
 

Instructions for use

Title Binary market models with memory

Author(s) Inoue, Akihiko; Nakano, Yumiharu; Anh, Vo

Citation Hokkaido University Preprint Series in Mathematics, 661, 1-13

Issue Date 2004

DOI 10.14943/83812

Doc URL http://hdl.handle.net/2115/69466

Type bulletin (article)

File Information pre661.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


BINARY MARKET MODELS WITH MEMORY

AKIHIKO INOUE, YUMIHARU NAKANO AND VO ANH

Abstract. We construct a binary market model with memory that approxi-
mates a continuous-time market model driven by a Gaussian process equivalent
to Brownian motion. We give a sufficient conditions for the binary market to
be arbitrage-free. In a case when arbitrage opportunities exist, we present the
rate at which the arbitrage probability tends to zero as the number of periods
goes to infinity.

1. Introduction

Let T ∈ (0,∞). We consider the stock price process (St)0≤t≤T that is governed
by the stochastic differential equation

dSt = St(bdt + σdYt) (0 ≤ t ≤ T ),(1.1)

where σ and the initial value S0 are positive constants, and b ∈ R. In the classical
Black-Scholes model, Brownian motion is used as the driving noise process Y , and
the resulting price process S becomes Markovian. In [1, 2], the following Gaussian
process (Yt)0≤t≤T with stationary increments is used instead as the driving noise
process Y in (1.1):

Yt = Bt −
∫ t

0

{∫ s

−∞
pe−(q+p)(s−u)dBu

}
ds (0 ≤ t ≤ T ),(1.2)

where p and q are real constants such that

0 < q < ∞, −q < p < ∞,

and (Bt)t∈R is a one-dimensional Brownian motion defined on a probability space
(Ω,F , P ) satisfying B0 = 0. The parameters p and q describe the memory of Y , and
the resulting stock price process S becomes non-Markovian. An empirical study
on S&P 500 data in [3] shows that the model captures very well the memory effect
when the market is stable.

It should be noticed that (1.2) is not a semimartingale representation of Y with
respect to the P -augmentation (Ft)0≤t≤T of the filtration generated by (Yt)0≤t≤T

since (Bt) is not (Ft)-adapted. However, by innovation theory as described in
Liptser and Shiryayev [11], we can show that Y is actually an (Ft)-semimartingale
([1, Theorem 3.1]). In fact, using the prediction theory for Y which is developed in
[2], we see ([9, Theorem 2.1]) that there exists a one-dimensional Brownian motion
(Wt)0≤t≤T , called the innovation process, satisfying

σ(Ws : 0 ≤ s ≤ t) = σ(Ys : 0 ≤ s ≤ t) (0 ≤ t ≤ T ),
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and

Yt = Wt −
∫ t

0

{∫ s

0

l(s, u)dWu

}
ds (t ∈ [0, T ]),(1.3)

where l(t, s) is a Volterra kernel given explicitly by

l(t, s) = pe−(p+q)(t−s)

{
1 − 2pq

(2q + p)2e2qs − p2

}
(0 ≤ s ≤ t ≤ T ).(1.4)

Thus the process Y has the virtue that it possesses the property of a stationary
increments process with memory and the simple semimartingale representation (1.3)
with (1.4) simultaneously. We know of no other process with this kind of properties.
The two properties of Y become a great advantage, for example, in its parameter
estimation (see [9, Section 5]).

Several authors use fractional Brownian motion as the driving noise process
(see, e.g., Comte and Renault [5], Rogers [12], and Willinger et al. [15]). However
this approach is not entirely satisfactory since fractional Brownian motion is not
a semimartingale (Lin [10] and Rogers [12]), whence there exists no equivalent
martingale measure in the corresponding market. On the other hand, the market
defined by (1.1) with (1.2) or (1.3) and (1.4) is arbitrage-free and complete since
the process Y becomes a Brownian motion under a suitable probability measure
(see [1, Section 3]). Moreover, for this model, we can obtain explicit results such as
the solution to the expected logarithmic utility maximization from terminal wealth
(see [2]).

As is well known, binary approximation of the Black-Scholes model plays a very
important role for the model in many ways. Sottinen [13] constructed a binary
market model that approximates the market driven by fractional Brownian motion,
and investigated the arbitrage opportunities in the binary model.

In this paper, we construct a binary market model with memory that approx-
imates the continuous-time market model driven by Y in (1.3). However, rather
than considering the special kernel l(t, s) in (1.4), we take a general bounded mea-
surable Volterra kernel l(t, s). Since l(t, s) given by (1.4) is bounded, the results
thus obtained apply to the special case (1.4). We remark that any centered Gauss-
ian process Y = (Yt)0≤t≤T that is equivalent to a Brownian motion has a canonical
representation of the form (1.3) with l(t, s) satisfying square integrability (see Hida
and Hitsuda [8, Chapter VI]). Thus, in this paper, we consider a subclass consisting
of Y for which l(t, s) is bounded. As in [13], the key feature to the construction
of the approximating binary market is to prove a Donsker-type theorem for the
process Y (Theorem 2.1).

Unlike the market driven by fractional Brownian motion, the market driven by
Y in (1.3) is arbitrage-free (see, e.g., the proof of [1, Theorem 3.3]). However,
the approximating binary market may admit arbitrage opportunities. We consider
conditions for their existence or non-existence. We also study the rate at which the
aribtrage probability tends to zero as the number of periods goes to infinity.

This paper is organized as follows. In Section 2, we prove a Donsker-type theorem
for the driving process Y in (1.3) with bounded kernel l(t, s). In Section 3, we
consider a discrete-time approximation of the stock price process S in (1.1). As a
special case, we obtain the desired approximating binary model. In Section 4, we
study arbitrage opportunities in the binary model.
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2. A Donsker-type theorem

Let T ∈ (0,∞). In what follows, we write C = CT for positive constants,
depending on T , which may not be necessarily equal to each other. Let n be a
positive integer. In Sections 2 and 3, we write

∑
s≤t

Xs =
∑�nt�

i=1
X i

n
,

∏
s≤t

Xs =
∏�nt�

i=1
X i

n
.

Let l(t, s) be a bounded measurable function on [0, T ] × [0, T ] that vanishes
whenever s > t. Let W = (Wt)0≤t≤T be a one-dimensional Brownian motion on a
probability space (Ω,F , P ). We define the process Y = (Yt)0≤t≤T by (1.3).

We put, for t, u ∈ [0, T ],

z(t, u) :=
∫ t

u

l(s, u)ds, y(t, u) := 1 − z(t, u).

Then both z(t, u) and y(t, u) are bounded and continuous on [0, T ] × [0, T ], and
it holds that Yt =

∫ t

0 y(t, u)dWu for 0 ≤ t ≤ T . Let C be a positive constant
satisfying, for (t1, u), (t2, u) ∈ [0, T ]× [0, T ],

|z(t1, u) − z(t2, u)| = |y(t1, u) − y(t2, u)| ≤ C|t1 − t2|.(2.1)

Let {ξi}∞i=1 be a sequence of i.i.d. random variables with E[ξ1] = 0 and E[(ξ1)2] =
1. We also assume that

E[(ξ1)4] < ∞.(2.2)

We define the process W (n) = (W (n)
t )0≤t≤T by

W
(n)
t :=

1√
n

�nt�∑
i=1

ξi (0 ≤ t ≤ T ),

where �x� denotes the greatest integer not exceeding x. The process W (n) converges
weakly to W in the Skorohod space by Donsker’s theorem (see, e.g., Billingsley [4,
Theorem 16.1]). We define the process Y (n) = (Y (n)

t )0≤t≤T by

Y
(n)
t :=

∫ t

0

y( �nt�
n , s)dW (n)

s (0 ≤ t ≤ T ).

Then it follows that

Y
(n)
t =

1√
n

�nt�∑
i=1

y( �nt�
n , i

n )ξi (0 ≤ t ≤ T ).

Here is the Donsker-type theorem for Y .

Theorem 2.1. The process Y (n) converges weakly to Y as n → ∞.

Proof. We first show that the finite-dimensional distributions of Y (n) converge to
those of Y as n → ∞. Thus, for a1, . . . , ad ∈ R and t1, . . . , td ∈ [0, T ], we show
that X(n) converges to a normal distribution with variance Var(X), where X(n) :=
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∑d
k=1 akY

(n)
tk

and X :=
∑d

k=1 akYtk
. We have

Var(X (n)) =
d∑

k,l=1

akal
1
n

�n(tk∧tl)�∑
i=1

y( �ntk�
n , i

n )y( �ntl�
n , i

n )

=
d∑

k,l=1

akal

∫ �n(tk∧tl)�
n

0

y( �ntk�
n , �ns�+1

n )y( �ntl�
n , �ns�+1

n )ds,

where t ∧ s := min(t, s). The function (t1, t2, u) 	→ y(t1, u)y(t2, u) is continuous,
whence uniformly continuous, on the compact set [0, T ]3. From this and the fact
that 0 ≤ t − (�nt�/n) < 1/n, we see that

lim
n→∞Var(X (n)) =

d∑
k,l=1

akal

∫ tk∧tl

0

y(tk, s)y(tl, s)ds = Var(X).(2.3)

We may assume Var(X) > 0. For, otherwise, (2.3) implies that X(n) converges
to X = 0 in law. We put b

(n)
i :=

∑d
k=1 aky( �ntk�

n , i
n ) and X

(n)
i := n−1/2b

(n)
i ξi for

n, i = 1, 2, . . . . Then we have X(n) =
∑�nT�

i=1 X
(n)
i for n = 1, 2, . . . . We need to

show the following Lindeberg’s condition: for every ε > 0,

lim
n→∞

�nT�∑
i=1

E
[
(X(n)

i )21{|X(n)
i |>εσ(n)}

]
= 0,(2.4)

where σ(n) :=
√

Var(X (n)). Choose a positive constant M satisfying |b(n)
i | ≤ M

for n, i = 1, 2, . . . . Then since |X(n)
i | ≤ Mn−1/2|ξi|, we have

�nT�∑
i=1

E
[
(X(n)

i )21{|X(n)
i |>εσ(n)}

]
≤

�nT�∑
i=1

E
[
(Mn−1/2ξi)21{|Mn−1/2ξi|>εσ(n)}

]

=
�nT�∑
i=1

M2n−1E
[
(ξ1)21{|ξ1|≥M−1σ(n)√n}

] ≤ M2TE
[
(ξ1)21{|ξ1|≥M−1σ(n)√n}

]
.

We obtain (2.4) from this. By (2.4) and (2.3), we can apply the central limit
theorem (cf. [4, Theorem 7.2]), so that X(n) converges to X in law, as desired.

Next we show that, for 0 ≤ t1 ≤ t ≤ t2 ≤ T and n = 1, 2, . . . ,

E
[
|Y (n)

t − Y
(n)
t1 |2|Y (n)

t2 − Y
(n)
t |2

]
≤ C|t2 − t1|2.(2.5)

The theorem follows from this and [4, Theorem 15.6]. However, if t2−t1 < 1/n, then
either t1 and t or t and t2 lie in the same subinterval [m

n , m+1
n ) for some m, whence

the left hand side of (2.5) is zero. Therefore we may assume that t2 − t1 ≥ 1/n.
We show that

E
[
|Y (n)

t − Y (n)
s |4

]
≤ C|t − s|2(2.6)

for t, s and n satisfying

0 ≤ s < t ≤ T, t − s ≥ 1
n .(2.7)

4



This implies (2.5) under the condition t2 − t1 ≥ 1/n since

E
[
|Y (n)

t − Y
(n)
t1 |2|Y (n)

t2 − Y
(n)
t |2

]
≤ E

[
|Y (n)

t − Y
(n)
t1 |4

]1/2

E
[
|Y (n)

t2 − Y
(n)
t |4

]1/2

≤ C|t − t1||t2 − t| ≤ C|t2 − t1|2.
For distinct i, j, k and l, we have

E[(ξi)3ξj ] = E[(ξi)2ξjξk] = E[ξiξjξkξl] = 0.

Hence, for t, s and n satisfying (2.7), E[|Y (n)
t − Y

(n)
s |4] is equal to

n−2E

[{∑�nt�
i=1

(y( �nt�
n , i

n ) − y( �ns�
n , i

n ))ξi

}4
]

= E[(ξ1)4]n−2

�nt�∑
i=1

{y( �nt�
n , i

n ) − y( �ns�
n , i

n )}4

+
6
n2

E[(ξ1)2]2
∑

1≤i<j≤�nt�
{y( �nt�

n , i
n ) − y( �ns�

n , i
n )}2{y( �nt�

n , j
n ) − y( �ns�

n , j
n )}2

= (I1 + I2)E[(ξ1)4] + 6(J1 + J2 + J3)E[(ξ1)2]2,

where

I1 := n−2

�ns�∑
i=1

{y( �nt�
n , i

n ) − y( �ns�
n , i

n )}4, I2 := n−2

�nt�∑
i=�ns�+1

y( �nt�
n , i

n )4

and

J1 := n−2
∑

(i,j)∈Λ1

{y( �nt�
n , i

n ) − y( �ns�
n , i

n )}2{y( �nt�
n , j

n ) − y( �ns�
n , j

n )}2,

J2 := n−2
∑

(i,j)∈Λ2

{y( �nt�
n , i

n ) − y( �ns�
n , i

n )}2y( �nt�
n , j

n )2,

J3 := n−2
∑

(i,j)∈Λ3

y( �nt�
n , i

n )2y( �nt�
n , j

n )2

with

Λ1 := {(i, j) : 1 ≤ i < j ≤ �ns�},
Λ2 := {(i, j) : 1 ≤ i ≤ �ns�, �ns� < j ≤ �nt�},
Λ2 := {(i, j) : �ns� < i < j ≤ �nt�}.

By (2.7), we have

�nt� − �ns� ≤ nt − ns + 1 = n(t − s + 1
n ) ≤ 2n(t − s),

so that

#Λ1 ≤ Cn2, #Λ2 ≤ Cn2(t − s), #Λ3 ≤ Cn2(t − s)2.
5



Therefore, using (2.1), we obtain, for t, s and n satisfying (2.7),

|I1| ≤ Cn−2 · n · (t − s)4 = Cn−1(t − s)4 ≤ C(t − s)5 ≤ C(t − s)2,

|I2| ≤ Cn−2 · n(t − s) = Cn−1(t − s) ≤ C(t − s)2,

|J1| ≤ Cn−2 · n2 · (t − s)4 = C(t − s)4 ≤ C(t − s)2,

|J2| ≤ Cn−2 · n2(t − s) · (t − s)2 = C(t − s)3 ≤ C(t − s)2,

|J3| ≤ Cn−2 · n2(t − s)2 = C(t − s)2.

Thus (2.6) follows.

Denote by ∆X and [X ] the jump and quadratic variation processes of a process
X , respectively, i.e.,

∆Xt := Xt − lim
s↑t

Xs, [X ]t :=
∑
s≤t

(∆Xs)
2
.

Theorem 2.2. The process ∆Y (n) converges to zero in probability, while [Y (n)]
converges to the deterministic process (t)0≤t≤T in probability.

Proof. From (2.6) with (2.7), we have

E
[
(∆Y

(n)
t )4

]
≤ E

[
(Y (n)

t − Y
(n)

t− 1
n

)4
]
≤ Cn−2,

so that, as n → ∞,

E

[
sup

0≤t≤T
(∆Y

(n)
t )4

]
≤ E


∑

t≤T

(∆Y
(n)
t )4


 =

∑
t≤T

E
[
(∆Y

(n)
t )4

]
≤ C

nT

n2
→ 0.

Thus ∆Y (n) converges to zero in probability.
We put Z

(n)
t :=

∫ t

0
z( �nt�

n , s)dW
(n)
s for 0 ≤ t ≤ T . Then we have Y

(n)
t =

W
(n)
t − Z

(n)
t , whence

[Y (n)]t = [W (n)]t − 2
∑
s≤t

(∆W (n)
s )(∆Z(n)

s ) + [Z(n)]t.

Since z(u, u) = 0, we have

Z
(n)
t − Z

(n)

t− 1
n

=
1√
n

�nt�−1∑
i=1

{z( �nt�
n , i

n ) − z( �nt�−1
n , i

n )}ξi (= 0 if �nt� = 1).

From this and (2.1), E[(∆Z
(n)
t )2] is at most

E
[
(Z(n)

t − Z
(n)

t− 1
n

)2
]

=
1
n

�nt�−1∑
i=1

{z( �nt�
n , i

n ) − z( �nt�−1
n , i

n )}2 ≤ nT

n
· C2

n2
=

C

n2
.

Since [Z(n)]t is increasing, we see that

E

[
sup

0≤t≤T
[Z(n)]t

]
= E

[
[Z(n)]T

]
=

∑
t≤T

E
[
(∆Z

(n)
t )2

]
≤ nT

C

n2
=

C

n
.(2.8)

Thus [Z(n)] converges to zero in probability.
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We have

[W (n)]t − t =
�nt�
n

− t +
1
n

�nt�∑
i=1

{(ξi)2 − 1}.

Let ε > 0. Then, from (2.2) and Kolmogorov’s inequality (see, e.g, Williams [14,
Section 14.6]), we see that

P

(
sup

0≤t≤T

1
n

∣∣∣∣∑�nt�
i=1

{(ξi)2 − 1}
∣∣∣∣ ≥ ε

)
= P

(
sup

0≤t≤T

∣∣∣∣∑�nt�
i=1

{(ξi)2 − 1}
∣∣∣∣ ≥ nε

)

≤ 1
ε2n2

�nT�∑
i=1

E
[
(ξ2

i − 1)2
] ≤ nT

ε2n2
E

[
(ξ2

1 − 1)2
] → 0 (n → ∞).

From this and the fact that 0 ≤ t − (�nt�/n) < 1/n, we see that [W (n)] converges
to the deterministic process (t) in probability.

By Schwarz’s inequality, we have∣∣∣∑
s≤t

(∆W (n)
s )(∆Z(n)

s )
∣∣∣ ≤ [W (n)]1/2

t [Z(n)]1/2
t ≤ [W (n)]1/2

T [Z(n)]1/2
T ,

whence, by (2.8),

E

[
sup

0≤t≤T

∣∣∣∑
s≤t

(∆W (n)
s )(∆Z(n)

s )
∣∣∣] ≤ E

[
[W (n)]1/2

T [Z(n)]1/2
T

]
≤ E

[
[W (n)]T

]1/2

E
[
[Z(n)]T

]1/2

≤ T 1/2 · (Cn−1)1/2 = Cn−1/2.

Thus the process (
∑

s≤t(∆W
(n)
s )(∆Z

(n)
s )) also converges to zero in probability.

Combining, we see that [Y (n)] converges to (t) in probability.

3. Approximating binary market

Let T ∈ (0,∞) and let Y be as defined in Section 2. We consider the stock price
process S that is governed by the following more general stochastic differential
equaltion than (1.1):

dSt = St{b(t)dt + σdYt} (0 ≤ t ≤ T ),

where σ and the initial value S0 are positive constants, and b(·) is a deterministic
continuous function on [0, T ]. The solution S is given by

St := S0 exp
{

σYt +
∫ t

0

b(s)ds − 1
2σ2t

}
(0 ≤ t ≤ T ).

For n = 1, 2, . . . , we consider the process S(n) = (S(n)
t )0≤t≤T defined by

S
(n)
t :=

∏
s≤t

{
1 + σ∆Y (n)

s +
1
n

b( �ns�
n )

}
(0 ≤ t ≤ T ),

where Y (n) is as in Section 2. The aim of this section is to prove that S(n) converges
weakly to the process S.

As in [13, (10) and (11)], we put

Y
(1,n)
t :=

∑
s≤t

∆Y (n)
s 1{|∆Y

(n)
s |< 1

2 σ−1}, Y
(2,n)
t :=

∑
s≤t

∆Y (n)
s 1{|∆Y

(n)
s |≥ 1

2 σ−1}.
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Then we have

Y
(n)
t = Y

(1,n)
t + Y

(2,n)
t ,(3.1)

[Y (1,n)]t =
∑
s≤t

(∆Y (n)
s )21{|∆Y

(n)
s |< 1

2 σ−1},(3.2)

[Y (2,n)]t =
∑
s≤t

(∆Y (n)
s )21{|∆Y

(n)
s |≥ 1

2 σ−1},(3.3)

[Y (n)]t = [Y (1,n)]t + [Y (2,n)]t.(3.4)

Lemma 3.1. The process [Y (2,n)] converges to zero in probability, whence [Y (1,n)]
converges to the deterministic process (t) in probability. The process Y (2,n) con-
verges to zero in probability, whence Y (1,n) converges weakly to Y .

Proof. Let ε > 0. Then, by (3.3), we have

P

(
sup

0≤t≤T
[Y (2,n)]t ≥ ε

)
≤ P

(
sup

0≤t≤T
[Y (2,n)]t > 0

)
= P

(
sup

0≤t≤T
|∆Y

(n)
t | ≥ 1

2σ−1

)
.

Since the process ∆Y (n) converges to zero in probability by Theorem 2.2, [Y (2,n)]
converges to zero in probability. Therefore, by Theorem 2.2 and (3.4), [Y (1,n)]
converges to zero in probability.

In the same way, since

P

(
sup

0≤t≤T
|Y (2,n)

t | ≥ ε

)
≤ P

(
sup

0≤t≤T
|∆Y

(n)
t | ≥ 1

2σ−1

)
,

it follows from Theorem 2.2 that Y (2,n) converges to zero in probability. Therefore,
by Theorem 2.1, (3.1) and [4, Theorem 4.1], Y (1,n) converges weakly to Y .

Theorem 3.2. The process S(n) converges weakly to S.

Proof. Write S
(n)
t = S

(1,n)
t S

(2,n)
t , where

S
(1,n)
t :=

∏
s≤t

{
1 + σ∆Y (1,n)

s +
1
n

b( �ns�
n )

}

S
(2,n)
t :=

∏
s≤t

{
1 + σ∆Y (2,n)

s

}
,

and the processes Y (i,n) are as above. We claim the following: (i) S(1,n) converges
weakly to S; (ii) S(2,n) converges to one in probability.

By [4, Problem 1, Page 28], the claim (ii) implies that S(1,n)(S(2,n)−1) converges
to zero in probability. Since

S
(n)
t = S

(1,n)
t (S(2,n)

t − 1) + S
(1,n)
t ,

we see from (i) and [4, Theorem 4.1] that S(n) converges weakly to S, as desired.
We first prove (ii). Let ε > 0. Then

P

(
sup

0≤t≤T
|S(2,n)

t − 1| ≥ ε

)
≤ P

(
sup

0≤t≤T
|∆Y

(n)
t | > 1

2σ−1

)
.

Since the process ∆Y (n) converges to zero in probability by Theorem 2.2, S(2,n)

converges to one in probability. Thus (ii) follows. Next we prove (i). Since the
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exponential is a continuous functional in the Skorohod topology, it is enough to
prove that log S(1,n) converges weakly to the process (σYt+

∫ t

0 b(s)ds− 1
2σ2t). Notice

that |σ∆Y
(1,n)
t | + 1

n |b( �nt�
n )| < 3

4 for sufficiently large n and t ∈ [0, T ], whence the
logarithm log S(1,n) is well defined for such n.

We have

log(1 + x) = x − 1
2
x2 + r(x)x3 (|x| < 1),

where r(x) is a bounded function on |x| ≤ 3
4 . Hence

log S
(1,n)
t =

∑
s≤t

{
σ∆Y (1,n)

s +
1
n

b( �ns�
n ) − 1

2

(
σ∆Y (1,n)

s +
1
n

b( �ns�
n )

)2

+r

(
σ∆Y (1,n)

s +
1
n

b( �ns�
n )

)
·
(

σ∆Y (1,n)
s +

1
n

b( �ns�
n )

)3
}

= σY
(1,n)
t +

∑
s≤t

1
n

b( �ns�
n ) − 1

2
Φ(n)

t + Ψ(n)
t ,

where

Φ(n)
t :=

∑
s≤t

(
1
n

b( �ns�
n ) + σ∆Y (1,n)

s

)2

,

Ψ(n)
t :=

∑
s≤t

r

(
σ∆Y (1,n)

s +
1
n

b( �ns�
n )

)
·
(

σ∆Y (1,n)
s +

1
n

b( �ns�
n )

)3

.

We have Φ(n)
t = n−2

∑
s≤t b( �ns�

n )2 + 2σΓ(N)
t + σ2[Y (1,n)]t, where

Γ(n)
t :=

∑
s≤t

1
n

b( �ns�
n )∆Y (1,n)

s .

Since b(·) is bounded, the first term n−2
∑

s≤t b( �ns�
n )2 goes to 0 as n → ∞. By

Lemma 3.1, the third term σ2[Y (1,n)] converges to (σ2t) in probability. As for the
second term, it holds that

sup
0≤t≤T

∣∣∣Γ(n)
t

∣∣∣ ≤ C sup
s≤T

|∆Y (1,n)
s | ≤ C ≤ |∆Y

(n)
t |.

Since ∆Y (n) converges to zero in probability by Theorem 2.2, so does Γ(n). Thus
the process (Φt) converges to (σ2t). Since

sup
0≤t≤T

Ψt ≤ C

(
1
n

+ sup
s≤T

|∆Y (1,n)
s |

)
ΦT ,

we see that the process (Ψt) converges to zero in probability. Using these fact as
well as Lemma 3.1 and [4, Theorem 4.1], we see that log S(1,n) converges weakly to
(σYt +

∫ t

0 b(s)ds − 1
2σ2t).

If we take the i.i.d. random variables {ξi} so that

P (ξ1 = 1) = P (ξ1 = −1) = 1/2,(3.5)

then we obtain the desired approximating binary market model.
9



4. Arbitrage opportunities in the binary market

In this section, we study the arbitrage opportunities in the approximating binary
market model with memory constructed in Section 3. For simplicity, we assume
that the function b(·) is a real constant as in (1.1).

Let N ∈ N, r, b ∈ R, and σ ∈ (0,∞). The number N corresponds to n in
Sections 2 and 3. Let the function y(t, u) be as in Section 2. We define

r(N) :=
r

N
, b(N) :=

b

N
.

The �NT �-period market M(N) consists of a share of the money market with price
process (B(N)

n )n=0,1,...,�NT� and a stock with price process (S(N)
n )n=0,1,...,�NT�. The

prices are governed respectively by

B(N)
n = B

(N)
n−1(1 + r(N)) (n = 1, . . . , �NT �), B

(N)
0 = 1,

S(N)
n = S

(N)
n−1(1 + b(N) + X(N)

n ) (n = 1, . . . , �NT �), S
(N)
0 = s0,

where s0 is a positive constant,

X(N)
n := σ∆Y

(N)
n
N

=
σ√
N

n∑
i=1

{
y( n

N , i
N ) − y(n−1

N , i
N )

}
ξi

and {ξi} are i.i.d. random variables satisfying (3.5). Theorem 3.2 implies that the
binary market model M(N) approximates the continuous-time market model with
bond price process (ert) and stock price process S in (1.1).

Given the values of ξ1, . . . , ξn−1, the random variable X
(N)
n takes the following

two possible values un and dn: d1 = −σ/
√

N, u1 = σ/
√

N , and for n = 2, . . . , N ,

dn ≡ dn(ξ1, . . . , ξn−1) =
σ√
N

n−1∑
i=1

{
y( n

N , i
N ) − y(n−1

N , i
N )

}
ξi − σ√

N
,

un ≡ un(ξ1, . . . , ξn−1) =
σ√
N

n−1∑
i=1

{
y( n

N , i
N ) − y(n−1

N , i
N )

}
ξi +

σ√
N

.

We investigate the arbitrage opportunities in M(N). Let C be a positive constant
satisfying

|y(t, u) − y(s, u)| ≤ C|t − s| (0 ≤ t, s, u ≤ T ).(4.1)

Theorem 4.1. Suppose that T < 1/C. Then there exists an integer N0 such that
for each N ≥ N0, the market M(N) is arbitrage-free.

Proof. From the condition TC < 1, we have an integer N0 satisfying

b

N
− σ√

N
(TC + 1) > −1, |r − b| <

√
N(1 − TC)σ (N ≥ N0).(4.2)

By (4.1), we have, for n = 1, . . . , �NT �,

min
ξ∈{−1,1}n−1

dn(ξ) = − σ√
N

n−1∑
i=1

|y( n
N , i

N ) − y(n−1
N , i

N )| − σ√
N

≥ − σ√
N

(
n − 1

N
C + 1

)
≥ − σ√

N
(TC + 1) .
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This and (4.2) yield, for N ≥ N0 and n = 1, . . . , �NT �,

b(N) + X(N)
n ≥ b

N
+ min

ξ∈{−1,1}n−1
dn(ξ) > −1,

whence Sn > 0.
We show that M(N) is arbitrage-free for N ≥ N0. By Dzhaparidze [6, Proposi-

tion 6.1.2], M(N) is free from arbitrage opportunities if and only if

dn < r(N) − b(N) < un (n = 1, . . . , �NT �).(4.3)

However, we have

max
ξ∈{−1,1}n−1

dn(ξ) =
σ√
N

n−1∑
i=1

|y( n
N , i

N ) − y(n−1
N , i

N )| − σ√
N

≤ − σ√
N

(
1 − n − 1

N
C

)
≤ − σ√

N
(1 − TC) ,

and

min
ξ∈{−1,1}n−1

un(ξ) = − σ√
N

n−1∑
i=1

|y( n
N , i

N ) − y(n−1
N , i

N )| + σ√
N

≥ σ√
N

(
1 − n − 1

N
C

)
≥ σ√

N
(1 − TC) .

Thus, by (4.2), (4.3) holds for N ≥ N0.

By Theorem 4.1, the market M(N) is arbitrage-free for T small enough and
N large enough. However, in general, the market M(N) may admit arbitrage
opportunities, as we see below.

Suppose that there exists a positive constant C such that l(s, u) ≥ C for 0 ≤
u < s ≤ T . Let T > 1/C. We assume that r ≤ b. Then, d�NT�(−1, . . . ,−1) is

σ√
N

�NT�−1∑
i=1

∫ �NT�
N

�NT�−1
N

l(s, i
N )ds − σ√

N
>

σ√
N

(
C(�NT � − 1)

N
− 1

)
.

Since TC > 1, it follows that d�NT�(−1, . . . ,−1) > rN − bN or

S�NT� > (1 + rN )S�NT�−1

for N large enough. Therefore, if the value of (ξ1, . . . , ξ�NT�−1) turns out to be
(−1, . . . ,−1), then we have an arbitrage opportunity: we may buy stocks at time
�NT �− 1 using money obtained by shortselling bonds. In a similar fashion, we can
show that if T > 1/C, r < b and N is large enough, then the value (1, . . . , 1) of
(ξ1, . . . , ξ�NT�−1) gives an arbitrage opportunity.

Put

PN = P

(⋃�NT�
n=1

{
dn < r(N) − b(N) < un

}c
)

.

As we see in the proof of Theorem 4.1, the binary market M(N) is arbitrage-free
if and only if PN = 0. The next theorem gives the rate at which the arbitrage
probability PN tends to zero as N → ∞.

11



Theorem 4.2. There exists a positive constant C′ = C′
T such that, for each α ∈

(0, 1), we have N(α) ∈ N satisfying

PN ≤ C′

Nα
(N ≥ N(α)).

Proof. Set β := (α + 1)/2, and choose N(α) ∈ N so large that

Nβ/2C
√

T <
√

N − |(r − b)/σ|, Nβ/2 > 4 (N ≥ N(α)).(4.4)

Then we have d1 < r(N) − b(N) < u1. For N ≥ N(α) and n = 2, . . . , �NT �, we put
λ := Nβ/2 and

sn−1 :=

[
N

n−1∑
i=1

{
y( n

N , i
N ) − y(n−1

N , i
N )

}2

]1/2

, Mn−1 := max
1≤m≤n−1

∣∣∣∑m

i=1
ηi

∣∣∣ ,

where ηi :=
√

N
{
y( n

N , i
N ) − y(n−1

N , i
N )

}
ξi for i = 1, 2, . . . . By (4.1), we have

sn−1 ≤ C
√

T . This and (4.4) imply that

P

(
r − b

N
≤ dn

)
≤ P

(
r − b

σ
+
√

N ≤ Mn−1

)
≤ P (Mn−1 ≥ λC

√
T )

≤ P (Mn−1 ≥ λsn−1).

Similarly we have

P

(
un ≤ r − b

N

)
≤ P (Mn−1 ≥ λsn−1).

Since 1
4λ > 1 and

max
1≤i≤n−1

|ηi| = max
1≤i≤n−1

|
√

N{y( n
N , i

N ) − y(n−1
N , i

N )}| ≤ sn−1,

it follows from [4, (12.16), Page 89] that

P (Mn−1 ≥ λsn−1) ≤ C0

λ4

for some constant C0 > 0 independent of N and n (notice that ηi here corresponds
to ξi in [4, (12.16), Page 89]). Hence, PN is at most

�NT�∑
n=2

{
P

(
r − b

N
≤ dn

)
+ P

(
un ≤ r − b

N

)}
≤ 2�NT �C0

N2β
≤ 2TC0

Nα
.

Thus the theorem follows.
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