<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Nonnegative functions in weighted Hardy spaces</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Inoue, Jyunji; Nakazi, Takahiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 653, 1-9</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83806</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69460</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre653.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Nonnegative Functions In Weighted Hardy Spaces

by

Jyunji Inoue

and

Takahiko Nakazi *

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

2000 Mathematics Subject Classifications: Primary 30 D 55, 46 J 15
Abstract. Let W be a nonnegative summable function whose logarithm is also summable with respect to the Lebesgue measure on the unit circle. For $0 < p < \infty$, $H^p(W)$ denotes a weighted Hardy space on the unit circle. When $W \equiv 1$, $H^p(W)$ is the usual Hardy space H^p. We are interested in $H^p(W)_+$ the set of all nonnegative functions in $H^p(W)$. If $p \geq 1/2$, H^p_{+} consists of constant functions. However $H^p(W)_+$ contains a nonconstant nonnegative function for some weight W. In this paper, if $p \geq 1/2$ we determine W and describe $H^p(W)_+$ when the linear span of $H^p(W)_+$ is of finite dimension. Moreover we show that the linear span of $H^p(W)_+$ is of infinite dimension for arbitrary weight W when $0 < p < 1/2$.
§1. Introduction and preliminaries

Let W be a nonnegative function in $L^1 = L^1(d\theta/2\pi, \partial D)$ where D is the open unit disc and ∂D is its boundary. For $0 < p < \infty$, a weighted Hardy space $H^p(W)$ denotes the closure of all analytic polynomials in $L^p(W) = L^p(Wd\theta/2\pi, \partial D)$. We may assume that $\log W$ is in L^1. For otherwise $H^p(W) = L^p(W)$. If $W \equiv 1$, then $H^p(W)$ is the usual Hardy space H^p. Let N_* be the Smirnov class (see [1]), then $H^p = N_* \cap L^p$. A function h in N_* is called outer if it is invertible in N_* and a function q in N_* is called inner if $|q| = 1$ a.e. on ∂D. If $W = |h|^p$ and h is an outer function in H^p, it is known that $H^p(W) = h^{-1}H^p$ and so $H^p(W)$ is a subset of N_*. Put

$$H^p(W)_+ = \{ s \in H^p(W) ; s \geq 0 \text{ a.e. on } \partial D \}.$$

If $W = |h|^p$, then $hH^p(W)_+ = \{ g \in H^p : \arg g = \arg h \text{ a.e. on } \partial D \}$. In this paper, the dimension of $H^p(W)_+$ means that of the linear span of $H^p(W)_+$ in $H^p(W)$.

J. Neuwirth and D. J. Newman [7] showed that $H^{1/2}_+ = R_+ = \{ s \in H^1 : \arg s = \arg h \text{ a.e. on } \partial D \}$ when $W = |h|$. In fact, this set is related to the set of extremal functions of a well known linear extremal problem in H^1. (cf. [5],[6],[3],[4]). Hence $H^1(W)_+$ is known enough. However $H^p(W)_+$ has not studied before when $p \neq 1$ and $W \neq 1$. In this paper, we study $H^p(W)_+$ for arbitrary p. In §2, we show that $H^p(W)_+$ is of infinite dimension when $0 < p < 1/2$ and W is arbitrary. In §3, we describe $H^p(W)_+$ when $p \geq 1/2$ and $H^p(W)_+$ is of finite dimension. In §4, we show that $H^p(W)_+$ is of finite dimension if $p \geq 1/2$ and W^{-1} is locally in $L^{1/2p-1}$ except at a finite set.

Now we give a general result about $H^p(W)_+$ for $0 < p < \infty$. For any nonzero function f in H^p, put $S^h_p = \{ g \in H^p : \arg g = \arg f \text{ a.e. on } \partial D \}$ for $0 < p < \infty$. Put $(N_*)_+ = \{ s \in N_* ; s \geq 0 \text{ a.e. on } \partial D \}$.

Proposition 1. Let $0 < p < \infty$. Suppose $W = |h|^p$ and h is an outer function in H^p.

1. $H^p(W)_+ = h^{-1}S^h_p$ and $R_+ \subseteq H^p(W)_+ \subseteq (N_*)_+$.

2. If W is in L^∞ then $H^p(W)_+ \supseteq H^p_+$.

3. If W^{-1} is in L^∞ then $H^p(W)_+ \subseteq H^p_+$.

Proof. Since $H^p(W) = h^{-1}H^p$, (1) follows from the definition of S^h_p. (2) and (3) are clear.

Lemma 1. If f and g are nonzero functions in N_* such that f/g is nonnegative and nonconstant almost everywhere on ∂D, then $f + g$ is not outer.
Proof. Put \(h = f + g \), then \(f/h + g/h = 1 \), \(0 \leq f/h \leq 1 \) and \(0 \leq g/h \leq 1 \) on \(\partial D \). If \(h \) is outer, then both \(f/h \) and \(g/h \) belong to \(N_\infty \cap L^\infty = H^\infty \). Thus both \(f/h \) and \(g/h \) are constant and so \(f/g \) is constant. This contradiction shows the lemma.

Proposition 2. Let \(0 < p < \infty \). If \(H^p(W)_+ \neq R_+ \), then there exists a function in \(H^p(W)_+ \) which is not outer. Hence the dimension of \(H^p(W)_+ \) is bigger than or equal to three.

Proof. If \(s \in H^p(W)_+ \) is nonconstant, by Lemma 1 \(s + 1 \) is not outer and so this implies the first part. Hence \(qs = s + 1 \) belongs to \(H^p(W)_+ \) where \(q \) is a nonconstant inner part of \(s + 1 \). Since both \((1 + q)g\) and 1 belong to \(H^p(W)_+ \), this implies the second part.

\[\]$
\textbf{§2. General weights for } 0 < p < 1/2.$

If \(0 < p < 1/2 \), then \((z - b)(1 - \overline{b}z)/(z - a)(1 - \overline{a}z)\) belongs to \(H^p \) where \(|a| = 1\) and \(|b| \leq 1\) and so \(H^p_+ \) is of infinite dimension. In this section, we show that \(H^p(W)_+ \) is of infinite dimension for arbitrary weight \(W \).

Lemma 2. Let \(0 < p < 1/2 \) and if \(h \) is a function in \(H^p \), \(h(z)/(1 - e^{it})/(1 - \overline{e}^t z) \) belongs to \(H^p \) for a.e. \(e^{it} \).

Proof. If \(k(z) = z/(1 - z)^2 \), \(|k|^p \) and \(|h|^p \) belongs to \(L^1 \) and hence \(|k|^p * |h|^p \in L^1 \).

\[
|k|^p * |h|^p(e^{it}) = \int_0^{2\pi} |k(e^{i(t-\theta)}h(e^{i\theta})|^p d\theta / 2\pi = \int_0^{2\pi} \left| \frac{e^{i\theta}h(e^{i\theta})}{(e^{i\theta} - e^{it})(1 - e^{it}e^{i\theta})} \right|^p d\theta / 2\pi < \infty
\]

This implies that \(h(z)/(1 - e^{it})(1 - \overline{e}^t z) \) belongs to \(H^p \) for a.e. \(e^{it} \)

Theorem 1. For arbitrary weight \(W \), \(H^p(W)_+ \) is of infinite dimension.

Proof. Suppose that \(W = |h|^p \) and \(h \) is an outer function in \(H^p \). Since \(H^p(W)_+ = h^{-1}S^h \) by (1) of Proposition 1, it is enough to prove that \(S^h_p \) is of infinite dimension. By Lemma 2, for any finite \(n \), \(h(z)\prod_{j=1}^{n}(z - b_j)/(1 - \overline{b}_j z)\prod_{j=1}^{n}(z - a_j)/(1 - \overline{a}_j z) \) belongs to \(H^p \) where \(|b_j| < 1 \) and \(|a_j| = 1 \) for \(1 \leq j \leq n \). Since \(\prod_{j=1}^{n}(z - b_j)/(1 - \overline{b}_j z)\prod_{j=1}^{n}(z - a_j)/(1 - \overline{a}_j z) \) is nonnegative on \(\partial D \), \(S^h_p \) is of infinite dimension.
§3. General weights for $1/2 \leq p < \infty$

Unlike when $0 < p < 1/2$, if $1/2 \leq p < \infty$, then $H^p(W)_+$ may be of finite dimension for some weight W. In this section, we describe $H^p(W)_+$ when $H^p(W)_+$ is of finite dimension.

Lemma 3. Let $1/2 \leq p < \infty$. If $W = W_1W_0$, and $W_1 = \prod_{j=1}^{n} |z - a_j|^{2p}$ where $|a_j| = 1$ ($1 \leq j \leq n$) and $H^p(W_0)_+ = R_+$, then $H^p(W)_+ \subseteq H^p(W_1)_+$. If W_0 is in L^∞, then $H^p(W)_+ = H^p(W_1)_+$.

Proof. Let $h_1 = \prod_{j=1}^{n} (z - a_j)(1 - \bar{a}_jz)$ and h_0 an outer function in H^p with $|h_0|^p = W_0$. Put $h = h_1h_0$, then $W = |h|^p = |h_1|^p \times |h_0|^p = W_1W_0$. Since $\bar{z}^n\prod_{j=1}^{n} (z - a_j)(1 - \bar{a}_jz) =$ $\prod_{j=1}^{n} |z - a_j|^2$, $|h|/h = \bar{z}^n|h_0|/h_0$. Hence

$$H^p(W)_+ = h^{-1}S^h_p = h^{-1}S^{z^n}_p h_0$$

and $S^{z^n}_p h_0 = \{ \gamma h_0 : \gamma \in R_+ \}$. Now we will prove that $S^{z^n}_p h_0 \subseteq S^{z^n}_p \times h_0$. Then the lemma follows.

We will prove it by induction on n. It is clear when $n = 0$. We assume that $S^{z^n}_p h_0 \subseteq S^{z^n}_p \times h_0$ for $j = 0, 1, \cdots, n - 1$. If $f \in S^{z^n}_p h_0$ and f is not a scalar multiple of $z^n h_0$, then by Lemma 1 $z^n h_0 + f$ has the form qg for some nonconstant inner function q. By a theorem of Frostman, there exists a sequence $\{d_\ell\}$ in D such that $d_\ell \to 0$ ($\ell \to \infty$) and $(q - d_\ell)/(1 - \bar{d}_\ell q)$ is a Blaschke product for each ℓ. Then $(q - d_\ell)(1 - \bar{d}_\ell q)g \in S^{z^n}_p h_0$ because $qg \in S^{z^n}_p h_0$. If $(q - d_\ell)(1 - \bar{d}_\ell q)g$ belongs to $S^{z^n}_p \times h_0$, then $qg \in S^{z^n}_p \times h_0$ as $\ell \to \infty$. Since $z^n h_0 \in S^{z^n}_p \times h_0$, f belongs to $S^{z^n}_p \times h_0$ because $z^n h_0 + f = qg$ and so $S^{z^n}_p h_0 \subseteq S^{z^n}_p \times h_0$. Now we will show that $(q - d_\ell)(1 - \bar{d}_\ell q)g$ belongs to $S^{z^n}_p \times h_0$ for all ℓ. For each ℓ, there exist a complex constant $z_\ell \in D$

$$(q - d_\ell)(1 - \bar{d}_\ell q)g = (z - z_\ell)(1 - \bar{z}_\ell z)Q_\ell(1 - \bar{z}_\ell z)^{-2}(1 - \bar{d}_\ell q)^2 g$$

and $Q_\ell = \frac{1 - \bar{z}_\ell z}{z - z_\ell} - d_\ell$ is a Blaschke product. Since $(z - z_\ell)(1 - \bar{z}_\ell z)/z \geq 0$, $Q_\ell(1 - \bar{z}_\ell z)^{-2}(1 - \bar{d}_\ell q)^2 g \in S^{z^n-1}_p \times h_0$. By hypothesis on the induction, $Q_\ell(1 - \bar{z}_\ell z)^{-2}(1 - \bar{d}_\ell q)^2 g \in S^{z^n}_p \times h_0$ and so $(q - d_\ell)(1 - \bar{d}_\ell q)g$ belongs to $S^{z^n}_p \times h_0$ and so $S^{z^n}_p h_0 \subseteq S^{z^n}_p \times h_0$.

Lemma 4. Let $1/2 \leq p < \infty$. If $H^p(W)_+$ is of finite dimension n the inner part of any nonzero function s in $H^p(W)_+$ is a finite Blaschke product of degree $\leq n - 1$.}

5
Proof. Suppose that \(0 \neq s \in H^p(W)_+ \) and \(s = qk \) where \(q \) is inner. If \(q = \prod_{j=1}^{m} q_j \) and \(q_j (1 \leq j \leq m) \) is a nonconstant inner function then put for each \(\ell \leq m \)

\[
s_\ell = \left(1 + \prod_{j=1}^{\ell} q_j\right)^2 \left(q \prod_{j=1}^{\ell} \bar{q}_j\right) k.
\]

Then \(\{s_j\}_{j=1}^{m} \) is a system of independent elements in \(H^p(W)_+ \). This implies that \(\dim H^p(W)_+ \geq m + 1 \).

Theorem 2. Suppose \(H^p(W)_+ (1/2 \leq p < \infty) \) is of finite dimension \(n \). Then,

1. \(W = W_1W_0, \ W_1 = \prod_{j=1}^{n} |z - a_j|^{2p} \) where \(|a_j| = 1 \) (1 \leq j \leq n) and \(H^p(W_0)_+ = R_+ \).

2. \(H^p(W)_+ = \left\{ \gamma \prod_{j=1}^{n} (z - b_j)(1 - \bar{b}_jz) ; \gamma > 0 \text{ and } |b_j| \leq 1 \ (j = 1, \cdots, n) \right\} \).

Proof. Suppose \(W = |h|^p \) and \(h \) is an outer function in \(H^p \). By Lemma 4, for any function \(f \in S^h_p \) the inner part \(q \) is a finite Blaschke product of degree \(\leq \dim H^p(W)_+ - 1 \) because \(H^p(W)_+ = h^{-1}S^h_p \). Then there exists at least a function in \(S^h_p \) such that the degree of the inner part \(q \) is the largest \(n \). If \(qk \in S^h_p \) then there exists a function \(h_0 \in H^p \) such that \(z^n h_0 \in S^h_p \). Then

\[
S^h_p = S^{z^n h_0}_p \text{ and } S^{h_0}_p = \{\gamma h_0 ; \gamma \in R_+\}.
\]

In fact, if there exists a function \(g \in S^{h_0}_p \setminus \{\gamma h_0 ; \gamma \in R_+\} \), then by Lemma 1 \(g + h_0 = q_1 h_1 \) where \(q_1 \) is a nontrivial inner function. Then \(z^n q_1 h_1 \in S^h_p \) and by Lemma 4 this contradicts the definition of \(n \). By the proof of Lemma 3, \(S^{z^n h_0}_p \subseteq S^{z^n}_p \times h_0 \). By a lemma of H. Helson and D. Sarason [2], because \(p \geq 1/2 \)

\[
S^{z^n h_0}_p = \left\{ \gamma \prod_{j=1}^{n} (z - b_j)(1 - \bar{b}_jz) ; |b_j| \leq 1 \ (1 \leq j \leq n), \gamma \in R_+ \right\}.
\]

This implies that

\[
S^{z^n h_0}_p = S^{z^n}_p \times h_0 = S^h_p
\]

and \(h = \gamma \prod_{j=1}^{n} (z - a_j)(1 - \bar{a}_jz) h_0 \) where \(|a_j| = 1 \) (1 \leq j \leq n) and \(\gamma \in R_+ \). Put \(W_1 = \prod_{j=1}^{n} |z - a_j|^{2p} \) and \(W_0 = |h_0|^2 \), then (1) follows. By Proposition 1, \(H^p(W)_+ = h^{-1}S^h_p \) and so (2) follows.
§4. Special weights for \(1/2 \leq p < \infty\)

It is known that a nonnegative function in \(H^{1/2}\) is constant almost everywhere on \(\partial D\). Lemma 5 is a generalization of it and known in [4]. This is important in the proof of Theorem 3. If \(W^{-1}\) is in \(L^\infty\) by Proposition 1 \(H^{1/2}(W)_+ = R_+\). In this section, we study \(H^{1/2}(W)_+\) when \(W^{-1}\) locally belongs to \(L^\infty\) except a finite set. By [4, Theorem 1] and Proposition 1, \(H^1(W)_+\) is of finite dimension when \(W^{-1}\) locally belongs to \(L^1\) except a finite set.

Lemma 5. Let \(F\) be a function in \(N\), such that
(a) \(F\) belongs to \(H^p\) for some \(p > 0\),
(b) \(F\) locally belongs to \(H^{1/2}\) except a finite set of \(\partial D\),
(c) \(F\) is outer and \(F\) is nonnegative a.e. on \(\partial D\).

Then \(F\) can be extended to a rational function.

Theorem 3. Let \(p \geq 1/2\). Suppose \(W^{-1}\) is in \(L^q\) for some \(q > 0\). If \(W^{-1}\) belongs locally to \(H^{1/(2p-1)}\) except a finite set \(A\) of \(\partial D\), then \(H^p(W)_+\) is of finite dimension and \(\dim H^p(W)_+ = 2N + 1\) for some nonnegative integer \(N\). If \(A\) is an empty set, then \(H^p(W)_+ = R_+\). Let \(A = \{a_j ; j = 1, 2, \ldots, n\}\) then there exist nonnegative integers \(m_1, \ldots, m_n\) such that the following (1) and (2) are valid for \(N = \sum_{j=1}^n m_j\).

1. \(W = W_1W_0\), \(W_1 = \prod_{j=1}^n |z-a_j|^{2m_j/p}\), \(H^p(W_1)_+ = H^p(W)_+\) and \(H^p(W_0)_+ = R_+\).
2. \(H^p(W)_+ = \{\gamma \prod_{j=1}^n (z-b_j)(1-\bar{b}_jz)/\prod_{j=1}^n (z-a_j)^{m_j}(1-\bar{a}_jz)^{m_j} ; \gamma > 0\) and \(|b_j| \leq 1\ (j = 1, \ldots, N)\}.

Proof. At first we prove that \(H^p(W)_+\) is of finite dimension. Since \(H^p(W)_+ = h^{-1}S^h_p\) where \(W = |h|^p\) and \(h\) is an outer function in \(H^p\), it is enough to show that \(S^h_p\) is of finite dimension. If \(g\) is an outer function in \(S^h_p\), put \(F = g/h\). Then \(F \geq 0\) a.e. on \(\partial D\), \(F \in H^q\) for some \(q > 0\). For a measurable subset \(E \subset \partial D\setminus A\)

\[
\int_E |gh^{-1}|^{1/2}d\theta/2\pi \leq \left(\int_E (|g|^{1/2})^{1/\ell}d\theta/2\pi\right)^{1/\ell} \left(\int_E |h^{-1/2}k|^{1/\ell}d\theta/2\pi\right)^{1/k}
\]

where \(1/\ell + 1/k = 1\). If \(\ell = 2p\), then \(k = 2p/(2p-1)\) when \(p \neq 1/2\), and \(k = \infty\) when \(p = 1/2\). If \(k \neq \infty\), then

\[
|h^{-1/2}|^k = |h|^{-2p/(2p-1)} = W^{-2p/(2p-1)}
\]

and so \(F\) locally belongs to \(H^{1/2}\) except \(A\) by hypothesis on \(W\). Hence by Lemma 5 \(F\) is a rational function and

\[
F(z) = \gamma \frac{\prod_{j=1}^N (z-b_j)(1-\bar{b}_jz)}{\prod_{j=1}^n (z-a_j)^{m_j}(1-\bar{a}_jz)^{m_j}}
\]
where \(\gamma > 0 \), \(N = m_1 + \cdots + m_n \), \(|b_j| = 1 \) \((1 \leq j \leq N) \) and \(|a_j| = 1 \) \((1 \leq j \leq n) \). Since \(h^{-1} \) locally belongs to \(H^{p/(2p-1)} \), \(\{a_j\}_{j=1}^n \subseteq A \). Therefore by finiteness of \(A \) and Theorem 2 there exists a positive integer \(N_0 < \infty \) such that \(N \leq N_0 \). This implies that \(\mathcal{S}_h^+ \) is of finite dimension. (1) and (2) are clear by the above proof and Theorem 2. If \(A \) is empty, then \(F \) belongs to \(H^{1/2} \) by the proof above and so \(F \) is constant. This implies that \(\mathcal{S}_h^+ = \{ \gamma h ; \gamma \in \mathbb{R}_+ \} \) and so \(\dim H^p(W)_+ = 1 \).

Corollary 1. Let \(\frac{1}{2} \leq p < \infty \). Suppose that \(W = |h|^p \) and \(h \) is a rational outer function, that is,

\[
h(z) = \prod_{j=1}^n (z - a_j)^{m_j} / \prod_{j=1}^k (z - c_j)^{b_j}
\]

where \(|a_j| = 1 \) \((1 \leq j \leq n) \), \(a_j \neq a_i \) \((j \neq i) \) and \(|c_j| = 1 \) \((1 \leq j \leq k) \), \(c_j \neq c_i \) \((j \neq i) \), \(0 < pk_j < 1 \) \((1 \leq j \leq k) \). Then \(H^p(W)_+ \) is of finite dimension. Moreover there exist nonnegative integers \(\ell_1, \ldots, \ell_n \) such that

\[
\frac{1}{2}(m_j + \frac{1}{p}) - 1 < \ell_j \leq \frac{1}{2}(m_j + \frac{1}{p}) \quad (1 \leq j \leq n)
\]

and \(N = \sum_{j=1}^n \ell_j \), and the following (1) and (2) are valid.

1. \(W = W_1W_0 \), \(W_1 = \prod_{j=1}^n |z - a_j|^{\ell_jp} \), \(W_0 = \prod_{j=1}^n |z - a_j|^{m_jp - \ell_jp} / \prod_{j=1}^k |z - c_j|^{p\ell_j} \).

2. \(H^p(W)_+ = \{ \gamma \prod_{j=1}^{N_n} (z - b_j)/(1 - \bar{b}_jz) / \prod_{j=1}^n (z - a_j)^{\ell_j}/(1 - \bar{a}_jz)^{\ell_j} ; \gamma > 0, \ |b_j| \leq 1 \ (j = 1, \ldots, N) \} \)

Proof. Since \(W^{-1} \) belongs locally to \(L^\infty \) except \(\{a_j\}_{j=1}^n \), by Theorem 3 \(H^p(W)_+ \) is of finite dimension. If \(\ell_1, \ldots, \ell_n \) are nonnegative integers such that

\[
\frac{1}{2}(m_j + \frac{1}{p}) - 1 < \ell_j \leq \frac{1}{2}(m_j + \frac{1}{p}) \quad (1 \leq j \leq n)
\]

and \(N = \sum_{j=1}^n \ell_j \), then put \(W_1 = \prod_{j=1}^n |z - a_j|^{\ell_jp} \) and \(W_0 = W/W_1 \). Then by Theorem 3 \(H^p(W_0)_+ = R_+ \). For \(W_0^{-1} \in L^{1/(2p-1)} \) because \(-1 < (2\ell_jp - m_jp)/(2p - 1) < 1/(2p - 1) \). Hence (1) and (2) follows from Theorem 3.

Remark. (1) Let \(p \geq 1/2 \). Suppose \(W^{-1} \) is in \(L^q \) for some \(q > 0 \) and \(W^{-1} \) belongs locally to \(L^{1/(2p-1)} \) except at \(z = -1 \). Then by Theorem 3 \(H^p(W)_+ \) is of finite dimension. Moreover, \(\dim H^p(W)_+ = 2N + 1 \) if and only if \(W |1 + z|^{-2pN} \in L^1 \) and \(W |1 + z|^{-2p(N+1)} \notin L^1 \). (2) Let \(p \geq 1/2 \). Suppose \(W = |1 + z|^{\alpha} \) and \(-1 < \alpha < \infty \). Then the following
(i) $\sim (iii)$ are equivalent. (i) $\dim H^p(W)_+ = 2N + 1$. (ii) $\max((2N)p - 1, -1) < \alpha < (2N + 3)p - 1$. (iii) $\max(\frac{a+1}{2N+3}, \frac{1}{2}) \leq p < \frac{a+1}{2N}$. For by Theorem 3, $\dim H^p(W)_+ = 2N + 1$ for some nonnegative integer N and $H^p(W)_+ = \{ \gamma \prod_{j=1}^{N}(z-b_j)(1-b_jz)/(1+z)^{2N}; \gamma > 0 \text{ and } |b_j| \leq 1 \ (j = 1, \cdots, n) \}$. Since $hH^p(W)_+ = S^h_p$ and $h = (1 + z)^{\frac{a}{p}}$, $(1 + z)^{\frac{a}{p}} H^p(W)_+ \subset H^p$ and so $(1+z)^{\frac{a}{p}-2N}$ belongs to H^p. Hence $\alpha - (2N)p > -1$ and so $\alpha > \max((2N)p - 1, -1)$. Since $\dim H^p(W)_+ = 2N + 1$, $\alpha \leq (2N + 1)p - 1$.

References