BACKWARD SHIFT INVARIANT SUBSPACES IN THE BIDISC III

KEIJI IZUCHI, TAKAHIKO NAKAZI, AND MICHIO SETO

Abstract. In the previous paper, we give a characterization of backward shift invariant subspaces of the Hardy space in the bidisc which satisfy the doubly commuting condition $S_z S_w^* = S_w^* S_z$ for the compression operators S_z and S_w. In this paper, we give a characterization of backward shift invariant subspaces satisfying $S_z^2 S_w^* = S_w^* S_z^2$.

1. Introduction.

Let Γ^2 be the 2-dimensional unit torus. We denote by $(z, w) = (e^{i\theta}, e^{i\phi})$ the variables in $\Gamma^2 = \Gamma_z \times \Gamma_w$. Let $L^2 = L^2(\Gamma^2)$ be the usual Lebesgue space on Γ^2 with the norm $\|f\|_2 = (\int_{\Gamma^2} |f(e^{i\theta}, e^{i\phi})|^2 d\theta d\phi / (2\pi)^2)^{1/2}$. Then L^2 is a Hilbert space with the usual inner product. For $f \in L^2$, the Fourier coefficients are given by

$$\hat{f}(n, m) = \int_{\Gamma^2} f(e^{i\theta}, e^{i\phi}) e^{-in\theta} e^{-im\phi} d\theta d\phi / (2\pi)^2 = \langle f, z^n w^m \rangle.$$

Let $H^2 = H^2(\Gamma^2)$ be the Hardy space on Γ^2, that is,

$$H^2 = \{ f \in L^2; \hat{f}(n, m) = 0 \text{ if } n < 0 \text{ or } m < 0 \}.$$

For $f \in H^2$, we can write f as

$$f = \sum_{i, j=0}^{\infty} \oplus a_{i, j} z^i w^j,$$

where $\sum_{i, j=0}^{\infty} |a_{i, j}|^2 < \infty$.

Let P be the orthogonal projection from L^2 onto H^2. For a closed subspace M of L^2, we denote by P_M the orthogonal projection from L^2 onto M. For a function $\psi \in L^{\infty}$, let $L_\psi f = \psi f$ for $f \in L^2$. The Toeplitz operator T_ψ is defined by $T_\psi f = P L_\psi f$ for $f \in H^2$. It is well known that $T_\psi^* = T_{\overline{\psi}}$ and $T_n^* T_{wm} = T_{wm} T_{z_n}^*$ for $n, m \geq 1$. A function $f \in H^2$ is called inner if $|f| = 1$ on Γ^2 almost everywhere. A closed subspace M of H^2 is called invariant if $z M \subseteq M$ and $w M \subseteq M$. In one variable

1

The first author was partially supported by Grant-in-Aid for Scientific Research (No.13440043), Ministry of Education, Science and Culture, Japan.

1991 Mathematics Subject Classification. Primary 47A15; Secondary 32A35.

Key words and phrases. Hardy space, backward shift, invariant subspace.
case, an invariant subspace M of $H^2(\Gamma)$ has a form $M = qH^2(\Gamma)$, where q is inner. This is the well known Beurling theorem [B]. In two variable case, the structure of invariant subspaces of H^2 is very complicated, see [AC], [DY], [Na1], and [R].

Let M be an invariant subspace of H^2. Then $T_z^*(H^2 \ominus M) \subset (H^2 \ominus M)$ and $T_w^*(H^2 \ominus M) \subset (H^2 \ominus M)$. A closed subspace N of H^2 is called backward shift invariant if $H^2 \ominus N$ is invariant. In [IY], the first author and Yang studied backward shift invariant subspaces N on which T_z^* is strictly contractive. See [CR] and [S] for studies of backward shift invariant subspaces on the unit circle Γ.

Let M be an invariant subspace of H^2 and $\psi \in L^\infty$. Let V_ψ be the operator on M defined by $V_\psi = P_M L_\psi | M$. Then $V_z = T_z$ and $V_z^* = V_z$ on M. In [M], Mandrekar proved that $V_\psi V_w^* = V_w^* V_\psi$ on M if and only if M is Beurling type, that is, $M = qH^2$ for some inner function q in H^∞, see also [CS] and [Na2].

For $\psi \in L^\infty$, let $S_\psi = P_N L_\psi | N$. Then we have $S_\psi^* = S_\psi$ and $S_z = T_z^*$ on N. In the previous paper [INS], we characterized backward shift invariant subspaces N which satisfy the condition $S_z S_w^* = S_w^* S_z$ on N as follows.

Theorem A. Let N be a backward shift invariant subspace of H^2 and $N \neq H^2$. Then $S_z S_w^* = S_w^* S_z$ on N if and only if N has one of the following forms;

(i) $N = H^2 \ominus q_1(z)H^2$,
(ii) $N = H^2 \ominus q_2(w)H^2$,
(iii) $N = (H^2 \ominus q_1(z)H^2) \cap (H^2 \ominus q_2(w)H^2)$,

where $q_1(z)$ and $q_2(w)$ are one variable inner functions.

This paper is a continuation of previous papers [IN] and [INS]. Here we are interesting in backward shift invariant subspaces N of H^2 satisfying that $S_z^n S_w^m = S_w^m S_z^n$ for given positive integers n and m. Up to now, we can not give a complete characterization of N satisfying $S_z^n S_w^m = S_w^m S_z^n$. If $S_z S_w^* = S_w^* S_z$, then trivially $S_z^n S_w^m = S_w^m S_z^n$. But the converse is not true. In this paper, we concentrated on the case $m = 1$. One reason is the work of this paper deeply concerns with the problem of the normality of the operators S_z^n. For many backward shift invariant subspaces N, S_z^n are not normal operators, see [Y]. If S_z^n is normal, since $S_z^n S_w = S_w S_z^n$, by the Fuglede-Putnam theorem we have $S_z^n S_w^* = S_w^* S_z^n$. So, the results obtained in this paper will be a big help for the above mentioned problem. We will discuss on this subject in the forthcoming paper.
In Section 2, we give characterizations of N satisfying $S_z^n S_{w^m} = 0$ and $S_{w^m} S_z^n = 0$, respectively. If $S_z^n S_{w^m} = 0$, then $S_{w^m} S_z^n = 0$. The converse is not true. In Section 3, we study N satisfying $S_z^n S_w^* = S_w^* S_z^n$, and give a necessary condition for $S_z^n S_w^* = S_w^* S_z^n$. In Section 4, we study N satisfying $S_z^n S_{w^m} = 0$. We gave a complete characterization of such N. In [INS], we gave two different type of proofs of Theorem A. One of them is used in Section 3 and the other is used in Section 4.

Let $H^2(\Gamma_z)$ and $H^2(\Gamma_w)$ be the Hardy spaces on the unit circle in variables z and w, respectively. We think that $H^2(\Gamma_z)$ and $H^2(\Gamma_w)$ are isomorphic. For a subset E of H^2, we denote by \overline{E} the closed linear span of E. A function $b(z) = (z - \alpha)/(1 - \overline{\alpha}z), |\alpha| < 1$, is called a simple Blaschke product.

2. $S_z^n S_{w^m} = 0$ or $S_{w^m} S_z^n = 0$.

Let n and m be positive integers. In this section, we study backward shift invariant subspaces N of H^2 satisfying $S_z^n S_{w^m} = 0$ and $S_{w^m} S_z^n = 0$, respectively.

Lemma 2.1. Let N be a backward shift invariant subspace of H^2. Then we have the following.

(i) $S_z^n = S_z^n$.

(ii) $S_{w^m} S_z^n = S_z^n S_{w^m}$ and $S_{w^m} S_{w^m} = S_{w^m} S_{w^m}$.

(iii) If $S_{w^m} S_{w^m} N \neq \{0\}$, then there exists $f \in N$ such that $(S_{w^m} S_{w^m} f) \neq 0$.

Proof. All assertions are not difficult to prove. \square

The following theorem says that the structure of backward shift invariant subspaces satisfying $S_z^n S_{w^m} = 0$ is simple.

Theorem 2.2. Let N be a backward shift invariant subspace of H^2. Then $S_z^n S_{w^m} = 0$ if and only if N satisfies one of the following conditions:

(i) $N \subseteq \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$.

(ii) $N \subseteq \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$.

Proof. Suppose that $S_z^n S_{w^m} = 0$. Then

(2.1) $S_{w^m} N \perp S_z^n N$.

Since N is backward shift invariant, if $S_{w^m} N = \{0\}$ then N satisfies condition (i). If $S_z^n N = \{0\}$, then N satisfies (ii).

Next, suppose that

(2.2) $S_{w^m} N \neq \{0\}$ and $S_z^n N \neq \{0\}$.
We shall lead a contradiction. By (2.1), \(S_{w}^*S_{z}^*N \perp S_{w}^*N \). By Lemma 2.1(ii), \(S_{w}^*S_{z}^*N = S_{z}^*S_{w}^*N = \{0\} \). Then

\[
S_{z}^*N \subset \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)
\]

and

\[
S_{w}^*N \subset \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w).
\]

By (2.2) and (2.3), there exists a nonnegative integer \(j, 0 \leq j \leq m - 1 \), such that

\[
\{0\} \neq S_{w}^*S_{z}^*N \subset H^2(\Gamma_z).
\]

By Lemma 2.1(iii), there exists \(g \in N \) such that

\[
(S_{w}^*S_{z}^*)\hat{g}(0,0) \neq 0.
\]

Also by (2.2) and (2.4), there exist \(f \in N \) and a nonnegative integer \(i, 0 \leq i \leq n - 1 \), such that

\[
S_{z}^*S_{w}^*f \in H^2(\Gamma_w)
\]

and

\[
(S_{z}^*S_{w}^*)\hat{f}(0,0) \neq 0.
\]

Then

\[
0 = \langle S_{w}^*S_{z}^*f, S_{z}^*S_{w}^*g \rangle \quad \text{by (2.1)}
\]
\[
= \langle S_{z}^*S_{w}^*f, S_{w}^*S_{z}^*g \rangle \quad \text{by Lemma 2.1(ii)}
\]
\[
= \langle S_{z}^*S_{w}^*f \rangle(0,0) \langle S_{w}^*S_{z}^*g \rangle(0,0) \quad \text{by (2.5) and (2.7)}
\]
\[
\neq 0 \quad \text{by (2.6) and (2.8)}.
\]

This is a desired contradiction.

The converse is trivial. \(\square \)

Corollary 2.3. Let \(N \) be a backward shift invariant subspace of \(H^2 \). Then \(S_{z}S_{w}^* = 0 \) if and only if either \(S_{z} = 0 \) or \(S_{w}^* = 0 \). Hence if \(S_{z}S_{w}^* = 0 \), then \(S_{w}^*S_{z} = 0 \).

Lemma 2.4. Let \(M_1 \) and \(M_2 \) be closed subspaces of \(H^2 \) such that

\[
M_1 \subset \sum_{j=0}^{m} \oplus w^j H^2(\Gamma_z) \quad \text{and} \quad M_2 \subset \sum_{i=0}^{n} \oplus z^i H^2(\Gamma_w).
\]

Then \(M_1 + M_2 \) is closed.
Proof. We denote by \((z^i w^j)_{M_1}\) and \((z^i w^j)_{M_2}\) the orthogonal projections of \(z^i w^j\) to the spaces \(M_1\) and \(M_2\), respectively. Let
\[
M'_1 = M_1 \ominus \left(\{ (z^i w^j)_{M_1}; 0 \leq i \leq n, 0 \leq j \leq m \} \right)
\]
and
\[
M'_2 = M_2 \ominus \left(\{ (z^i w^j)_{M_2}; 0 \leq i \leq n, 0 \leq j \leq m \} \right).
\]
Then \(M'_1\) and \(M'_2\) are closed subspaces of \(H^2\),
\[
M'_1 \subset z^{n+1} \left(\sum_{j=0}^{m} \oplus w^j H^2(\Gamma_z) \right), \quad M'_2 \subset w^{m+1} \left(\sum_{i=0}^{n} \oplus z^i H^2(\Gamma_w) \right),
\]
and
\[
M'_1 + M'_2 \perp \left(\{ z^i w^j; 0 \leq i \leq n, 0 \leq j \leq m \} \right).
\]
Since
\[
z^{n+1} \left(\sum_{j=0}^{m} \oplus w^j H^2(\Gamma_z) \right) \perp w^{m+1} \left(\sum_{i=0}^{n} \oplus z^i H^2(\Gamma_w) \right),
\]
\(M'_1 + M'_2 = M'_1 \oplus M'_2\) is closed. Hence
\[
M_1 + M_2 = M'_1 + M'_2 + \left(\{ (z^i w^j)_{M_1}, (z^i w^j)_{M_2}; 0 \leq i \leq n, 0 \leq j \leq m \} \right)
\]
is closed.

Theorem 2.5. Let \(N\) be a backward shift invariant subspace of \(H^2\). Then \(S_{w^m} S_{z^n} = 0\) if and only if

(i) \(N \ominus \left(N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \subset N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)\).

Proof. Suppose that \(S_{w^m} S_{z^n} = 0\). Then \(S_{z^n} N \subset \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)\). Since \(S_{z^n} S_{w^m} = 0\), \(S_{w^m} N \subset \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\). First, we prove the following

\[
(2.9) \quad N = \left(N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z) \right) + \left(N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right).
\]

Let

\[
(2.10) \quad K = \left(N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z) \right) + \left(N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right).
\]

By Lemma 2.4, \(K\) is closed and \(N = K \oplus (N \ominus K)\). To prove (i), it is sufficient to prove \(N \ominus K = \{0\}\). We have \(N \ominus K \subset N \cap (S_{z^n} N)^\perp \cap (S_{w^m} N)^\perp\). Let \(f \in N \ominus K\). Then \(f \perp S_{z^n} N\), so that \(S_{z^n} f \perp N\). Since
$S^*_n f \in N$, $S^*_n f = 0$. Hence $f \in \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$. By (2.10), $f \in K$.

This shows $f = 0$, so that $N \oplus K = \{0\}$. Thus we get (2.9).

Let

$$f \in \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z); f \perp \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right\}.

Then N_1 is a closed subspace and

$$N_1 \oplus \left(N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \subset N.

If the equality holds in the above, (i) holds. So we assume that

$$N_1 \oplus \left(N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \not\subset N.

We shall lead a contradiction. Let

$$N_2 = N \ominus \left(N_1 \ominus \left(N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \right).

Then $N_2 \not= \{0\}$ and $N = N_1 \oplus N_2 \oplus \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$.

Let $g \in N_2$ be such that $g \neq 0$. We shall prove that

$$g \not\in N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \quad \text{and} \quad g \not\in N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z).

The fact $g \not\in N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$ is trivial. Suppose that $g \in N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$.

By (2.11), $g \in N_1$. Since $g \in N_2$, by (2.12) we have $g \perp N_1$. Hence $g = 0$. This is a contradiction. Thus we get (2.13).

Next, we shall prove that

$$S^*_n g \perp N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z).

To prove this, suppose not. Then $S^*_n g \perp N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$.

By (2.10), $g = g_1 + g_2$, where $g_1 \in N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$ and $g_2 \in N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$. Then $S^*_n g = S^*_n g_1 \in N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$.

Therefore $S^*_n g = 0$, so that $g \in N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$. This contradicts (2.13). Thus we get (2.14).

By (2.14), there exists h_0 such that $h_0 \in N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$ and $\langle g, S^*_n h_0 \rangle = \langle S^*_n g, h_0 \rangle \neq 0$. Since $S^*_n h_0 \in N$, by (2.12) we have $S^*_n h_0 = h_1 \oplus h_2 \oplus h_3$, where $h_1 \in N_1, h_2 \in N_2$, and $h_3 \in$
$N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$. Since $g \in N_2$ and $\langle g, S_{z^n} h_0 \rangle \neq 0$, we have $h_2 \neq 0$. Since $z^n h_0 \perp \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$,

$$P_N z^n h_0 = S_{z^n} h_0 \perp N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w).$$

Thus we get $h_3 = 0$. By (2.12), $S_{w_m} N_1 = \{ 0 \}$. Hence $S_{w_m} S_{z^n} h_0 = S_{w_m} h_2$. By (2.13) and $h_2 \in N_2$, $h_2 \notin \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$. This implies that $S_{w_m} h_2 \neq 0$. Hence $S_{w_m} S_{z^n} \neq 0$. This contradicts our starting assumption. Thus we have (i).

To prove the converse, suppose that condition (i) holds. Then $N = \left(N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \oplus L$, where $L \subset N \cap \sum_{j=0}^{m-1} \oplus w^j H^2(\Gamma_z)$. Let $F = F_1 + F_2 \in N$, where $F_1 \in N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$ and $F_2 \in L$. Since $z^n F \perp N \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)$, $S_{z^n} F \in L$. Hence $S_{w_m} S_{z^n} F = 0$. Thus we get $S_{w_m} S_{z^n} = 0$.

By Theorem 2.2, the structure of backward shift invariant subspaces N satisfying $S_{z^n} S_{w_m} = 0$ is simple. By Theorem 2.5, the structure of backward shift invariant subspaces N satisfying $S_{w_m} S_{z^n} = 0$ is not so simple. When $n = m = 1$, we have the following.

Theorem 2.6. Let N be a backward shift invariant subspace of H^2. Then $S_{w_m} S_{z^n} = 0$ if and only if N has one of the following forms:

(i) $N = H^2(\Gamma_z) \ominus q(z) H^2(\Gamma_z)$ for some inner function $q(z)$.

(ii) $N = H^2(\Gamma_w) \ominus q(w) H^2(\Gamma_w)$ for some inner function $q(w)$.

(iii) Either $N = H^2(\Gamma_z) + H^2(\Gamma_w)$, or $N = H^2(\Gamma_z) \ominus q_2(w) H^2(\Gamma_w)$, or $N = (H^2(\Gamma_z) \ominus q_1(z) H^2(\Gamma_z)) + H^2(\Gamma_w)$, where $q_1(z)$ and $q_2(w)$ are inner functions.

(iv) $N = (H^2(\Gamma_z) \ominus q_1(z) H^2(\Gamma_z)) + (H^2(\Gamma_w) \ominus q_2(w) H^2(\Gamma_w))$, where $q_1(z)$, $q_2(w)$ are nonconstant inner functions and $\hat{q}_1(0) \hat{q}_2(0) = 0$.

In (iii) and (iv), since $1 \in N$, we may take q_1 and q_2 as $\hat{q}_1(0) = \hat{q}_2(0) = 0$.

Proof. By Theorem 2.2, $S_{w_m} S_{z^n} = 0$ if and only if either (i) or (ii) holds. By Theorem 2.5, $S_{w_m} S_{z^n} = 0$ if and only if

(2.15) $N \ominus (N \cap H^2(\Gamma_w)) \subset N \cap H^2(\Gamma_z)$.

If either (i) or (ii) holds, by Corollary 2.3 we have $S_{w_m} S_{z^n} = 0$. Suppose that N satisfies either (iii) or (iv). Then clearly $1 \in N$. Since N has a special form, it is not difficult to see that

$$N \ominus (N \cap H^2(\Gamma_w)) = \{ f \in N \cap H^2(\Gamma_z); \hat{f}(0) = 0 \}.$$

Hence (2.15) holds.
Next, suppose that (2.15) holds. Then we have

\[(2.16) \quad N = (N \cap H^2(\Gamma_z)) + (N \cap H^2(\Gamma_w)).\]

If either \(N \cap H^2(\Gamma_z) = \{0\}\) or \(N \cap H^2(\Gamma_w) = \{0\}\), then \(S_z S_w^* = 0\), and by Corollary 2.3, \(S_z^* S_w = 0\). Hence either (i) or (ii) holds. Suppose that \(N \cap H^2(\Gamma_z) \neq \{0\}\) and \(N \cap H^2(\Gamma_w) \neq \{0\}\). We shall prove \(1 \in N\). To prove this, suppose that \(1 \notin N\). Let \(1_w\) be the orthogonal projection of 1 to \(N \cap H^2(\Gamma_w)\). Then \(1_w \notin H^2(\Gamma_z)\). Since \(N \cap H^2(\Gamma_z) \neq \{0\}\), there exists \(f \in N \cap H^2(\Gamma_z)\) such that \(\hat{f}(0) \neq 0\). Let \(f_1 = f - \hat{f}(0)1_w \in N\). Then \(f_1 \notin H^2(\Gamma_z)\). Let \(h \in N \cap H^2(\Gamma_w)\). Since \(f \in H^2(\Gamma_z)\), \(f - \hat{f}(0) \perp h\). Since \(1 - 1_w \perp N \cap H^2(\Gamma_w)\),

\[\langle f_1, h \rangle = \langle \hat{f}(0)(1 - 1_w) + f - \hat{f}(0), h \rangle = 0.\]

Hence \(f_1 \in N \oplus (N \cap H^2(\Gamma_w))\). Thus (2.15) does not hold. Therefore \(1 \in N\). Since \(N \cap H^2(\Gamma_z)\) and \(N \cap H^2(\Gamma_w)\) are nonzero backward shift invariant subspaces, by (2.16) \(N\) has one of forms in (iii) and (iv). \(\square\)

3. \(S_z S_w^* = S_w^* S_z^n\).

The following is the main theorem in this section.

Theorem 3.1. Let \(N\) be a backward shift invariant subspace of \(H^2\), \(N \neq \{0\}\), and \(N \neq H^2\). Let \(M = H^2 \ominus N\) and \(n \geq 2\) be a positive integer. If \(S_z S_w^* = S_w^* S_z^n\), then one of the following conditions holds:

(i) \(S_z S_w^* = S_w^* S_z\),

(ii) \(M \cap H^2(\Gamma_z) = q_1(z) H^2(\Gamma_z)\) for an inner function \(q_1(z)\) satisfying \(q_1(z) = \prod_{j=1}^{k} b_j(z), 1 \leq k \leq n\), where \(b_i\) are simple Blaschke products.

The following lemma is a generalization of [IN], and the idea of the proof is the same.

Lemma 3.2. Let \(N\) be a backward shift invariant subspace of \(H^2\) and \(M = H^2 \ominus N\). Let \(n\) be a positive integer. Then \(S_z S_w^* = S_w^* S_z^n\) if and only if

\[M \ominus \left(z^n M \oplus \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \right) \subset (M \cap H^2(\Gamma_z)) \oplus wM.\]

Proof. The operators \(T_{z^n}\) and \(T_{w^*}\) on \(H^2\) have the matrix forms as

\[
T_{z^n} = \begin{pmatrix}
* & P_M T_{z^n}|_N \\
0 & S_{z^n}
\end{pmatrix},
T_{w^*} = \begin{pmatrix}
* & P_M T_{w^*}|_M \\
0 & S_w^*
\end{pmatrix}
\]

on \(H^2 = \begin{pmatrix} M \oplus N \end{pmatrix}\).
Set $A = P_M T_{z^n}|_N$ and $B = P_N T_{w^n}|_M$. Since $T_{z^n} T_{w^n} = T_{w^n} T_{z^n}$ on H^2, $S_{z^n} S_{w^n} = S_{w^n} S_{z^n}$ if and only if $BA = 0$. We have $T_{w^n}(M \ominus wM) \subset N$.

For $f \in H^2$, $T_{w^n} f = 0$ if and only if $f \in H^2(\Gamma_z)$. Hence
\[
\ker B = \{ f \in M; T_{w^n} f \in M \} = \{ f \in M \ominus wM; T_{w^n} f = 0 \} \ominus wM = (M \cap H^2(\Gamma_z)) \ominus wM.
\]
We denote by $[\text{ran } A]$ the closed range of A. Let $A_1 = P_M T_{z^n} P_N$ on H^2. Then $[\text{ran } A] = [\text{ran } A_1]$. Since $A_1^* = P_N T_{w^n} P_M$, we get
\[
\ker A_1^* = \{ f \in M; T_{z^n}^* f \in M \} \ominus N = \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \oplus z^n M \ominus N.
\]
Hence
\[
[\text{ran } A] = [\text{ran } A_1] = H^2 \ominus \ker A_1^* = M \ominus \left(z^n M \oplus \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \right).
\]
Since $BA = 0$ if and only if $[\text{ran } A] \subset \ker B$, we get our assertion. \quad \Box

Proof of Theorem 3.1. Suppose that $S_{z^n} S_{w^n} = S_{w^n} S_{z^n}$. By Lemma 3.2,
\[
M \ominus \left(z^n M \oplus \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \right) \subset (M \cap H^2(\Gamma_z)) \ominus wM.
\]
Let
\[
K_0 = M \ominus \left(z^n M \oplus \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \right).
\]
Then
\[
(3.1) \quad K_0 \subset (M \cap H^2(\Gamma_z)) \ominus wM
\]
and
\[
(3.2) \quad M \ominus z^n M = K_0 \ominus \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right).
\]
Since $M = \sum_{s=0}^\infty \oplus z^{ns}(M \ominus z^n M)$,
\[
(3.3) \quad K_0 \perp \sum_{s=0}^\infty \oplus z^{ns} \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right)
\]
and
\[
(3.4) \quad M = \left(\sum_{s=0}^\infty \oplus z^{ns} K_0 \right) \oplus \left(\sum_{s=0}^\infty \oplus z^{ns} \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right) \right).
\]
First, suppose that $K_0 = \{0\}$. In this case, we shall show that condition (i) holds. By (3.2),

$$\sum_{i=0}^{n-1} \oplus z^i(M \ominus z^iM) = M \ominus z^nM = M \cap \sum_{i=0}^{n-1} \oplus z^iH^2(\Gamma_w).$$

Let $f \in M \ominus zM$. Then $f \in M \ominus z^nM$ and $f = \sum_{i=0}^{n-1} \oplus z^i h_i(w)$, where $h_i(w) \in H^2(\Gamma_w)$. Since $f \in M \ominus zM$,

$$z^{n-1}f = \sum_{i=0}^{n-1} \oplus z^{n-1+i} h_i(w) \in M \ominus z^nM.$$

Hence $f = h_0(w)$, so that $M \ominus zM = M \cap H^2(\Gamma_w)$. By Lemma 3.2 (for the case of $n = 1$), we get $S_zS_w = S_w S_z$.

Next, suppose that $K_0 \neq \{0\}$. The proof of this case is a little bit long, so we divide into several steps.

Step 1. In this step, we shall prove that there is a nonconstant inner function $q_1(z)$ such that

$$K_0 \subset q_1(z)H^2(\Gamma_z) \oplus wM.$$

First we prove that $K_0 \not\subset wM$. To prove this, suppose that $K_0 \subset wM$. Let $F \in K_0$. Then $F = wf$ for some $f \in M$. We shall prove that $f \in K_0$. We have

$$\langle f, \left(\sum_{s=1}^{\infty} \oplus z^{ns} K_0\right) \oplus \left(\sum_{s=0}^{\infty} \oplus z^{ns} \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\right)\right)\rangle$$

$$= \langle wf, w\left(\sum_{s=1}^{\infty} \oplus z^{ns} K_0 \oplus \left(\sum_{s=0}^{\infty} \oplus z^{ns} \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\right)\right)\right)\rangle$$

$$= \langle F, z^n w \left(\sum_{s=1}^{\infty} \oplus z^{n(s-1)} K_0\right)\rangle$$

by (3.3)

$$= 0,$$

where the last equality follows from $w\sum_{s=1}^{\infty} \oplus z^{n(s-1)} K_0 \subset M$ and (3.2). Hence by (3.4), we get $f \in K_0$. Therefore for every positive integer p, we have $F = w^p f_p$ for some $f_p \in K_0$. This leads $F = 0$. This is a contradiction. Thus we get $K_0 \not\subset wM$.

Hence by (3.1), $M \cap H^2(\Gamma_z) \neq \{0\}$. By the Beurling theorem,

$$M \cap H^2(\Gamma_z) = q_1(z)H^2(\Gamma_z),$$

where $q_1(z)$ is inner. Then $q_1(z) \in M$ and

$$q_1(z)H^2(\Gamma_z) \perp wM.$$
If \(q_1(z) \) is constant, we have \(M = H^2 \), so that \(N = \{0\} \). This contradicts our assumption. Hence \(q_1(z) \) is a nonconstant inner function. By (3.1) and (3.6), we get (3.5).

Step 2. In this step, we prove

(3.8) \[K_0 \subset q_1(z)\left(\sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w) \right). \]

Let \(G \in K_0 \). Then by (3.5), \(G = q_1(z)h(z) \oplus wg \), where \(h(z) \in H^2(\Gamma_z) \) and \(g \in M \). Write

\[h(z) = \left(\sum_{i=0}^{n-1} \oplus a_i z^i \right) \oplus z^n h_0(z). \]

Then

\[G = q_1(z)\left(\sum_{i=0}^{n-1} \oplus a_i z^i \right) \oplus q_1(z)z^n h_0(z) \oplus wg. \]

By (3.6), \(q_1(z)z^n h_0(z) \in z^n M \). Since \(G \in K_0 \subset M \oplus z^n M \), we have \(h_0(z) = 0 \). Hence

(3.9) \[G = q_1(z)\left(\sum_{i=0}^{n-1} \oplus a_i z^i \right) \oplus wg. \]

Here we prove that

(3.10) \[g \in K_0. \]

Since \(G = q_1(z)h(z) \oplus wg \), we have

\[
\left\langle g, \sum_{s=1}^{\infty} \oplus z^{ns} K_0 \right\rangle = \left\langle wg, w \sum_{s=1}^{\infty} \oplus z^{ns} K_0 \right\rangle \\
= \left\langle wg, w \sum_{s=1}^{\infty} \oplus z^{ns} K_0 \right\rangle + \left\langle q_1 h, w \sum_{s=1}^{\infty} \oplus z^{ns} K_0 \right\rangle \text{ by (3.7)} \\
= \left\langle G, w \sum_{s=1}^{\infty} \oplus z^{ns} K_0 \right\rangle \\
= \left\langle G, z^n w \sum_{s=1}^{\infty} \oplus z^{n(s-1)} K_0 \right\rangle \\
= 0 \text{ by (3.2).}
\]
We also have

\[
\left\langle g, \sum_{s=0}^{\infty} \oplus z^{ns}\left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\right)\right\rangle
= \left\langle wg, w\left(\sum_{s=0}^{\infty} \oplus z^{ns}\left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\right)\right)\right\rangle
= \left\langle G, \sum_{s=0}^{\infty} \oplus z^{ns}w\left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\right)\right\rangle \quad \text{by (3.7)}
= 0 \quad \text{by (3.3)}.
\]

Hence by (3.4), we get (3.10).

Applying (3.9) and (3.10) infinitely many times, we have

\[
G = q_1(z)\left(\sum_{i=0}^{n-1} \oplus a_i z^i\right) \oplus wq_1(z)\left(\sum_{i=0}^{n-1} \oplus b_i z^i\right) \oplus \cdots
\in q_1(z)\left(\sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\right).
\]

Therefore we get (3.8).

Step 3. In this step, we study functions in \(M \ominus z M\) and the inner function \(q_1(z)\). By (3.8), there is a closed subspace \(L\) such that \(K_0 = q_1(z)L\) and \(L \subset \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\). Then by (3.2),

\[
M \ominus z^n M = q_1(z)L \oplus \left(M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w)\right).
\]

Since \(K_0 \neq \{0\}\), \(L \neq \{0\}\). We have \(M \ominus z^n M = \sum_{i=0}^{n-1} \oplus z^i(M \ominus z M)\). Hence \(M \ominus z M \neq \{0\}\). Let \(F \in M \ominus z M\) be such that \(F \neq 0\). Then

\[
F = \left(q_1 \sum_{i=0}^{n-1} \oplus z^i f_i\right) \oplus \sum_{i=0}^{n-1} \oplus z^i g_i,
\]

where \(f_i, g_i \in H^2(\Gamma_w)\),

\[
q_1 \sum_{i=0}^{n-1} \oplus z^i f_i \perp M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w),
\]

and

\[
\sum_{i=0}^{n-1} \oplus z^i g_i \in M \cap \sum_{i=0}^{n-1} \oplus z^i H^2(\Gamma_w).
\]
Since \(n \geq 2 \), \(zF \in M \ominus z^n M \), so that we have

\[
zF = q_1 \left(\sum_{i=0}^{n-1} \oplus z^i G_{1,i} \right) + \sum_{i=0}^{n-1} \oplus z^i H_{1,i},
\]

where \(G_{1,i}, H_{1,i} \in H^2(T_w) \). Hence

(3.14)

\[
q_1 \left(z \left(\sum_{i=0}^{n-1} \oplus z^i f_i \right) - \sum_{i=0}^{n-1} \oplus z^i G_{1,i} \right) = \left(\sum_{i=0}^{n-1} \oplus z^i H_{1,i} \right) - z \sum_{i=0}^{n-1} \oplus z^i g_i.
\]

Here we devide into two subcases.

Subcase 1.

\[
z \left(\sum_{i=0}^{n-1} \oplus z^i f_i(w) \right) - \sum_{i=0}^{n-1} \oplus z^i G_{1,i}(w) \neq 0.
\]

Then

\[
q_1(z) = \frac{\left(\sum_{i=0}^{n-1} \oplus z^i H_{1,i}(w) \right) - z \sum_{i=0}^{n-1} \oplus z^i g_i(w)}{z \left(\sum_{i=0}^{n-1} \oplus z^i f_i(w) \right) - \sum_{i=0}^{n-1} \oplus z^i G_{1,i}(w)}.
\]

As proved in Step 1, \(q_1(z) \) is a nonconstant inner function. Then by the above, we have

(3.15)

\[
q_1(z) = \prod_{j=1}^{k} b_j(z), \quad 1 \leq k \leq n,
\]

where \(b_j \) are simple Blaschke products.

Subcase 2.

\[
z \left(\sum_{i=0}^{n-1} \oplus z^i f_i(w) \right) - \sum_{i=0}^{n-1} \oplus z^i G_{1,i}(w) = 0.
\]

Then by (3.14), \(f_{n-1} = g_{n-1} = 0 \), so that by (3.11)

\[
F = \left(q_1 \sum_{i=0}^{n-2} \oplus z^i f_i \right) + \sum_{i=0}^{n-2} \oplus z^i g_i.
\]

Since \(F \in M \ominus zM \),

\[
zF = \left(q_1 \sum_{i=0}^{n-2} \oplus z^{i+1} f_i \right) + \sum_{i=0}^{n-2} \oplus z^{i+1} g_i \in M \ominus z^2 M.
\]

In the same way as above, either (3.15) holds or \(f_{n-2} = g_{n-2} = 0 \). Repeat the same argument. Then either (3.15) holds or

\[
f_{n-1} = f_{n-2} = \cdots = f_1 = g_{n-1} = g_{n-2} = \cdots = g_1 = 0.
\]
Step 4. If (3.15) holds, then (ii) holds. So, suppose that (3.15) does not hold. Then by (3.11) and by the above fact, \(F = q_1f_0 \oplus g_0 \), by (3.12) \(q_1f_0 \perp M \cap H^2(\Gamma_w) \), and by (3.13) \(g_0 \in M \cap H^2(\Gamma_w) \) for every \(F \in M \ominus zM \).

If \(g_0 = 0 \) for every \(F \in M \ominus zM \), since \(q_1(z) \in M \) it follows that \(M \ominus zM \subset q_1(z)H^2(\Gamma_w) \subset M \). Since \(M = \sum_{i=0}^{\infty} z^i(M \ominus zM) \), we have \(M = q_1(z)H^2 \), so that \(N = H^2 \ominus q_1(z)H^2 \). By Theorem A, condition (i) holds.

So we assume that \(g_0 \neq 0 \) for some \(F \in M \ominus zM \). We shall prove that

\[
(3.16) \quad (M \ominus zM) \ominus (M \cap H^2(\Gamma_w)) \subset (M \cap H^2(\Gamma_z)) \oplus wM.
\]

We may assume that \((M \ominus zM) \ominus (M \cap H^2(\Gamma_w)) \neq \{0\}\). Let \(G \in (M \ominus zM) \ominus (M \cap H^2(\Gamma_w)) \) be such that \(G \neq 0 \). Then \(G = q_1(z)h_1(w) \ominus h_2(w) \), where \(q_1(z)h_1(w) \perp M \cap H^2(\Gamma_w) \) and \(h_2(w) \in M \cap H^2(\Gamma_w) \). Hence \(h_2(w) = G - q_1(z)h_1(w) \perp M \cap H^2(\Gamma_w) \). Therefore \(h_2(w) = 0 \). Since \(q_1(z) \in M \),

\[
G = q_1(z)h_1(w) = h_1(0)q_1(z) + h_1(z)w - h_1(0) \frac{q_1(z)w}{w} \in M \cap H^2(\Gamma_z) \oplus wM.
\]

Thus we get (3.16). By Lemma 3.2 (for \(n = 1 \)), (i) holds.

\[\square\]

4. \(S_zS_w^* = S_w^*S_z \) and \(S_zS_w^* \neq S_w^*S_z \).

Let \(N \) be a backward shift invariant subspace of \(H^2 \) and let \(n \) be a positive integer. Let \(M = H^2 \ominus N \). Then \(M \) is an invariant subspace. If both \(S_nS_w^* = S_w^*S_n \) and \(S_zS_w^* \neq S_w^*S_z \) hold, then by Theorem 3.1, \(M \cap H^2(\Gamma_z) = q(z)H^2(\Gamma_z) \) for some nonconstant inner function \(q(z) \).

In this section, we assume that \(q_1(z)H^2 \subset M \) and \(M \cap H^2(\Gamma_z) = q_1(z)H^2(\Gamma_z) \) for some nonconstant inner function \(q_1(z) \). Let

\[
\tilde{M} = M \ominus q_1(z)H^2 \subset M.
\]

Then \(H^2 \ominus q_1(z)H^2 = \tilde{M} \ominus N \) and \(\tilde{M} \) is \(w \)-invariant. The following lemma is proved in [INS, Lemma 3.2].

Lemma 4.1. Let \(f \in \tilde{M} \). Then \(T_w^*f \in \tilde{M} \) if and only if \(f \in w\tilde{M} \).

We denote by \(P_z \) the orthogonal projection from \(H^2 \) onto \(H^2 \ominus q_1(z)H^2 \). Then we have a Toeplitz type operator \(Q_{z^n} \) on \(H^2 \ominus q_1(z)H^2 \) such that

\[
Q_{z^n} : H^2 \ominus q_1(z)H^2 \ni f \rightarrow P_z(T_{z^n}f) \in H^2 \ominus q_1(z)H^2.
\]
Since $z^n M \subset M$, $Q_{z^n} M \subset \tilde{M}$ and $Q_{z^n}^* = Q_{z^n}$. Then Q_{z^n} has the following matrix form:

$$Q_{z^n} = \begin{pmatrix} * & P_{\tilde{M}} T_{z^n}|_N \\ 0 & S_{z^n}^* \end{pmatrix} \quad \text{on} \quad H^2 \ominus q_1(z)H^2 = \begin{pmatrix} \tilde{M} \\ N \end{pmatrix}.$$

Since $H^2 \ominus q_1(z)H^2$ is backward shift invariant, $T_{w}^* (H^2 \ominus q_1(z)H^2) \subset H^2 \ominus q_1(z)H^2$. Since $T_{w}^* N \subset N$, the operator T_{w}^* on $H^2 \ominus q_1(z)H^2$ has the following matrix form:

$$T_w^* = \begin{pmatrix} * & P_N T_w^*|_{\tilde{M}} \\ 0 & S_w^* \end{pmatrix} \quad \text{on} \quad H^2 \ominus q_1(z)H^2 = \begin{pmatrix} \tilde{M} \\ N \end{pmatrix}.$$

Set

(4.1) \quad A = P_{\tilde{M}} T_{z^n}|_N \quad \text{and} \quad B = P_N T_w^*|_{\tilde{M}}.

By [INS, Lemma 3.3], $T_w Q_{z^n} = Q_{z^n} T_w^*$ on $H^2 \ominus q_1(z)H^2$. Hence we have the following.

Lemma 4.2. $T_w Q_{z^n} = Q_{z^n} T_w^*$ on $H^2 \ominus q_1(z)H^2$.

Lemma 4.3. $S_{w}^* S_{w} = S_{w}^* S_{z^n}$ if and only if $BA = 0$.

Proof. By Lemma 4.2, $T_w Q_{z^n} = Q_{z^n} T_w^*$ on $H^2 \ominus q_1(z)H^2$. Then $BA + S_{w}^* S_{z^n} = S_{w}^* S_{z^n}$. Hence $S_{z^n} S_{w}^* = S_{w}^* S_{z^n}$ if and only if $BA = 0$. \hfill \Box

The following is a slight generalization of [INS, Theorem 3.5].

Theorem 4.4. Let N be a backward shift invariant subspace of H^2 and $M = H^2 \ominus N$. Suppose that $M \cap H^2(\Gamma_z) = q_1(z)H^2(\Gamma_z)$, where $q_1(z)$ is a nonconstant inner function. Let $\tilde{M} = M \ominus q_1(z)H^2$. Then the following conditions are equivalent.

(i) $S_{z^n} S_{w}^* = S_{w}^* S_{z^n}$ on N.

(ii) $\tilde{M} \ominus \{ f \in \tilde{M} ; T_{z^n} f \in \tilde{M} \} \subset w\tilde{M}$.

(iii) $T_{z^n} \tilde{M} \subset \tilde{M}$.

Proof. The idea of the proof is similar to the one of [INS, Theorem 3.5]. For the sake of completeness, we give the proof.

(i) \Leftrightarrow (ii) By Lemma 4.3, condition (i) is equivalent to $BA = 0$. By (4.1) and Lemma 4.1, ker $B = \{ f \in \tilde{M} ; T_{z^n} f \in \tilde{M} \} = w\tilde{M}$. Put $A_1 = P_M T_{z^n} P_N$ on $\tilde{M} \ominus N$. Then [ran A_1] = [ran A_1]. Since $A_1^* = P_N T_{z^n} P_M$, ker $A_1^* = N \ominus \{ f \in \tilde{M} ; T_{z^n} f \in \tilde{M} \}$. Hence

[ran A] = [ran A_1] = $(\tilde{M} \ominus N) \ominus \ker A_1^* = \tilde{M} \ominus \{ f \in \tilde{M} ; T_{z^n} f \in \tilde{M} \}.$

Therefore $BA = 0$ if and only if $\tilde{M} \ominus \{ f \in \tilde{M} ; T_{z^n} f \in \tilde{M} \} \subset w\tilde{M}$. Thus we get (i) \Leftrightarrow (ii).
Since \(M \oplus \{ f \in \tilde{M}; T^*_{z_n} f \in \tilde{M} \} \subset w\tilde{M} \). Since \(\{ f \in \tilde{M}; T^*_{z_n} f \in \tilde{M} \} \) is closed, \(\tilde{M} \oplus w\tilde{M} \subset \{ f \in \tilde{M}; T^*_{z_n} f \in \tilde{M} \} \). Since \(w\tilde{M} \subset \tilde{M}, \tilde{M} = \sum_{j=0}^{\infty} \oplus w^j (\tilde{M} \oplus w\tilde{M}) \). Since \(T^*_{z_n} w^j f = w^j T^*_{z_n} f \) for \(f \in H^2 \), we have \(T^*_{z_n} \tilde{M} \subset \tilde{M} \).

(iii) \(\Rightarrow \) (ii) is trivial.

For \(f \in H^2(\Gamma_z) \), write \(f^*(z) = T^*_{z_n} f(z) = \bar{z}(f(z) - \hat{f}(0)) \).

Lemma 4.5. Let \(b_i(z) = (z - \alpha_i)/(1 - \bar{\alpha}_i z), |\alpha_i| < 1, \) and \(1 \leq i \leq n \). Then

(i) \(T^*_{z_n} z = 1, T^*_{z_n} b_1 = b_1^*(z) = (1 - |\alpha_1|^2)/(1 - \bar{\alpha}_1 z), \) and \(T^*_{z_n} b_i(z) = \bar{\alpha}_1 b_i(z) \).

(ii) \(T^*_{z_n}(b_1(z)b_2^*(z)) = \bar{b}_2(z) + \bar{\alpha}_2 b_1(z) b_2^*(z) \).

(iii) \(H^2(\Gamma_z) \ominus (\prod_{j=1}^{k} b_j(z)) H^2(\Gamma_z) = \sum_{j=1}^{k} \oplus [b_1(z) \cdots b_{j-1}(z) b_j^*(z)] \).

(iv) \(H^2 \ominus (\prod_{j=1}^{k} b_j(z)) H^2 = \sum_{j=1}^{k} \oplus [b_1(z) \cdots b_{j-1}(z) b_j^*(z) H^2(\Gamma_w)] \).

Proof. It is not difficult to prove (i).

(ii) Since

\[
\bar{\alpha}_1 b_1(z) b_2^*(z) = \bar{\alpha}_1 b_1(z) \left(1 - |\alpha_2|^2 \right) \frac{1}{1 - \bar{\alpha}_2 z} = (1 - |\alpha_2|^2) b_1(z) \left(\bar{z} + \frac{\bar{\alpha}_2}{1 - \bar{\alpha}_2 z} \right) = (1 - |\alpha_2|^2) \bar{\alpha}_1 b_1(z) + \bar{\alpha}_2 b_1(z) b_2^*(z),
\]

we get (ii).

(iii) See [Ni, p.33].

(iv) follows from (iii).

Corollary 4.6. Let \(N \) be a backward shift invariant subspace of \(H^2 \) and \(M = H^2 \ominus N \). Suppose that \(M \cap H^2(\Gamma_z) = b_1(z) H^2(\Gamma_z) \), where \(b_1(z) \) is a simple Blaschke product. Then \(S_z S^*_w = S^*_w S_z \).

Proof. Let \(b_1(z) = (z - \alpha)/(1 - \bar{\alpha} z), |\alpha| < 1, \) and \(\tilde{M} = \tilde{M} \ominus b_1(z) H^2 \). Since \(b_1(z) \in M, b_1(z) H^2 \subset M \). By Lemma 4.5(iv), \(\tilde{M} \subset b_1(z) H^2(\Gamma_w) \). By Lemma 4.5(i), \(T^*_{z_n}(b_1(z) h(w)) = \bar{\alpha}_1 b_1(z) h(w) \). Hence \(T^*_{z_n} \tilde{M} \subset \tilde{M} \). By Theorem 4.4, \(S_z S^*_w = S^*_w S_z \).

Corollary 4.7. Let \(N \) be a backward shift invariant subspace of \(H^2 \) and \(M = H^2 \ominus N \). Suppose that \(M \cap H^2(\Gamma_z) = q_1(z) H^2(\Gamma_z) \), where \(q_1(z) \) is an inner function. Let \(n, k \) be positive integers with \(n \geq k + 1 \). Moreover suppose that \(q_1(z) = z^k b(z) \), where \(b \) is a simple Blaschke product, \(b(z) = (z - \alpha)/(1 - \bar{\alpha} z), \) and \(\alpha \neq 0 \). If \(S_z S^*_w = S^*_w S_z^n \), then \(S_z S^*_w = S^*_w S_z^k \).
Proof. Let \(\tilde{M} = M \ominus q_1(z)H^2 \). If \(\tilde{M} = \{0\} \), then \(M = q_1(z)H^2 \). By Theorem A, \(S_zS_w^* = S_w^*S_z \). Suppose that \(M \neq \{0\} \). By Lemma 4.5(iv),
\[
\tilde{M} \subset b^*(z)H^2(\Gamma_w) \oplus \left(\sum_{j=1}^{k} \oplus zj^{-1}b(z)H^2(\Gamma_w) \right).
\]
Let \(f \in \tilde{M} \). Then
\[
f = b^*(z)h_0(w) + \sum_{j=1}^{k} \oplus zj^{-1}b(z)h_j(w), \quad h_j(w) \in H^2(\Gamma_w).
\]
By Lemma 4.5(i),
\[
T_{\alpha}^*f = T_{\alpha}^*(T_{\alpha}^*-k)(T_{\alpha}^*f).
\]
\[
= T_{\alpha}^*(\sum_{j=0}^{k} \bar{\alpha}^{(k-j)}b^*(z)h_j(w))
\]
\[
= \bar{\alpha}^{(n-k)}(\sum_{j=0}^{k} \bar{\alpha}^{(k-j)}b^*(z)h_j(w)).
\]
Since \(S_zS_w^* = S_w^*S_z \), by Theorem 4.4 \(T_{\alpha}^*f \in \tilde{M} \). Since \(\alpha \neq 0 \),
\[
\sum_{j=0}^{k} \bar{\alpha}^{(k-j)}b^*(z)h_j(w) \in \tilde{M}.
\]
Thus \(T_{\alpha}^*\tilde{M} \subset \tilde{M} \). By Theorem 4.4, \(S_z^*S_w^* = S_w^*S_z^* \).

\[\square \]

Theorem 4.8. Let \(N \) be a backward shift invariant subspace of \(H^2 \) and \(M = H^2 \ominus N \). Suppose that \(M \cap H^2(\Gamma_z) = q_1(z)H^2(\Gamma_z) \), where \(q_1(z) \) is an inner function. Moreover suppose that \(q_1(z) = b_1(z)b_2(z) \), where \(b_1(z) \), \(b_2(z) \) are simple Blaschke products, \(b_1(z) = (z-\alpha_1)/(1-\bar{\alpha}_1z) \), and \(\alpha_1\alpha_2 \neq 0 \). Let \(n \geq 2 \) be a positive integer. Then we have the following.

(i) If \(S_zS_w^* = S_w^*S_z \) and \(S_{z-1}S_w^* \neq S_w^*S_{z-1} \), then \(\alpha_1 = \alpha_2^0 \) and \(\alpha_2 \neq \alpha_2 \).

(ii) If \(\alpha_1^0 = \alpha_2^0 \) and \(\alpha_1 \neq \alpha_2 \), then \(S_zS_w^* = S_w^*S_z \).

Proof. Let \(\tilde{M} = M \ominus q_1(z)H^2 \). Suppose that \(S_zS_w^* = S_w^*S_z \) and \(S_{z-1}S_w^* \neq S_w^*S_{z-1} \). By Theorem 4.4, \(T_{\alpha}^*\tilde{M} \subset \tilde{M} \) and \(T_{\alpha}^*\tilde{M} \notin \tilde{M} \). By Lemma 4.5(iv),
\[
\tilde{M} \subset b_1(z)H^2(\Gamma_w) \oplus b_1(z)b_2(z)H^2(\Gamma_w).
\]
Then there exists \(f_0 \in \tilde{M} \) such that \(T_{\alpha}^*f_0 \notin \tilde{M} \), and
\[
f_0 = b_1(z)g_1(w) + b_1(z)b_2(z)g_2(w) \in b_1(z)H^2(\Gamma_w) \oplus b_1(z)b_2(z)H^2(\Gamma_w).
\]
By Lemma 4.5,
\[T_{z_{n-1}}^* f_0 = b_1^* \left(\alpha_1^{(n-1)} g_1 + (1 - |\alpha_2|^2) \left(\sum_{j=0}^{n-2} \alpha_1^{(n-2-j)} \frac{1}{\alpha_2^j} g_2 \right) \right) + \alpha_2^{(n-1)} b_1^* b_2^* g_2 \]
and
\[T_{z_n}^* f_0 = b_1^* \left(\alpha_1^n g_1 + (1 - |\alpha_2|^2) \left(\sum_{j=0}^{n-1} \alpha_1^{(n-1-j)} \frac{1}{\alpha_2^j} g_2 \right) \right) + \alpha_2^n b_1^* b_2^* g_2. \]
Since \(T_{z_{n-1}}^* f_0 \notin \tilde{M} \) and \(f_0 \in \tilde{M} \), \(T_{z_{n-1}}^* f_0 - \alpha_2^{n-1} f_0 \notin \tilde{M} \). Then
\[b_1^* \left((\alpha_1^{(n-1)} - \alpha_2^{(n-1)}) g_1 + (1 - |\alpha_2|^2) \left(\sum_{j=0}^{n-2} \alpha_1^{(n-2-j)} \frac{1}{\alpha_2^j} g_2 \right) \right) \notin \tilde{M}. \]
Hence
\[\left(\sum_{j=0}^{n-2} \alpha_1^{(n-2-j)} \frac{1}{\alpha_2^j} \right) b_1^* \left((\alpha_1 - \alpha_2) g_1 + (1 - |\alpha_2|^2) g_2 \right) \notin \tilde{M}. \]
Since \(0 \in \tilde{M} \), \(\sum_{j=0}^{n-2} \alpha_1^{(n-2-j)} \frac{1}{\alpha_2^j} \neq 0 \), so that
\[(4.3) \quad b_1^* \left((\alpha_1 - \alpha_2) g_1 + (1 - |\alpha_2|^2) g_2 \right) \notin \tilde{M}. \]
Since \(T_{z_n}^* f_0 \in \tilde{M} \), \(T_{z_n}^* f_0 - \alpha_2^n f_0 \in \tilde{M} \). Then
\[b_1^* \left((\alpha_1^n - \alpha_2^n) g_1 + (1 - |\alpha_2|^2) \left(\sum_{j=0}^{n-1} \alpha_1^{(n-1-j)} \frac{1}{\alpha_2^j} g_2 \right) \right) \in \tilde{M}. \]
Hence
\[(4.4) \quad \left(\sum_{j=0}^{n-1} \alpha_1^{(n-1-j)} \frac{1}{\alpha_2^j} \right) b_1^* \left((\alpha_1 - \alpha_2) g_1 + (1 - |\alpha_2|^2) g_2 \right) \in \tilde{M}. \]
Now we prove (i). Suppose that \(\alpha_1 = \alpha_2 \). Then \(\alpha_1 = \alpha_2 \neq 0 \), so that
\[\sum_{j=0}^{n-1} \alpha_1^{(n-1-j)} \frac{1}{\alpha_2^j} \neq 0. \]
By (4.3) and (4.4), \(b_1^* g_2 \notin \tilde{M} \) and \(b_1^* g_2 \in \tilde{M} \). This is a contradiction. Hence \(\alpha_1 \neq \alpha_2 \).

Suppose that \(\alpha_1^n \neq \alpha_2^n \). Then \(\sum_{j=0}^{n-1} \alpha_1^{(n-1-j)} \frac{1}{\alpha_2^j} \neq 0 \). By (4.4),
\[b_1^* \left((\alpha_1^n - \alpha_2^n) g_1 + (1 - |\alpha_2|^2) g_2 \right) \in \tilde{M}. \]
This contradicts (4.3), so that \(\alpha_1^n = \alpha_2^n \). Thus we get (i).

(ii) Suppose that \(\alpha_1^n = \alpha_2^n \) and \(\alpha_1 \neq \alpha_2 \). Then \(\sum_{j=0}^{n-1} \alpha_1^{(n-1-j)} \frac{1}{\alpha_2^j} = 0 \).
Let \(f \in \tilde{M} \). Then by (4.2),
\[f = b_1^*(z) h_1(w) + b_1(z) b_2^*(z) h_2(w). \]
Similarly,
we have

\[T^*_n f - \bar{\alpha} f = \left(\sum_{j=0}^{n-1} \bar{\alpha}^{(n-1-j)} \bar{\alpha}^j \right) b_1 \left((\bar{\alpha}_1 - \bar{\alpha}_2) h_1 + (1 - |\alpha_2|^2) h_2 \right). \]

Hence \(T^*_n f = \bar{\alpha} f \in \tilde{M} \), so that we get \(T^*_n \tilde{M} \subset \tilde{M} \). By Theorem 4.4, \(S_z^* S_w^* = S_w^* S_z^* \).

Corollary 4.9. Let \(N \) be a backward shift invariant subspace of \(H^2 \) and \(M = H^2 \ominus N \). Suppose that \(M \cap H^2(\Gamma_z) = q_1(z)H^2(\Gamma_z) \), where \(q_1(z) \) is an inner function. Moreover suppose that \(q_1(z) = b_1(z)b_2(z) \), where \(b_i(z), i = 1, 2, \) are simple Blaschke products, \(b_i(z) = (z - \alpha_i)/(1 - \bar{\alpha}_i z) \), and \(\alpha_1 \alpha_2 \neq 0 \). Then we have the following.

(i) If \(S_{z_2} S_w^* = S_w^* S_{z_2} \) and \(S_{z_2} S_w^* \neq S_w^* S_z \), then \(\alpha_1 + \alpha_2 = 0 \).

(ii) If \(\alpha_1 + \alpha_2 = 0 \), then \(S_{z_2} S_w^* = S_w^* S_{z_2} \).

The following is the main theorem in this section.

Theorem 4.10. Let \(N \) be a backward shift invariant subspace of \(H^2 \), \(N \neq \{0\} \), and \(N \neq H^2 \). Then \(S_{z_2} S_w^* = S_w^* S_{z_2} \) if and only if one of the following conditions holds.

(i) \(S_{z_2} S_w^* = S_w^* S_z \).

(ii) \(S_{z_2} S_w^* = 0 \).

(iii) There exist two simple Blaschke products \(b_1(z) \) and \(b_2(z) \), \(b_i(z) = (z - \alpha_i)/(1 - \bar{\alpha}_i z) \), such that \(N \subset H^2 \ominus b_1(z)b_2(z)H^2 \) and \(\alpha_1 + \alpha_2 = 0 \).

A backward shift invariant subspace \(N \) satisfying condition (i) is given by Theorem A. Also \(N \) satisfying condition (ii) is given by Theorem 2.2.

Proof of Theorem 4.10. Suppose that \(S_{z_2} S_w^* = S_w^* S_{z_2} \). Moreover suppose that \(S_{z_2} S_w^* \neq S_w^* S_z \). By Theorem 3.1, \(M \cap H^2(\Gamma_z) = q_1(z)H^2(\Gamma_z) \) for an inner function \(q_1(z) \) such that either \(q_1(z) = b_1(z) \) or \(q_1(z) = b_1(z)b_2(z) \), where \(b_i(z) = (z - \alpha_i)/(1 - \bar{\alpha}_i z), |\alpha_i| < 1 \). If \(q_1(z) = b_1(z) \), by Corollary 4.6, (i) holds.

Suppose that \(q_1(z) = b_1(z)b_2(z) \). Moreover suppose that \(\alpha_1 = \alpha_2 = 0 \). Then \(q_1(z) = z^2 \). Hence \(z^2 H^2 \subset M \), so that \(N \subset H^2(\Gamma_w) \oplus z H^2(\Gamma_w) \). Then by Theorem 2.2, \(S_{z_2} S_w^* = 0 \). Thus (ii) holds.

Suppose that \(\alpha_1 \neq 0 \) and \(\alpha_2 = 0 \). Then \(q_1(z) = z b_1(z) \). By Corollary 4.7, (i) holds.

Suppose that \(\alpha_1 \neq 0 \) and \(\alpha_2 \neq 0 \). Then by Corollary 4.9(i), we get \(\alpha_1 + \alpha_2 = 0 \). Hence (iii) holds.
Next, we prove the converse assertion. Suppose that one of conditions (i), (ii), and (iii) holds. If (i) holds, then trivially $S_{zz}S_w^* = S_w^*S_{zz}$.

If (ii) holds, by Corollary 2.3 we have $S_{zz}S_w^* = S_w^*S_{zz}$. Suppose that (iii) holds. Then $b_1(z)b_2(z)H^2(\Gamma_z) \subseteq M$. Hence $M \cap H^2(\Gamma_z)$ equals to either $b_1(z)H^2(\Gamma_z)$, or $b_2(z)H^2(\Gamma_z)$, or $b_1(z)b_2(z)H^2(\Gamma_z)$. By Corollary 4.6, $S_{zz}S_w^* = S_w^*S_{zz}$ for the first two cases. Hence $S_{zz}S_w^* = S_w^*S_{zz}$. For the last case, by Corollary 4.9(ii), $S_{zz}S_w^* = S_w^*S_{zz}$.

Example 4.11. We give an example of a backward shift invariant subspace N of H^2 satisfying $S_{zz}S_w^* = S_w^*S_{zz}$, $S_{zz}S_w^* \neq S_w^*S_{zz}$, and $S_{zz}S_w^* \neq 0$. Let $q_1(z) = b_1(z)b_2(z)$, where $b_i(z), i = 1, 2$, are $b_i(z) = (z - \alpha_i)/(1 - \overline{\alpha}z)$, $\alpha_1 + \alpha_2 = 0$, and $\alpha_1 \neq 0$. Let $q_2(w)$ be a non-constant inner function. Let $M = q_1(z)H^2 \oplus b_1(z)b_2(z)q_2(w)H^2(\Gamma_w)$. Then M is an invariant subspace and $M \cap H^2(\Gamma_z) = q_1(z)H^2(\Gamma_z)$. Let $N = H^2 \oplus M$. By Theorem 4.10, $S_{zz}S_w^* = S_w^*S_{zz}$. We have $\tilde{M} = M \oplus q_1(z)H^2 = b_1(z)b_2(z)q_2(w)H^2(\Gamma_w)$. Since

$$T_z^*b_1(z)b_2^*(z)q_2(w) = (1 - |\alpha_1|^2)b_1^*(z)q_2(w) + \overline{\alpha}_1 b_1(z)b_2^*(z)q_2(w),$$

$T_z^*b_1(z)b_2^*(z)q_2(w) \notin \tilde{M}$. By Theorem 4.4, $S_{zz}S_w^* \neq S_w^*S_{zz}$. By Theorem 2.2, $S_{zz}S_w^* \neq 0$.

We leave the following problem for the reader.

Problem 4.12. Characterize backward invariant subspaces N of H^2 satisfying $S_{zz}S_w^* = S_w^*S_{zz}$ for $n \geq 3$.

Acknowledgement. The authors would like to thank the referee for many comments improving the original manuscript.

REFERENCES

Department of Mathematics, Niigata University, Niigata, 950-2181, Japan
E-mail address: izuchi@math.sc.niigata-u.ac.jp

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: nakazi@math.sci.hokudai.ac.jp

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: seto@math.sci.hokudai.ac.jp