<table>
<thead>
<tr>
<th>Title</th>
<th>Submodules of L^2(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Seto, Michio</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 628, 1-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83782</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69436</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre628.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Submodules of $L^2(\mathbb{R}^2)$

MICHIRO SETO

Abstract

In this paper, we study submodules over \mathbb{R}^2. We will give a Lax-type of theorem and a result analogous to Helson’s theory.

Keywords and phrases: Hardy submodules.

1 Introduction

$L^2(\mathbb{R}^2)$ will denote the Hilbert space of square-integrable measurable functions with respect to the usual Lebesgue measure $dx_1 dx_2$ on the two dimensional Euclidean space \mathbb{R}^2. $H^2(\mathbb{R})$ denotes the usual Hardy space on \mathbb{R}, that is, $H^2(\mathbb{R})$ consists of all functions in $L^2(\mathbb{R})$ which can be extended analytically to the upper half plane $\mathbb{C}_+ = \{x + it : x \in \mathbb{R}, t > 0\}$. $H^2(\mathbb{R}) \otimes H^2(\mathbb{R})$, the Hilbert space tensor product of $H^2(\mathbb{R})$, is the space of all f in $L^2(\mathbb{R}^2)$ whose Fourier transform

$$\mathcal{F}(f)(\lambda_1, \lambda_2) = \hat{f}(\lambda_1, \lambda_2) = \int_{\mathbb{R}^2} f(x_1, x_2) e^{-i(\lambda_1 x_1 + \lambda_2 x_2)} dx_1 dx_2$$

is 0 whenever at least one component of (λ_1, λ_2) is negative, where (λ_1, λ_2) and (x_1, x_2) are in \mathbb{R}^2. In this paper, $H^2(\mathbb{R}) \otimes H^2(\mathbb{R})$ is denoted by $H^2(\mathbb{R}^2)$, for short. Note that our $H^2(\mathbb{R}^2)$ is different from the usual Hardy space on \mathbb{R}^2.

Definition 1.1 A closed subspace \mathcal{M} of $L^2(\mathbb{R}^2)$ is said to be a submodule of $L^2(\mathbb{R}^2)$ if $e^{i\pi x_j} \mathcal{M} \subseteq \mathcal{M}$ for any $j = 1, 2$ and any $s \geq 0$. For $s \geq 0$, $S_s(s)$ denotes the restriction on \mathcal{M} of the multiplication operator on $L^2(\mathbb{R}^2)$ by $e^{i\pi x_j}$.

Submodules in one variable were completely described by Lax in [4]. In [1], Helson gave another point of view to the result of Lax. The purpose of our study is to consider Helson’s theory in the multi-variable setting. My interest in considering Helson’s theory in two variables is motivated by the study of Hardy submodules over the bidisk: Hardy submodules are invariant subspaces of Hardy space under multiplication operators by
bounded analytic functions. However, it is easy to see that a straightforward generalization of Helson’s theory fails in the multi-variable setting. In Section 2 of this paper, we give a Lax-type theorem in two variables. To prove this we use Masani’s integral (cf. [6]). In Section 3, we consider Helson’s theory in two variables. We will give a result analogous to Helson’s result under the following condition: \(S_1(s)S_2(t)^* = S_2(t)^*S_1(s) \) for all \(s, t \geq 0 \).

2 A Lax-type of theorem in \(\mathbb{R}^2 \)

In [9], the author showed the following Lax-type of theorem analogous to the theorem proved by Mandrekar [5] and Nakazi [7] for the bitorus.

Theorem 2.1 Let \(\mathcal{M} \) be a submodule of \(L^2(\mathbb{R}^2) \), \(H^2_{x_1}(\mathbb{R}^2) = L^2(\mathbb{R}, dx_1) \otimes H^2(\mathbb{R}, dx_2) \) and \(H^2_{x_2}(\mathbb{R}^2) = H^2(\mathbb{R}, dx_2) \otimes L^2(\mathbb{R}, dx_1) \). If \(S_1(s)S_2(t)^* = S_2(t)^*S_1(s) \) for all \(s, t \geq 0 \), then one and only one of the following occurs:

(i) \(\mathcal{M} = \chi_E L^2(\mathbb{R}^2) \oplus \chi_F \varphi H^2_{x_1}(\mathbb{R}^2) \),

(ii) \(\mathcal{M} = \chi_E L^2(\mathbb{R}^2) \oplus \chi_G \psi H^2_{x_2}(\mathbb{R}^2) \),

(iii) \(\mathcal{M} = q H^2(\mathbb{R}^2) \),

where \(\varphi, \psi \) and \(q \) are unimodular functions, \(\chi_E \) is the characteristic function of \(E \), \(\chi_F \) (resp. \(\chi_G \)) is the characteristic function of \(F \) (resp. \(G \)) which depends only on the variable \(x_1 \) (resp. \(x_2 \)).

We shall give a proof which differs from that given in [9]. To begin with, we briefly introduce Masani’s integral which can be seen as a continuous Wold decomposition for a continuous semi-group of isometries, according to [6].

Definition 2.1 (Masani [6]) Let \(\{S(t) : t \geq 0\} \) be a strongly continuous semi-group of isometries on a Hilbert space \(\mathcal{H} \). We introduce an operator-valued interval-measure. The measure \(T_{ab} \) of the interval \([a, b] \) is defined by as follows:

\[
T_{[a,b]} = T(b) - T(a), \quad \text{where} \quad T(t) = \frac{1}{\sqrt{2}} \left\{ S(t) - I - \int_0^t S(s) \, ds \right\}, \quad \text{for} \ t \geq 0.
\]

Let \(iH \) be the infinitesimal generator of \(\{S(t) : t \geq 0\} \) and \(V \) be the Cayley transform of \(H \) and \(R = V(\mathcal{H}) \). For the step-function \(x = \sum_{k=1}^n \alpha_k \chi_{J_k} \) on \([a, b]\), where \(\alpha_k \) is in \(R^1 \) and \(\chi_{J_k} \) is the characteristic function of bounded interval \(J_k \), we define

\[
\int_a^b T_{dt}(x) := \sum_{k=1}^n T_{dt}(\alpha_k).
\]
For any \(x \in L^2([a, b], R^+) \), we define
\[
\int_a^b T_{dt}(x_t) := \lim_{n \to \infty} \int_a^b T_{dt}(x_t^{[n]}),
\]
where \(\{x_t^{[n]}, n \geq 1\} \) is any sequence of step-functions which is tending to \(x \) in the \(L^2 \)-topology.

We now define a direct integral as a set of vector-valued integrals:
\[
\int_a^b T_{dt}(R^+) := \left\{ \xi : \xi = \int_a^b T_{dt}(x_t), x \in L^2([a, b], R^+) \right\}.
\]

Theorem 2.2 (Masani [6]) Let \(\{S(t) : t \geq 0\} \) be a strongly continuous semi-group of isometries on a Hilbert space \(\mathcal{H} \), \(iH \) be its infinitesimal generator and let \(V \) be the Cayley transform of \(H \). Then, for \(a \geq 0 \),
\[
S(a)(\mathcal{H}) = \int_a^\infty T_{dt}(R^+) \oplus \mathcal{H}_\infty,
\]
where \(R = V(\mathcal{H}) \) and \(\mathcal{H}_\infty = \bigcap_{t \geq 0} S(t)(\mathcal{H}) \).

This theorem can be seen as a continuous Wold decomposition.

Example 2.1 Let \(T_{ds}^{(k)} \) be the operator-valued measures defined by \(S_k(s) \) for \(k = 1, 2 \). Identifying bounded functions with multiplication operators, \(T^{(k)}(s) \) can be computed formally as follows:
\[
T^{(k)}(s) = \frac{1}{\sqrt{2}} \left\{ S_k(s) - I_{\mathcal{M}} - \int_0^s S_k(t) \, dt \right\}
\]
\[
= \frac{1}{\sqrt{2}} \left(e^{ix_k} - 1 - \int_0^s e^{itx_k} \, dt \right)
\]
\[
= \frac{1}{\sqrt{2}} \left(e^{ix_k} - 1 - \left[\frac{1}{ix_k} e^{itx_k} \right]_0^s \right)
\]
\[
= \frac{1}{\sqrt{2}} \left(e^{ix_k} - 1 - \frac{1}{ix_k} \left(e^{ix_k} - 1 \right) \right)
\]
\[
= \frac{1}{\sqrt{2}} \left(e^{ix_k} - 1 \right) \left(1 - \frac{1}{ix_k} \right)
\]
\[
= \frac{1}{\sqrt{2}} x_k \left(e^{ix_k} - 1 \right) (x_k + i).
\]

Thus the operator valued measure \(T_{ds}^{(k)} \) can be computed as follows:
\[
T_{ds}^{(k)} = \frac{d}{ds} \left(\frac{1}{\sqrt{2}} x_k \left(e^{ix_k} - 1 \right) (x_k + i) \right) \, ds
\]
\[
= \frac{1}{\sqrt{2}} \left(e^{ix_k} - 1 \right) ds.
\]
We are now in a position to prove Theorem 2.1.

Proof (A proof of Theorem 2.1) Some parts of this proof are similar to those in the proof by Mandrekar [5] and Nakazi [7] for the bitorus (cf. Seto [9]).

Suppose that $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \geq 0$. Let V_{x_k} be the isometry induced by $\{S_k(s) : s \geq 0\}$ as in Theorem 2.2 for $k = 1, 2$. Since V_{x_k} is in the von Neumann algebra generated by $\{S_k(s) : s \geq 0\}$, we have $V_{x_1}^*V_{x_2} = V_{x_2}V_{x_1}^*$. It suffices to consider the following two cases:

- V_{x_1} and V_{x_2} are completely non-unitary,
- V_{x_1} is completely non-unitary and V_{x_2} is unitary.

First, we suppose that V_{x_1} and V_{x_2} are completely non-unitary. Then

$$\mathcal{M} = \int_0^\infty T_{ds}^{(1)} \left\{ \int_0^\infty T_{dt}^{(2)} (\mathcal{M} \oplus (V_{x_1} \mathcal{M} + V_{x_2} \mathcal{M})) \right\},$$

by Theorem 2.2. Let f be in $\mathcal{M} \oplus (V_{x_1} \mathcal{M} + V_{x_2} \mathcal{M})$ such that $\|f\| = 1$. Then

$$\int_{\mathbb{R}^2} |f(x_1, x_2)|^2 \frac{(x_1 - i)^k (x_2 - i)^l}{(x + i)^k (x + i)^l} \, dx_1 \, dx_2 = 0,$$

for all $(k, l) \neq (0, 0)$. Changing variables x_1 and x_2 to θ_1 and θ_2, we have

$$\int_0^{2\pi} \int_0^{2\pi} |f(\theta_1, \theta_2)|^2 e^{i k \theta_1} e^{i l \theta_2} \frac{1}{(\cos^2 \frac{\theta_1}{2})(\cos^2 \frac{\theta_2}{2})} \, d\theta_1 \, d\theta_2 = 0.$$

Hence $|f(\theta_1, \theta_2)|^2 (\cos^2 \frac{\theta_1}{2})^{-1}(\cos^2 \frac{\theta_2}{2})^{-1} = 1$, equivalently $(x_1^2 + 1)(x_2^2 + 1)|f(x_1, x_2)|^2 = 1$. Therefore, there exists a unimodular function q such that

$$f = \frac{q}{(x_1 + i)(x_2 + i)}.$$

Hence we have

$$\mathcal{M} \oplus (V_{x_1} \mathcal{M} + V_{x_2} \mathcal{M}) = \mathbb{C} \frac{q}{(x_1 + i)(x_2 + i)}.$$

By the Paley-Wiener theorem,

$$\mathcal{M} = \int_0^\infty T_{ds}^{(1)} \left\{ \int_0^\infty T_{dt}^{(2)} \left(\mathbb{C} \frac{q}{(x_1 + i)(x_2 + i)} \right) \right\}$$

$$= \left\{ \xi : \xi = q \int_0^\infty e^{ix_1} \, ds \int_0^\infty e^{itx_2} f(s, t) \, dt ; f \in L^2((0, \infty) \times (0, \infty)) \right\}$$

$$= q \left(H^2(\mathbb{R}) \otimes H^2(\mathbb{R}) \right)$$

$$= qH^2(\mathbb{R}^2).$$
Next, we suppose that V_{x_1} is completely non-unitary and V_{x_2} is unitary. Then
\[\mathcal{M} = \int_0^\infty T_{d_s}^{(1)}(\mathcal{M} \oplus V_{x_1}, \mathcal{M}), \]
by Theorem 2.2. Let f be in $\mathcal{M} \oplus V_{x_1}, \mathcal{M}$. Then
\[\int_{\mathbb{R}^2} |f(x_1, x_2)|^2 \frac{(x_1 - i)^k (x_2 - i)^l}{(x_1 + i)^k (x_2 + i)^l} \, dx_2 dx_1 = 0, \]
for all $k \neq 0$ and l. By the same calculations as in the first case, we have
\[f(x_1, x_2) = g(x_1, x_2)/(x_1 + i) \]
for some g such that the function $|g|$ depends only on the variable x_2.

The following argument is known (cf. [3]). Let $\chi_{E[g]}$ be the support function of g, that is, $\chi_{E[g]}$ is the characteristic function of the set $E(g) = \{(x_1, x_2) \in \mathbb{R}^2 : g(x_1, x_2) \neq 0\}$, and ϕ_g be a unimodular function defined as follows:
\[\phi_g = \begin{cases} g/|g| & (g \neq 0) \\ 1 & (g = 0). \end{cases} \]
Then
\[\sqrt{\int_{\mathbb{R}} e^{ix_2} \frac{g}{x_1 + i} \, dx_2} = \frac{\phi_g}{x_1 + i} \chi_{E[g]} L^2(\mathbb{R}, dx_2), \]
where $\sqrt{\cdot}$ denotes the closed vector span. Since there exists a function F in $\mathcal{M} \oplus V_{x_1}, \mathcal{M}$ which has the maximal support in $\mathcal{M} \oplus V_{x_1}, \mathcal{M}$, that is, $E(g) \subseteq E(F)$, for any g in $\mathcal{M} \oplus V_{x_1}, \mathcal{M}$, we have
\[\mathcal{M} \oplus V_{x_1}, \mathcal{M} = \frac{\phi_F}{x_1 + i} \chi_{E[F]} L^2(\mathbb{R}, dx_2). \]

Let $\chi_G = \chi_{E(F)}$ and $\psi = \phi_F$. By the Paley-Wiener theorem, we have the following:
\[\mathcal{M} = \int_0^\infty T_{d_s}^{(1)} \left(\frac{1}{x_1 + i} \chi_G \psi L^2(\mathbb{R}, dx_2) \right) \]
\[= \left\{ \xi : \xi = \chi_G \psi \int_0^\infty e^{ix_2} f(s, x_2) \, ds ; f \in L^2((0, \infty) \times \mathbb{R}) \right\} \]
\[= \chi_G \psi H^2(\mathbb{R}, dx_1) \otimes L^2(\mathbb{R}, dx_2) \]
\[= \chi_G \psi H^2_{x_2}(\mathbb{R}^2). \]

The converse is easy to verify.

A function q is said to be inner if q is in $H^2(\mathbb{R}^2)$ and $|q(x_1, x_2)| = 1$ a.e.

Corollary 2.1 Let \mathcal{M} be a submodule of $H^2(\mathbb{R}^2)$. Then $S_1(s) S_2(t)^* = S_2(t)^* S_1(s)$ for all $s, t \geq 0$ if and only if $\mathcal{M} = q H^2(\mathbb{R}^2)$ for some inner function q.
3 Helson’s theory under the double commuting condition in $L^2(\mathbb{R}^2)$

In this section, we discuss Helson’s theory in $L^2(\mathbb{R}^2)$ under the double commuting condition: $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \geq 0$. Then, it is parallel to Helson’s argument for the one-variable case in [1].

Definition 3.1 Let \mathcal{M} be a submodule of $L^2(\mathbb{R}^2)$. For any λ, μ in \mathbb{R}, we define one-parameter unitary groups $\{\alpha_\lambda\}$, $\{\beta_\mu\}$ and projections $\{P_\lambda\}$, $\{Q_\mu\}$ on $L^2(\mathbb{R}^2)$ as follows: for any f in $L^2(\mathbb{R}^2)$, $\alpha_\lambda f = e^{i\lambda x} f$, $\beta_\mu f = e^{i\mu y} f$, and $P_\lambda = \alpha_\lambda^* P_\lambda \alpha_\lambda$, $Q_\mu = \beta_\mu^* P_\mu \beta_\mu$, that is, P_λ and Q_μ are the orthogonal projections of $L^2(\mathbb{R}^2)$ onto $\alpha_\lambda^* \mathcal{M}$ and $\beta_\mu^* \mathcal{M}$, respectively.

Lemma 3.1 Let \mathcal{M} be a submodule of $L^2(\mathbb{R}^2)$. $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \geq 0$ if and only if $P_\lambda \alpha_\lambda P_\lambda \beta_\mu P_\mu = P_\mu \beta_\mu P_\mu \alpha_\lambda P_\lambda$ for all λ, μ in \mathbb{R}.

Proof It is easy to verify.

Definition 3.2 A submodule \mathcal{M} of $L^2(\mathbb{R}^2)$ is said to be simple if $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \geq 0$ and $(\cap_{\lambda} \alpha_\lambda \mathcal{M} + \cap_{\mu} \beta_\mu \mathcal{M}) = \{0\}$ (this is equivalent to that $P_{-\infty} = \lim_{\lambda \to -\infty} P_\lambda = 0$ and $Q_{-\infty} = \lim_{\mu \to -\infty} Q_\mu = 0$).

Note that a submodule \mathcal{M} is simple if and only if $\mathcal{M} = qH^2(\mathbb{R}^2)$ for some unimodular function q by Theorem 2.2.

Next, we define two sequences of projections, and show that these are the spectral measures of $L^2(\mathbb{R}^2)$. Let E_λ and F_μ be projections defined as follows:

$$E_\lambda = \alpha_\lambda^* Q_{+\infty} \alpha_\lambda \text{ and } F_\mu = \beta_\mu^* P_{+\infty} \beta_\mu.$$

Lemma 3.2 Let \mathcal{M} be a submodule of $L^2(\mathbb{R}^2)$. If \mathcal{M} is simple, then $\{E_\lambda\}$ and $\{F_\mu\}$ are spectral families. Moreover $E_\lambda F_\mu = F_\mu E_\lambda = \alpha_\lambda^* \beta_\mu^* P_\lambda \alpha_\lambda \beta_\mu$ for all λ, μ in \mathbb{R}.

Proof Since, for $\gamma \geq \lambda, \mu$,

$$E_\lambda F_\mu = \alpha_\lambda^* Q_{+\infty} \alpha_\lambda \beta_\mu^* P_{+\infty} \beta_\mu \quad = \lim_{\gamma \to +\infty} \left(\alpha_\lambda^* \beta_\gamma^* P_\lambda \beta_\gamma \alpha_\lambda \beta_\mu^* \alpha_\gamma^* P_\lambda \alpha_\gamma \beta_\mu \right) \quad = \lim_{\gamma \to +\infty} \left(\alpha_\lambda^* \beta_\gamma^* P_\lambda \beta_\gamma \alpha_\lambda \beta_\mu^* \alpha_\gamma^* P_\lambda \alpha_\gamma \beta_\mu \right) \quad = \lim_{\gamma \to +\infty} \left(\alpha_\lambda^* \beta_\gamma^* P_\lambda \beta_\gamma \alpha_\lambda \beta_\mu^* \alpha_\gamma^* P_\lambda \alpha_\gamma \beta_\mu \right) \quad = \alpha_\lambda^* \beta_\mu^* P_\lambda \alpha_\lambda \beta_\mu.$$
we have \(E_\lambda F_\mu = \alpha_\lambda^* \beta_\mu^* P_\lambda \alpha_\lambda \beta_\mu = F_\mu E_\lambda \) for all \(\lambda, \mu \) in \(\mathbb{R} \).

Next, suppose that

\[
\chi_G L^2(\mathbb{R}^2) = \bigcup_{\lambda, \mu} \alpha_\lambda \beta_\mu M \subseteq \bigcap \alpha_\lambda \bigcup_{\mu} \beta_\mu M + \bigcap_{\mu} \beta_\mu \bigcup_{\lambda} \alpha_\lambda M,
\]

where the bar denotes the closure. We shall show \(\chi_G = 1 \). The following argument is the same as in [1]. Let \(U_{s,0} = \int_{\mathbb{R}} e^{i\lambda x} \, dE_\lambda \). Then, since \(\alpha_{\lambda_0}^* \beta_\mu^* F_\mu E_{\lambda_0} = E_{\lambda - \lambda_0} \), we have

\[
\alpha_{\lambda_0} \beta_\mu U_{s,0} = \alpha_{\lambda_0} \beta_\mu \int_{\mathbb{R}} e^{i\lambda x} \, dE_\lambda = \int_{\mathbb{R}} e^{i\lambda x} \, dE_{\lambda - \lambda_0} \alpha_{\lambda_0} \beta_\mu = e^{i\lambda_0} \int_{\mathbb{R}} e^{i\lambda (x - y)} \, dE_{\lambda - \lambda_0} \alpha_{\lambda_0} \beta_\mu = e^{i\lambda_0} U_{s,0} \alpha_{\lambda_0} \beta_\mu,
\]

Therefore

\[
U_{s,0} T_{-s,0} \alpha_\lambda \beta_\mu = U_{s,0} e^{i\lambda s} \alpha_\lambda \beta_\mu T_{-s,0} = \alpha_\lambda \beta_\mu U_{s,0} T_{-s,0},
\]

where \(T_{s,t} \) is the translation operator such that \((T_{s,t} f)(x, y) = f(x - s, y - t)\). Hence \(U_{s,0} T_{-s,0} \) is a multiplication operator on \(L^2(\mathbb{R}^2) \). Since \(U_{s,0} T_{-s,0} \) maps \(T_{s,0} \chi_G L^2(\mathbb{R}^2) \) to \(\chi_G L^2(\mathbb{R}^2) \), we have \(T_{s,0} \chi_G L^2(\mathbb{R}^2) = \chi_G L^2(\mathbb{R}^2) \). By the same argument for \(\beta_\mu \), we have \(T_{0,t} \chi_G L^2(\mathbb{R}^2) = \chi_G L^2(\mathbb{R}^2) \), that is, \(T_{s,t} \chi_G L^2(\mathbb{R}^2) = L^2(\mathbb{R}^2) \) for all \(s, t \) in \(\mathbb{R} \). Hence \(G \) is a null set or \(G = \mathbb{R}^2 \), and we have

\[
\text{ran} \left(\lim_{\lambda \to +\infty} E_\lambda \right) = \text{ran} \left(\lim_{\mu \to +\infty} F_\mu \right) = \bigcup_{\lambda, \mu} \alpha_\lambda \beta_\mu M = L^2(\mathbb{R}^2),
\]

\[
\text{ran} \left(\lim_{\lambda \to -\infty} E_\lambda \right) = \bigcap_{\lambda} \alpha_\lambda \bigcup_{\mu} \beta_\mu M = \{0\},
\]

\[
\text{ran} \left(\lim_{\mu \to -\infty} F_\mu \right) = \bigcap_{\mu} \beta_\mu \bigcup_{\lambda} \alpha_\lambda M = \{0\}.
\]

Therefore \(\{E_\lambda\} \) and \(\{F_\mu\} \) are the spectral families.

By virtue of Lemma 3.2, for any simple submodule of \(L^2(\mathbb{R}^2) \), there exists a spectral measure \(dE_{\lambda,\mu} = dE_{\lambda} dF_\mu \) on \(\mathbb{R}^2 \) and we have a two-parameter continuous unitary group \(\{U_{s,t}\} \) on \(L^2(\mathbb{R}^2) \) as follows:

\[
U_{s,t} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s\lambda + t\mu)} \, dE_{\lambda} dF_\mu = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s\lambda + t\mu)} \, dE_{\lambda,\mu}.
\]
Definition 3.3 A family \(\{ A_{s,t} \} \) of functions on \(\mathbb{R}^2 \) which are individually measurable is said to be a cocycle of \(\mathbb{R}^2 \) if

(i) \(|A_{s,t}(x, y)| = 1 \) almost everywhere in \(x, y \), for each \(s, t \),

(ii) \(A_{s,t}f \) moves continuously in \(L^2(\mathbb{R}^2) \) as \(s \) and \(t \) varies, for each \(f \) in \(L^2(\mathbb{R}^2) \),

(iii) \(A_{s+u,t+v} = A_{s,t}T_{s,t}A_{u,v} \) almost everywhere, for each \(s, t, u \) and \(v \).

Example 3.1 (cf. [1]) In Lemma 5.3, we showed the following commutation relation:

\[
U_{s,0}T_{s,0}a = \alpha \beta U_{s,0}T_{s,0}.
\]

Using the same argument with respect to the variable \(x_2 \), we have

\[
U_{s,t}T_{s,-t}a = \alpha \beta U_{s,t}T_{s,-t}.
\]

Therefore \(U_{s,t}T_{s,-t} \) is the multiplication operator by some unimodular function \(A_{s,t} \). We shall show \(\{ A_{s,t} \} \) is a cocycle of \(\mathbb{R}^2 \). Identifying bounded functions with multiplication operators, we have

\[
A_{s,u,t+v} = A_{s,t}a_{s,t}A_{u,v}(x - s, y - t).
\]

Proposition 3.1 There exists a one-to-one correspondence between simple submodules of \(L^2(\mathbb{R}^2) \) and cocycles of \(\mathbb{R}^2 \).

Proof Suppose that \(\{ A_{s,t} \} \) is a cocycle of \(\mathbb{R}^2 \). Let \(U_{s,t} = A_{s,t}T_{s,t} \). Then \(\{ U_{s,t} \} \) is a two-parameter unitary group on \(L^2(\mathbb{R}^2) \). By Stone’s theorem for \(\mathbb{R}^2 \), there exists a unique spectral measure of \(L^2(\mathbb{R}^2) \) such that

\[
U_{s,t} = \int_{\mathbb{R}^2} e^{i(s \lambda + t \mu)} dE_{\lambda, \mu}.
\]

Let \(\mathcal{M} = \text{ran} E_{0,0} \). Then

\[
\int_{\mathbb{R}^2} e^{i(s \lambda + t \mu)} dE_{\lambda+\tau_1, \mu+\tau_2} = e^{-i(s \tau_1 + t \tau_2)} \int_{\mathbb{R}^2} e^{i(s \lambda + t \mu)} dE_{\lambda+\tau_1, \mu+\tau_2} = \alpha_{\tau_1}^* \beta_{\tau_2}^* U_{s,t} \alpha_{\tau_1} \beta_{\tau_2} = \int_{\mathbb{R}^2} e^{i(s \lambda + t \mu)} d \left(\alpha_{\tau_1}^* \beta_{\tau_2}^* E_{\lambda, \mu} \alpha_{\tau_1} \beta_{\tau_2} \right).
\]
Hence we have
\[E_{\lambda+\tau_1,\mu+\tau_2} = \alpha_{\tau_1}^* \beta_{\tau_2}^* E_{\lambda,\mu} \alpha_{\tau_1} \beta_{\tau_2}. \]
Therefore \(\mathcal{M} \) is a submodule of \(L^2(\mathbb{R}^2) \).
Next, we shall show that \(\mathcal{M} \) satisfies the double commuting condition. It suffices to consider the case where \(\lambda \geq 0 \) and \(\mu \leq 0 \).

\[
P_{\mathcal{M}\alpha_{\lambda}} P_{\mathcal{M}\beta_{\mu}} P_{\mathcal{M}} = E_{0,0} \alpha_{\lambda} E_{0,0} \beta_{\mu} E_{0,0} \\
= \alpha_{\lambda} E_{0,0} E_{0,0} \beta_{\mu} \\
= \alpha_{\lambda} E_{0,0} \beta_{\mu}
\]
and

\[
P_{\mathcal{M}\beta_{\mu}} P_{\mathcal{M}\alpha_{\lambda}} P_{\mathcal{M}} = E_{0,0} \beta_{\mu} E_{0,0} \alpha_{\lambda} E_{0,0} \\
= E_{0,0} E_{0,0} \beta_{\mu} \alpha_{\lambda} E_{0,0} \\
= E_{0,0} \alpha_{\lambda} \beta_{\mu} E_{0,0} \\
= \alpha_{\lambda} E_{0,0} \beta_{\mu} \\
= \alpha_{\lambda} E_{0,0} \beta_{\mu}.
\]

Therefore \(P_{\mathcal{M}\alpha_{\lambda}} P_{\mathcal{M}\beta_{\mu}} P_{\mathcal{M}} = P_{\mathcal{M}\beta_{\mu}} P_{\mathcal{M}\alpha_{\lambda}} P_{\mathcal{M}} \). This concludes the proof by Lemma 3.1.

Example 3.2 (cf. [1]) Suppose that \(\mathcal{M} = qH^2(\mathbb{R}^2) \) for some unimodular function \(q \). Then its cocycle is \(\{qT_{s,t}q^{-1}\} \).

A cocycle of the form \(A_{s,t} = qT_{s,t}q^{-1} \), for some unimodular function, is called a coboundary of \(\mathbb{R}^2 \).

Corollary 3.1 Every cocycle of \(\mathbb{R}^2 \) is a coboundary of \(\mathbb{R}^2 \).

Proof By Theorem 2.1, for any simple submodule \(\mathcal{M} \) of \(L^2(\mathbb{R}^2) \), there is a unimodular function \(q \) such that \(\mathcal{M} = qH^2(\mathbb{R}^2) \). Hence the cocycle of \(\mathcal{M} \) is a coboundary.

References

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810
Japan
e-mail: seto@math.sci.hokudai.ac.jp