Nonnegative Functions In Weighted Hardy Spaces

by

Jyunji Inoue

and

Takahiko Nakazi *

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

2000 Mathematics Subject Classifications: Primary 30 D 55, 46 J 15
Abstract. Let W be a nonnegative summable function whose logarithm is also summable with respect to the Lebesgue measure on the unit circle. For $0 < p < \infty$, $H^p(W)$ denotes a weighted Hardy space on the unit circle. When $W \equiv 1$, $H^p(W)$ is the usual Hardy space H^p. We are interested in $H^p(W)_+$ the set of all nonnegative functions in $H^p(W)$. If $p \geq 1/2$, H^p_+ consists of constant functions. However $H^p(W)_+$ contains a nonconstant nonnegative function for some weight W. In this paper, if $p \geq 1/2$ we determine W and describe $H^p(W)_+$ when the linear span of $H^p(W)_+$ is of finite dimension. Moreover we show that the linear span of $H^p(W)_+$ is of infinite dimension for arbitrary weight W when $0 < p < 1/2$.
§1. Introduction and preliminaries

Let W be a nonnegative function in $L^1 = L^1(d\theta/2\pi, \partial D)$ where D is the open unit disc and ∂D is its boundary. For $0 < p < \infty$, a weighted Hardy space $H^p(W)$ denotes the closure of all analytic polynomials in $L^p(W) = L^p(Wd\theta/2\pi, \partial D)$. We may assume that $\log W$ is in L^1. For otherwise $H^p(W) = L^p(W)$. If $W \equiv 1$, then $H^p(W)$ is the usual Hardy space H^p. Let N_* be the Smirnov class (see [1]), then $H^p = N_* \cap L^p$. A function h in N_* is called outer if it is invertible in N_* and a function q in N_* is called inner if $|q| = 1$ a.e. on ∂D. If $W = |h|^p$ and h is an outer function in H^p, it is known that $H^p(W) = h^{-1}H^p$ and so $H^p(W)$ is a subset of N_*. Put

$$H^p(W)_+ = \{s \in H^p(W) ; s \geq 0 \text{ a.e. on } \partial D\}.$$

If $W = |h|^p$, then $hH^p(W)_+ = \{g \in H^p : \arg g = \arg h \text{ a.e. on } \partial D\}$. In this paper, the dimension of $H^p(W)_+$ means that of the linear span of $H^p(W)_+$ in $H^p(W)$.

J. Neuwirth and D. J. Newman [7] showed that $H^{1/2}_+ = R_+$ is the set of all nonnegative real constants. Hence $H^p_+ = R_+$ if $p \geq 1/2$. However $H^p_+ \neq R_+$ if $0 < p < 1/2$ because $z/(1 + z)^2$ belongs to $\bigcap_{p<1/2} H^p$. $H^1(W)_+$ has been studied because $hH^1(W)_+ = \{g \in H^1 : \arg g = \arg h \text{ a.e. on } \partial D\}$ when $W = |h|$. In fact, this set is related to the set of extremal functions of a well known linear extremal problem in H^1. (cf. [5],[6],[3],[4]). Hence $H^1(W)_+$ is known enough. However $H^p(W)_+$ has not studied before when $p \neq 1$ and $W \neq 1$. In this paper, we study $H^p(W)_+$ for arbitrary p. In §2, we show that $H^p(W)_+$ is of infinite dimension when $0 < p < 1/2$ and W is arbitrary. In §3, we describe $H^p(W)_+$ when $p \geq 1/2$ and $H^p(W)_+$ is of finite dimension. In §4, we show that $H^p(W)_+$ is of finite dimension if $p \geq 1/2$ and W^{-1} is locally in $L^{1/(p-1)}$ except at a finite set.

Now we give a general result about $H^p(W)_+$ for $0 < p < \infty$. For any nonzero function f in H^p, put $S^h_p = \{g \in H^p : \arg f = \arg g \text{ a.e. on } \partial D\}$ for $0 < p < \infty$. Put $(N_*)_+ = \{s \in N_* ; s \geq 0 \text{ a.e. on } \partial D\}$.

Proposition 1. Let $0 < p < \infty$. Suppose $W = |h|^p$ and h is an outer function in H^p.

(1) $H^p(W)_+ = h^{-1}S^h_p$ and $R_+ \subseteq H^p(W)_+ \subseteq (N_*)_+$.

(2) If W is in L^∞ then $H^p(W)_+ \supseteq H^p_+$.

(3) If W^{-1} is in L^∞ then $H^p(W)_+ \subseteq H^p_+$.

Proof. Since $H^p(W) = h^{-1}H^p$, (1) follows from the definition of S^h_p. (2) and (3) are clear.

Lemma 1. If f and g are nonzero functions in N_* such that f/g is nonnegative and nonconstant almost everywhere on ∂D, then $f + g$ is not outer.
Proof. Put $h = f + g$, then $f/h + g/h = 1$, $0 \leq f/h \leq 1$ and $0 \leq g/h \leq 1$ on ∂D. If h is outer, then both f/h and g/h belong to $N_+ \cap L^\infty = H^\infty$. Thus both f/h and g/h are constant and so f/g is constant. This contradiction shows the lemma.

\textbf{Proposition 2.} Let $0 < p < \infty$. If $H^p(W)_+ \neq R_+$, then there exists a function in $H^p(W)_+$ which is not outer. Hence the dimension of $H^p(W)_+$ is bigger than or equal to three.

Proof. If $s \in H^p(W)_+$ is nonconstant, by Lemma 1 $s + 1$ is not outer and so this implies the first part. Hence $qg = s + 1$ belongs to $H^p(W)_+$ where q is a nonconstant inner part of $s + 1$. Since both $(1 + q)^2g$ and 1 belong to $H^p(W)_+$, this implies the second part.

\section{General weights for $0 < p < 1/2$.}

If $0 < p < 1/2$, then $(z - b)/(1 - \overline{b}z)/(z - a)/(1 - \overline{a}z)$ belongs to H^p where $|a| = 1$ and $|b| \leq 1$ and so H^p_z is of infinite dimension. In this section, we show that $H^p(W)_+$ is of infinite dimension for arbitrary weight W.

\textbf{Lemma 2.} If $0 < p < 1/2$ and if h is a function in H^p, $h(z)/(z - e^{it})(1 - e^{it}z)$ belongs to H^p for a.e. e^{it}.

Proof. If $k(z) = z/(1 - z)^2$, $|k|^p$ and $|h|^p$ belongs to L^1 and hence $|k|^p * |h|^p \in L^1$.

\begin{align*}
|k|^p * |h|^p(e^{it}) &= \int_0^{2\pi} |k(e^{i(t-\theta)})h(e^{i\theta})|^p d\theta / 2\pi \\
&= \int_0^{2\pi} \left| \frac{e^{i\theta}h(e^{i\theta})}{(e^{i\theta} - e^{it})(1 - e^{it}e^{i\theta})} \right|^p d\theta / 2\pi < \infty
\end{align*}

This implies that $h(z)/(z - e^{it})(1 - e^{it}z)$ belongs to H^p for a.e. e^{it}

\textbf{Theorem 1.} For arbitrary weight W, $H^p(W)_+$ is of infinite dimension.

Proof. Suppose that $W = |h|^p$ and h is an outer function in H^p. Since $H^p(W)_+ = h^{-1}S^h_p$ by (1) of Proposition 1, it is enough to prove that S^h_p is of infinite dimension. By Lemma 2, for any finite n, $h(z)\prod_{j=1}^n (z - b_j)/(1 - \overline{b}_jz)\prod_{j=1}^n (z - a_j)/(1 - \overline{a}_jz)$ belongs to H^p where $|b_j| < 1$ and $|a_j| = 1$ for $1 \leq j \leq n$. Since $\prod_{j=1}^n (z - b_j)/(1 - \overline{b}_jz)\prod_{j=1}^n (z - a_j)/(1 - \overline{a}_jz)$ is nonnegative on ∂D, S^h_p is of infinite dimension.
§3. General weights for $1/2 \leq p < \infty$

Unlike when $0 < p < 1/2$, if $1/2 \leq p < \infty$, then $H^p(W)_+$ may be of finite dimension for some weight W. In this section, we describe $H^p(W)_+$ when $H^p(W)_+$ is of finite dimension.

Lemma 3. Let $1/2 \leq p < \infty$. If $W = W_1W_0$, and $W_1 = \prod_{j=1}^{n}|z - a_j|^{2p}$ where $|a_j| = 1$ (1 ≤ j ≤ n) and $H^p(W_0)_+ = R_+$, then $H^p(W)_+ \subseteq H^p(W_1)_+$. If W_0 is in L^∞, then $H^p(W)_+ = H^p(W_1)_+$.

Proof. Let $h_1 = \prod_{j=1}^{n}(z - a_j)(1 - \bar{a}_jz)$ and h_0 an outer function in H^p with $|h_0|^p = W_0$. Put $h = h_1h_0$, then $W = |h|^p = |h_1|^p \times |h_0|^p = W_1W_0$. Since $\bar{z}^n\prod_{j=1}^{n}(z - a_j)(1 - \bar{a}_jz) = \prod_{j=1}^{n}|z - a_j|^2$, $|h|/h = \bar{z}^n|h_0|/h_0$. Hence

$$H^p(W)_+ = h^{-1}S^h_p = h^{-1}S^{z^nh_0}_p$$

and $S^{z^nh_0}_p = \{\gamma h_0 : \gamma \in R_+\}$. Now we will prove that $S^{z^nh_0}_p \subseteq S^{zn}_p \times h_0$. Then the lemma follows.

We will prove it by induction on n. It is clear when $n = 0$. We assume that $S^{z^nh_0}_p \subseteq S^{zn^j}_p \times h_0$ for $j = 0, 1, \ldots, n - 1$. If $f \in S^{z^nh_0}_p$ and f is not a scalar multiple of z^nh_0, then by Lemma 1 $z^nh_0 + f$ has the form qg for some nonconstant inner function q. By a theorem of Frostman, there exists a sequence $\{d_\ell\}$ in D such that $d_\ell \rightarrow 0$ ($\ell \rightarrow \infty$) and $(q - d_\ell)/(1 - \bar{d}_\ell q)$ is a Blaschke product for each ℓ. Then $(q - d_\ell)/\ell(1 - \bar{d}_\ell q)g \in S^{z^nh_0}_p$ because $qg \in S^{z^nh_0}_p$. If $(q - d_\ell)(1 - \bar{d}_\ell q)g$ belongs to $S^{zn}_p \times h_0$, then $qg \in S^{zn}_p \times h_0$ as $\ell \rightarrow \infty$. Since $z^nh_0 \in S^{zn}_p \times h_0$, f belongs to $S^{zn}_p \times h_0$ because $z^nh_0 + f = qg$ and so $S^{z^nh_0}_p \subseteq S^{zn}_p \times h_0$. Now we will show that $(q - d_\ell)(1 - \bar{d}_\ell q)g$ belongs to $S^{zn}_p \times h_0$ for all ℓ.

For each ℓ, there exist a complex constant $z_\ell \in D$

$$(q - d_\ell)(1 - \bar{d}_\ell q)g = (z - z_\ell)(1 - \bar{z}_\ell z)Q_\ell(1 - \bar{z}_\ell z)^{-2}(1 - \bar{d}_\ell q)^2g$$

and $Q_\ell = 1 - \bar{z}_\ell z - q - d_\ell \bar{z}_\ell z$ is a Blaschke product. Since $(z - z_\ell)(1 - \bar{z}_\ell z)/z \geq 0$, $Q_\ell(1 - \bar{z}_\ell z)^{-2}(1 - \bar{d}_\ell q)^2g \in S^{zn-1}_p \times h_0$ and so $(q - d_\ell)(1 - \bar{d}_\ell q)g$ belongs to $S^{zn}_p \times h_0$ and so $S^{z^nh_0}_p \subseteq S^{zn}_p \times h_0$.

Lemma 4. Let $1/2 \leq p < \infty$. If $H^p(W)_+$ is of finite dimension n the inner part of any nonzero function s in $H^p(W)_+$ is a finite Blaschke product of degree ≤ $n - 1$.
Proof. Suppose that $0 \neq s \in H^p(W)_+$ and $s = qk$ where q is inner. If $q = \prod_{j=1}^{m} q_j$ and q_j ($1 \leq j \leq m$) is a nonconstant inner function then put for each $\ell \leq m$

$$s_\ell = \left(1 + \prod_{j=1}^{\ell} q_j\right)^2 \left(q \prod_{j=1}^{\ell} \bar{q}_j\right) k.$$

Then $\{s_j\}_{j=1}^{m}$ is a system of independent elements in $H^p(W)_+$. This implies that $\dim H^p(W)_+ \geq m + 1$.

Theorem 2. Suppose $H^p(W)_+ (1/2 \leq p < \infty)$ is of finite dimension n. Then,

(1) $W = W_1W_0$, $W_1 = \prod_{j=1}^{n} |z - a_j|^{2p}$ where $|a_j| = 1$ $(1 \leq j \leq n)$ and $H^p(W_0)_+ = R_+$.

(2) $H^p(W)_+ = \left\{\gamma \prod_{j=1}^{n} \frac{(z - b_j)(1 - \bar{b}_j z)}{(z - a_j)(1 - \bar{a}_j z)} : \gamma > 0 \text{ and } |b_j| \leq 1 \ (j = 1, \cdots, n)\right\}$.

Proof. Suppose $W = |h|^p$ and h is an outer function in H^p. By Lemma 4, for any function $f \in S_p^h$ the inner part q is a finite Blaschke product of degree $\leq \dim H^p(W)_+ - 1$ because $H^p(W)_+ = h^{-1}S_p^h$. Then there exists at least a function in S_p^h such that the degree of the inner part q is the largest n. If $qk \in S_p^h$ then there exists a function $h_0 \in H^p$ such that $z^n h_0 \in S_p^h$. Then

$$S_p^h = S_p^{z^n h_0} \text{ and } S_p^{h_0} = \{\gamma h_0 ; \gamma \in R_+\}.$$

In fact, if there exists a function g in $S_p^{h_0} \setminus \{\gamma h_0 ; \gamma \in R_+\}$, then by Lemma 1 $g + h_0 = q_1 h_1$ where q_1 is a nontrivial inner function. Then $z^n q_1 h_1 \in S_p^h$ and by Lemma 4 this contradicts the definition of n. By the proof of Lemma 3, $S_p^{z^n h_0} \subseteq S_p^{z^n} \times h_0$. By a lemma of H. Helson and D. Sarason [2], because $p \geq 1/2$

$$S_p^{z^n h_0} = \left\{\gamma \prod_{j=1}^{n} (z - b_j)(1 - \bar{b}_j z) ; \ |b_j| \leq 1 \ (1 \leq j \leq n), \gamma \in R_+\right\}.$$

This implies that

$$S_p^{z^n h_0} = S_p^{z^n} \times h_0 = S_p^h$$

and $h = \gamma \prod_{j=1}^{n} (z - a_j)(1 - \bar{a}_j z) h_0$ where $|a_j| = 1$ $(1 \leq j \leq n)$ and $\gamma \in R_+$. Put $W_1 = \prod_{j=1}^{n} |z - a_j|^{2p}$ and $W_0 = |h_0|^2p$, then (1) follows. By Proposition 1, $H^p(W)_+ = h^{-1}S_p^h$ and so (2) follows.
§4. Special weights for $1/2 \leq p < \infty$

It is known that a nonnegative function in $H^{1/2}$ is constant almost everywhere on ∂D. Lemma 5 is a generalization of it and known in [4]. This is important in the proof of Theorem 3. If W^{-1} is in L^∞ by Proposition 1 $H^{1/2}(W)_+ = R_+$. In this section, we study $H^{1/2}(W)_+$ when W^{-1} locally belongs to L^∞ except a finite set. By [4, Theorem 1] and Proposition 1, $H^1(W)_+$ is of finite dimension when W^{-1} locally belongs to L^1 except a finite set.

Lemma 5. Let F be a function in N, such that
(a) F belongs to H^p for some $p > 0$,
(b) F locally belongs to $H^{1/2}$ except a finite set of ∂D,
(c) F is outer and F is nonnegative a.e. on ∂D.

Then F can be extended to a rational function.

Theorem 3. Let $p \geq 1/2$. Suppose W^{-1} is in L^q for some $q > 0$. If W^{-1} belongs locally to $L^{(2p-1)}$ except a finite set A of ∂D, then $H^p(W)_+$ is of finite dimension and $\dim H^p(W)_+ = 2N + 1$ for some nonnegative integer N. If A is an empty set, then $H^p(W)_+ = R_+$. If $A = \{a_j ; j = 1, 2, \ldots, n\}$ then there exist nonnegative integers m_1, \ldots, m_n such that the following (1) and (2) are valid for $N = \sum_{j=1}^n m_j$.

(1) $W = W_1 W_0$, $W_1 = \prod_{j=1}^n |z-a_j|^{2m_j p}$, $H^p(W_1)_+ = H^p(W)_+$ and $H^p(W_0)_+ = R_+$.

(2) $H^p(W)_+ = \{ \gamma \prod_{j=1}^n (z - b_j)(1 - \bar{b}_j z)/\prod_{j=1}^n (z - a_j)^{m_j} (1 - a_j z)^{m_j} ; \gamma > 0$ and $|b_j| \leq 1 \ (j = 1, \ldots, N) \}.$

Proof. At first we prove that $H^p(W)_+$ is of finite dimension. Since $H^p(W)_+ = h^{-1}S^h_p$ where $W = |h|^p$ and h is an outer function in H^p, it is enough to show that S^h_p is of finite dimension. If g is an outer function in S^h_p, put $F = g/h$. Then $F \geq 0$ a.e. on ∂D, $F \in H^q$ for some $q > 0$. For a measurable subset $E \subset \partial D \setminus A$,

$$
\int_E |gh^{-1}|^{1/2} \mathrm{d}\theta/2\pi \leq \left(\int_E (|g|^{1/2} \ell \mathrm{d}\theta/2\pi \right)^{1/\ell} \left(\int_E |h^{-1/2}| \mathrm{d}\theta/2\pi \right)^{1/k}
$$

where $1/\ell + 1/k = 1$. If $\ell = 2p$, then $k = 2p/(2p-1)$ when $p \neq 1/2$, and $k = \infty$ when $p = 1/2$. If $k \neq \infty$, then

$$
|h^{-1/2}| = |h|^{-\frac{p}{2p-1}} = W^{-\frac{1}{2p-1}}
$$

and so F locally belongs to $H^{1/2}$ except A by hypothesis on W. Hence by Lemma 5 F is a rational function and

$$
F(z) = \gamma \frac{\prod_{j=1}^N (z - b_j)(1 - \bar{b}_j z)}{\prod_{j=1}^n (z - a_j)^{m_j} (1 - a_j z)^{m_j}}
$$
where \(\gamma > 0, \ N = m_1 + \cdots + m_n, \ |b_j| = 1 \ (1 \leq j \leq N) \) and \(|a_j| = 1 \ (1 \leq j \leq n) \). Since \(h^{-1} \) locally belongs to \(H^{p/(2p-1)} \), \(\{a_j\}_{j=1}^n \subset A \). Therefore by finiteness of \(A \) and Theorem 2 there exists a positive integer \(N_0 < \infty \) such that \(N \leq N_0 \). This implies that \(S^h_p \) is of finite dimension. (1) and (2) are clear by the above proof and Theorem 2. If \(A \) is empty, then \(F \) belongs to \(H^{1/2} \) by the proof above and so \(F \) is constant. This implies that \(S^h_p = \{ \gamma h ; \ \gamma \in R_+ \} \) and so \(\dim H^p(W)_+ = 1 \).

Corollary 1. Let \(\frac{1}{2} \leq p < \infty \). Suppose that \(W = |h|^p \) and \(h \) is a rational outer function, that is,

\[
h(z) = \prod_{j=1}^n (z - a_j)^{m_j} / \prod_{j=1}^k (z - c_j)^{k_j}
\]

where \(|a_j| = 1 \ (1 \leq j \leq n) \), \(a_j \neq a_i \ (j \neq i) \) and \(|c_j| = 1 \ (1 \leq j \leq k) \), \(c_j \neq c_i \ (j \neq i) \), \(0 < pk_j < 1 \ (1 \leq j \leq k) \). Then \(H^p(W)_+ \) is of finite dimension. Moreover there exist nonnegative integers \(\ell_1, \cdots, \ell_n \) such that

\[
\frac{1}{2}(m_j + \frac{1}{p}) - 1 < \ell_j \leq \frac{1}{2}(m_j + \frac{1}{p}) \quad (1 \leq j \leq n)
\]

and \(N = \sum_{j=1}^n \ell_j \), and the following (1) and (2) are valid.

(1) \(W = W_1W_0 \), \(W_1 = \prod_{j=1}^n |z - a_j|^{2\ell_jp} \), \(W_0 = \prod_{j=1}^n |z - a_j|^{m_jp - 2\ell_jp} / \prod_{j=1}^k |z - c_j|^{p\ell_kj} \).

(2) \(H^p(W)_+ = \{ \gamma \prod_{j=1}^N (z - b_j)(1 - \bar{b}_jz) / \prod_{j=1}^n (z - a_j)^{\ell_j}(1 - \bar{a}_jz)^{\ell_j} ; \ \gamma > 0, \ |b_j| \leq 1 \ (j = 1, \cdots, N) \} \)

Proof. Since \(W^{-1} \) belongs locally to \(L^\infty \) except \(\{a_j\}_{j=1}^n \), by Theorem 3 \(H^p(W)_+ \) is of finite dimension. If \(\ell_1, \cdots, \ell_n \) are nonnegative integers such that

\[
\frac{1}{2}(m_j + \frac{1}{p}) - 1 < \ell_j \leq \frac{1}{2}(m_j + \frac{1}{p}) \quad (1 \leq j \leq n)
\]

and \(N = \sum_{j=1}^n \ell_j \), then put \(W_1 = \prod_{j=1}^n |z - a_j|^{2\ell_jp} \) and \(W_0 = W/W_1 \). Then by Theorem 3 \(H^p(W_0)_+ = R_+ \). For \(W_0^{-1} \in L^{1/(2p-1)} \) because \(-1 < (2\ell_jp - m_jp)/(2p - 1) < 1/(2p - 1) \). Hence (1) and (2) follows from Theorem 3.

Remark. (1) Let \(p \geq 1/2 \). Suppose \(W^{-1} \) is in \(L^q \) for some \(q > 0 \) and \(W^{-1} \) belongs locally to \(L^{1/(2p-1)} \) except at \(z = -1 \). Then by Theorem 3 \(H^p(W)_+ \) is of finite dimension. Moreover, \(\dim H^p(W)_+ = 2N + 1 \) if and only if \(W|1 + z|^{-2pN} \in L^1 \) and \(W|1 + z|^{-2p(N+1)} \notin L^1 \). (2) Let \(p \geq 1/2 \). Suppose \(W = |1 + z|^{\alpha} \) and \(-1 < \alpha < \infty \). Then the following
(i) \sim (iii) are equivalent. (i) \dim H^p(W)_+ = 2N + 1. (ii) \max((2N)p - 1, -1) < \alpha < (2N + 3)p - 1. (iii) \max(\frac{n+1}{2N+3}, \frac{1}{2}) \leq p < \frac{n+1}{2N}. For by Theorem 3, \dim H^p(W)_+ = 2N + 1 for some nonnegative integer N and H^p(W)_+ = \{\gamma \prod_{j=1}^{N}(z-b_j)(1-\overline{b_j}z)/(1+z)^{2N}; \gamma > 0 and |b_j| \leq 1 (j = 1, \cdots, n)\}. Since hH^p(W)_+ = S^h and h = (1 + z)^{\frac{\alpha}{p}}; (1 + z)^{\frac{\alpha}{p}}H^p(W)_+ \subset H^p and so (1+z)^{\frac{\alpha}{p}-2N} belongs to H^p. Hence \alpha - (2N)p > -1 and so \alpha > \max((2N)p-1, -1). Since \dim H^p(W)_+ = 2N + 1, \alpha \leq (2N + 1)p - 1.

References