inserts (Transwell, #3495; Corning, NY, USA) at a density of $3.32 x 10^5$ cells/cm² and cultured for 4 days in Modified Eagle’s Medium (MEM; Gibco, Waltham, MA, USA) to form monolayers. The MEM was changed once every 2-3 days. A buffer of Hanks’ Balanced Salt Solution (HBSS), pH 7.4, with 25 mM HEPES and 10 mM glucose at 37 °C was used as the medium in the permeability study. The monolayers were rinsed twice with HBSS in both the donor (upper) and receiver (lower) compartments, and incubated in HBSS with 0.005% HCO 60 for 10 min to stabilize physiological parameters. During the transmembrane permeability experiments, the integrity of cell monolayers was assessed by transepithelial electrical resistance (TEER) measurements at fixed times using a tissue resistance measurement chamber (EVOM; World Precision Instruments, Sarasota, FL, USA). MDCK cell monolayers (TEER ≥ 600 Ω·cm²) were washed in HBSS with 0.005% HCO60, and then a solution containing the test compound (50 µM) was added to the donor compartment, followed by an incubation at 37 °C for 60 min. The flux of test compound into the receiver compartment was measured with LC-MS/MS (Sciex, Foster City, CA, USA), and the apparent permeability coefficient (P_{app}) was calculated with the following equation: P_{app} (cm/s) = (dQ/dt) × 1/A × 1/C₀, where dQ/dt is the increase in the amount of drug in the receiver chamber per time interval, C₀ is the initial concentration in the donor compartment, and A is the permeability area of the cell culture insert. Three reference compounds were also screened: atenolol to represent paracellular transport; propranolol to represent efficient passive transcellular.
transport; and methotrexate to represent poor passive transcellular transport. Atenolol and propranolol have a known human absorption of 50% and 90%, respectively, and can be used for ranking compounds with unknown characteristics.

LC-MS/MS Analysis. The LC-MS/MS system consisted of an Agilent 1100 series gradient HPLC pump (Agilent Technologies, Palo Alto, CA, USA), a CTC HTS PAL Autosampler (AMR, Inc., Tokyo, Japan) and a Sciex API 3200 triple quadrupole mass spectrometer (Sciex) equipped with a turbo ionspray interface. The samples were separated by reverse phase HPLC using a Capcell Pak MG III RP C18 50 × 2.1 mm column (Shiseido Inc., Tokyo, Japan). The compounds were analyzed with an optimized protocol within the following range of conditions: flow rate of 0.4mL/min [range: 0-0.7 min]; injection volume of 20 μL; solvent A consisting of 0.1% formic acid in water; solvent B consisting of acetonitrile; a linear gradient of 5%-90% B, 90% B (1.3 min), a return to initial conditions, and equilibration (1.5 min).

Human and Rat Unbound Microsomal Intrinsic Clearance Determination.

Human Microsomal Stability Assay. The incubation mixtures were prepared in 96-well cluster tubes (1.4 mL PP; Micronic, Aston, PA, USA). The metabolic stability of the test compounds was determined with pooled, mixed-gender human microsomes (pool of n = 50; XenoTech, Kansas City, KS, USA). Each reaction mixture consisted of 100 mM potassium phosphate buffer (pH 7.4), liver microsomes (final concentration, 0.5 mg/mL), NADPH regenerating mix (final concentration, 1.0 mM NADP+, 4.0 mM glucose-6-phosphate, 3.0 mM MgCl2, 0.4 U/mL of glucose-6-phosphate dehydrogenase, 5.0 mM UDP-GA, and 0.165 mM β-NAD), and the test compound (1 µM) in a total volume of 100 μL. The incubation mixture was prewarmed for 5 min. Liver microsomes were added to the mixture, and kept in a shaking water bath for 15 min at 37 °C. To the mixture was added chilled acetonitrile (200 μL) containing an internal standard to stop the reaction. The samples were centrifuged at 3500 rpm for 15 min at 4 °C. The supernatants were analyzed by LC-MS/MS. Controls were prepared by omitting NADPH regenerating mix from the reaction mixture, and adding microsomes after the reaction was terminated.

Human Liver Microsomal Binding Assay. Microsomal binding of the test compounds was determined by equilibrium dialysis. Dialysis mixtures contained the test compound (1 μM), microsomal solution (final concentration of microsomes, 0.5 mg/mL; ratio of components = 1 : 1 : 8 [microsomes at 5 mg/mL : PBS, pH 7.4 : 125 mM phosphate buffer, pH 7.4]), in a final volume of 150 μL. Duplicate mixtures were subjected to equilibrium dialysis against 150 μL of 100 mM potassium phosphate buffer (pH 7.4) using 96-well Micro-Equilibrium Dialysis Devices (HT Dialysis LLC, Gales Ferry, CT, USA). The dialyzing unit consisted of two chambers separated by an ultrathin membrane with a molecular weight cut-off of 12-14 kDa. The plate was rotated at 300 rpm for 6 h at 37 °C in the plate shaker (Taitec Inc., Japan). Upon completion of the dialysis, 50 μL samples were obtained from the microsome and buffer sides. For a matrix composition match, 50 μL of 100 mM phosphate buffer (pH 7.4) was added to the microsome side sample and the microsome mixture was added to the buffer side sample. To the mixture was added chilled acetonitrile (300 μL) containing an internal standard to stop the reaction; the samples were then analyzed by LC-MS/MS. Results are expressed as the area ratio of each sample versus control: human microsome fu = peak area_{sample} / peak area_{control}.

Rat Microsomal Stability Assay. The incubation mixtures were prepared in Corning 96-well cluster plates. The
metabolic stability of the test compounds was determined in pooled liver microsomes from male Sprague-Dawley rats (XenoTech). The reaction mixture consisted of 100 mM Tris-HCl buffer (pH 7.4), liver microsomes (5 mg/mL), NADPH regenerating mix (final concentrations of 0.165 mM NADP+, 4 mM glucose-6-phosphate, 3.0 mM MgCl2, 0.1 U/mL of glucose-6-phosphate dehydrogenase, 5.0 mM UDP-GA, and 0.165 mM β-NAD), and the test compound (0.5 µM) in a total volume of 100 µL. Reactions were initiated by the addition of liver microsomes (final concentration, 0.5 mg/mL) and incubated in a shaking water bath for 20 min at 37 °C. To the mixture was added chilled acetonitrile (200 µL) containing an internal standard to stop the reaction. A control sample was prepared by adding acetonitrile to a reaction mixture lacking microsomes, and then adding microsomes after the reaction was terminated. The samples were centrifuged at 3500 rpm for 15 min at 4 °C. The supernatants were analyzed by LC-MS/MS.

Rat Liver Microsomal Binding Assay. Microsomal binding of the test compounds was determined by ultracentrifugation. Each ultracentrifugation mixture contained the test compound (0.5 µM), microsomal solution (final concentration, 0.5 mg/mL; ratio of components = 1 : 9 [microsomes at 5 mg/mL : 100 mM Tris-HCl buffer, pH 7.4]), in a final volume of 100 µL. Aliquots of 100 µL were placed in polyallomer ultracentrifuge tubes (8 mm × 34 mm; Beckman Coulter, Fullerton, CA, USA) and centrifuged at 160,000g for 16 h at 37 °C in an Optima TL ultracentrifuge (Beckman Coulter). Upon completion of the ultracentrifugation, 50 µL of the supernatant was obtained. To the supernatant was added chilled acetonitrile (50 µL) containing an internal standard to stop the reaction; the samples were then analyzed by LC-MS/MS. Controls were prepared by adding the test compound to the ultracentrifugal supernatant of the microsomal solution. Results are expressed as the area ratio of sample versus control: rat microsome fu = peak area_{sample} / peak area_{control}.

LC-MS/MS Analysis. The LC-MS/MS system consisted of an Agilent 1100 series gradient HPLC pump (Agilent Technologies, Palo Alto, CA, USA), a CTC HTS PAL Autosampler (AMR, Inc., Tokyo, Japan), and a Sciex API 3200 triple quadrupole mass spectrometer (Sciex, Foster City, CA, USA) equipped with a turbo ionspray interface. The samples were separated by reverse phase HPLC using an Inert Sustain RP C18 50 × 2.1 mm column (GL Science Inc., Tokyo, Japan) or Capcell Pak RP C18 50 × 2.1 mm column (Shiseido Inc., Tokyo, Japan). The compounds were eluted with an optimized gradient, which fell within the following method conditions: flow rate of 0.4 mL/min (range: 0-0.7 min); injection volume of 20 µL; solvent A consisting of 0.1% formic acid in water; solvent B consisting of acetonitrile or 0.1% formic acid in acetonitrile; the percentage of B was linearly increased from 5% to 90%, 90% B (1.3 min), returned to initial conditions, equilibrated (1.5 or 1.6 min). The area ratio of each test compound was calculated by comparing the peak area of the compound to the peak area of an internal standard.

Calculation of Human and Rat Unbound Microsomal Intrinsic Clearance (hCL_{int,u} and rCL_{int,u}). Metabolic stability was determined by plotting the natural logarithm of the concentration of unchanged test compound as a function of time. The first-order rate constant was calculated using the equation \(k = (\ln(C_0) – \ln(C))/\text{incubation time}, \) where \(C_0 \) was the initial concentration of the test compound, \(C \) was the concentration of the test compound remaining after incubation (\(C = C_0 \times \text{remaining ratio} \)), and the incubation time was 15 min (human) or 20 min (rat). The half-life (\(t_{1/2} \)) was estimated using the equation \(t_{1/2} = 0.693/k \). The hCL_{int,u} was estimated using the equation hCL_{int,u} = 1/(microsomal protein concentration) × (microsomal protein per gram of liver) × (liver mass per kilogram of body mass).
mass) / (human microsome fu), where k was the first-order rate constant, the microsomal protein concentration was 0.5 mg/mL, the microsomal protein per gram of liver was 48.8 mg, the liver mass per kilogram of body mass was 25.7 g, and the human microsome fu was determined experimentally from the human liver microsomal binding assay.\cite{40} The rCL\textsubscript{int,u} was estimated using the equation \(rCL\textsubscript{int,u} = k / (\text{microsomal protein concentration}) \times \text{(microsomal protein per gram of liver)} \times \text{(liver mass per kilogram of body mass)} / (\text{rat microsome fu}) \), where k was the first-order rate constant, the microsomal protein concentration was 0.5 mg/mL, the microsomal protein per gram of liver was 44.8 mg, liver mass per kilogram of body mass was 40.0 g, and the rat microsome fu was determined experimentally from the rat liver microsomal binding assay.\cite{40}

PK Study. Compounds 5, 11, and 56d were subjected to PK studies in male Sprague-Dawley rats. Test compounds were administered orally to rats (n = 2 or 3) at a dose of 5 mg/kg in saline or water (dose volume 5 mL/kg). Blood samples were collected via the subclavian vein at 0.5, 1, 2, 4, 6, and 8 h post dose. Plasma was separated by centrifugation and stored frozen at -20 °C until analysis. Plasma compound concentrations were determined using LC-MS/MS. PK parameters were calculated using the non-compartmental analysis tool provided with WinNonlin® Enterprise software v6.4.0.768 (Certara, Princeton, NJ, USA).

Cytochrome P450 Inhibition Assay. CYP inhibition assays (CYP1A2, 2B6, 2C19, 2C8, 2C9, 2D6, and 3A4) were performed with Promega assay kits (P450-GloTM Assays; Madison, WI, USA) according to the manufacturer’s instructions.

In silico

Homology Modeling of the β3-AR. The β3-AR sequence was aligned with the human β2-AR sequence.\cite{35b} A three-dimensional model of the β3-AR was constructed using Prime in the Maestro software (Schrödinger, LLC). Because it is very long and was predicted to be disordered, the third intracellular loop was truncated by five residues leading into TM6.

Docking Study. Energy minimization and protonation of all compounds was performed with LigPrep in the Maestro software (Schrödinger, LLC). Docking of the compounds into the β3-AR model utilized three main steps that take into account several levels of structural flexibility and scoring criteria: (1) molecular modeling of compound-bound β3-AR by docking compound 56f, with consideration of both ligand and receptor flexibility; (2) rigid receptor docking of eight indazole analogues and four other series into the active site of the compound 56f-bound β3-AR model generated in the previous step; (3) rescoring according to the calculated binding score (Glide extra precision, XP; Schrödinger, LLC).

In order to account for both compound and receptor flexibility in the first step, the Glide “Induced Fit Docking (IFD)” protocol (Schrödinger, LLC) was utilized, followed by iteratively combining rigid receptor docking (Glide) and protein remodeling by side chain searching and minimization (Prime) techniques. Hydrogen-bonding constraints between the side chain COO- group of Asp117 and the side chain C=O group of Asn332 were introduced, because this hydrogen-bonding formation is highly conserved in almost all known complexes formed

75
between members of the β-AR family bound to isoproterenol and a wide variety of agonists. In the protein remodeling stage, all residues within a 5 Å radius of each initial docked compound were refined using Prime. The compound was then redocked into the refined receptor structure using Glide in the standard precision (SP) mode. All the docked structures were then ranked according to Glide score. After modeling the compound-β3-AR complex using the IFD protocol, grid generation and rigid receptor docking of the eight indazole analogues and four other series using Glide (SP mode) was conducted, using hydrogen-bonding constraint to connect the side chain oxygen atom of Ser208. The best orientation for each docked compound was rescoring according to its binding score (Glide XP; Schrödinger, LLC).

MD simulation. The compound 56d-bound structure of human β1-AR was subjected to 20 ns MD simulations using Desmond version 2.3[41] with OPLS3 force field[42]. The initial model structure was placed into a large palmitoyloleoylphosphatidylcholine (POPC) bilayer at a depth consistent with the structure of human β2-AR with BI-167107 (PDB entry 3P0G) from the Orientation of Proteins in Membranes (OPM) database[43] and TIP3P water molecules solvated with 0.15 M NaCl. After minimization and relaxation of the model, the production MD phase was performed for 20 ns in the isothermal-isobaric (NPT) ensemble at 300 K and 1 bar using Langevin dynamics. Long-range electrostatic setups were performed using Maestro (Schrödinger, LLC).
略語表

ADME absorption, distribution, metabolism and excretion
AR adrenergic receptor
AUC area under the curve
Boc tert-butoxycarbonyl
CHO chinese hamster ovary
CYP cytochrome P
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DHP 3,4-dihydro-2H-pyran
DMEAD di-2-methoxyethylazodicarboxylate
DMF dimethylformamide
ECL extracellular loop
Glide XP Glide extra precision
hCLint,u human unbound microsomal intrinsic clearance
HR heart rate
IA intrinsic activity
IFD induced fit docking
MBP mean blood pressure
MD molecular dynamics
MDCK madin-darby canine kidney
NBS N-bromosuccinimide
NCS N-chlorosuccinimide
OAB overactive bladder
PDB Protein Data Bank
PK pharmacokinetics
QSAR quantitative structure–activity relationship
rCLint,u rat unbound microsomal intrinsic clearance
RMSD root mean square deviation
SD standard deviation
SEM standard error of mean
TBAF tetrabutylammonium fluoride
TBDPS tert-butyldiphenylsilyl
TBS tert-butyldimethylsilyl
TES triethylsilyl
THF tetrahydrofuran
THP tetrahydropyran-2-yl
TMAD N,N,N',N'-tetramethyazodicarboxamide
引用文献

(26) Weiberth, F. J.; Hall, S. S. Copper(I)-Activated Addition of Grignard Reagents to Nitriles. Synthesis of

謝辞

ご指導、ご鞭撻を賜りました北海道大学大学院薬学研究院 周東 智 教授に深く感謝いたします。

計算化学に関してご指導、ご鞭撻を賜りました産業技術総合研究所 創薬分子プロファイリング研究センター 広川 貴次 研究チーム長に深く感謝いたします。

本論文を審査していただき、有益なご助言を賜りました北海道大学大学院薬学研究院 市川 憲 教授、渡邉 瑞貴 講師、薬師寺 文華 講師に深く感謝いたします。

本研究を進めるに当たり、化合物の評価並びに有益なご助言、活発な議論を賜りました、旭化成ファーマ株式会社 医薬研究センター β1アドレナリン受容体アゴニスト創製プロジェクトのメンバーに心より感謝いたします。

2018年3月 和田 康弘