<table>
<thead>
<tr>
<th>Title</th>
<th>A Simple Proof of Duality Theorem for Monge-Kantorovich Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mikami, Toshio</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 677, 1-6</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-12-14</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/83828</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/69482</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre677.pdf</td>
</tr>
</tbody>
</table>
A Simple Proof of Duality Theorem for Monge-Kantorovich Problem

Toshio Mikami*
Hokkaido University

December 14, 2004

Abstract

We give a simple proof of the duality theorem for the Monge-Kantorovich problem in the Euclidean setting. The selection lemma which is useful in the theory of stochastic optimal controls plays a crucial role.

1 Introduction.

Let \(P_0 \) and \(P_1 \) be Borel probability measures on \(\mathbb{R}^d \) and \(\mathcal{A}(P_0, P_1) \) denote the set of all \(\mu \in \mathcal{M}_1(\mathbb{R}^d \times \mathbb{R}^d) \) for which \(\mu(dx \times \mathbb{R}^d) = P_0(dx) \) and \(\mu(\mathbb{R}^d \times dx) = P_1(dx) \), where \(\mathcal{M}_1(\mathbb{R}^d \times \mathbb{R}^d) \) denotes the complete separable metric space, with a weak topology, of Borel probability measures on \(\mathbb{R}^d \times \mathbb{R}^d \) (see e.g. [1]). Take also a Borel measurable \(c(\cdot, \cdot) : \mathbb{R}^d \times \mathbb{R}^d \mapsto [0, \infty) \).

The study of a minimizer of the following \(\mathcal{T}(P_0, P_1) \) is called the Monge-Kantorovich problem which has been studied by many authors and which has been applied to many fields (see [2, 4, 6, 9, 10] and the references therein):

\[
\mathcal{T}(P_0, P_1) := \inf \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) \mu(dx \, dy) \bigg| \mu \in \mathcal{A}(P_0, P_1) \right\},
\]

\[(1.1) \]

*Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan; mikami@math.sci.hokudai.ac.jp; Partially supported by the Grant-in-Aid for Scientific Research, No. 15340047, 15340051 and 16654031, JSPS.
The duality theorem for $T(P_0, P_1)$ plays a crucial role in the proof of the Monge-Kantorovich problem and has been proved for a wide class of functions $c(\cdot, \cdot)$ (see [5, 8-10]).

They say that the duality theorem for $T(P_0, P_1)$ holds if

$$T(P_0, P_1) = \sup \left\{ \int_{\mathbb{R}^d} \psi(1, y)P_1(dy) - \int_{\mathbb{R}^d} \psi(0, x)P_0(dx) \right\}, \quad (1.2)$$

where the supremum is taken over all $\psi(t, \cdot) \in L^1(P_t)$ ($t = 0, 1$) for which

$$\psi(1, y) - \psi(0, x) \leq c(x, y). \quad (1.3)$$

In [7] we obtained a stochastic control version of (1.2)-(1.3) and gave a new approach to h-path processes for diffusion processes as its application. We also showed that its zero noise limit yields (1.2)-(1.3) (see [8]).

In this paper we give a simple proof for (1.2)-(1.3) since known proofs for (1.2)-(1.3) are complicated. Indeed, Kellerer used a functional version of Choquet’s capacitability theorem (see [5] and also [9]) and Villani did a minimax principle (see [10, sect. 1.1]).

Our proof relies on the Legendre duality of a lower semicontinuous convex function of Borel probability measures on \mathbb{R}^d and on the selection lemma which is useful in the theory of stochastic optimal controls (see the proof of Theorem 2.1).

2 A simple proof for Duality Theorem.

We first describe our assumption.

(A.1) $c \in C(\mathbb{R}^d \times \mathbb{R}^d : [0, \infty))$ and $c(x, y) \to \infty$ as $|y - x| \to \infty$, and

$\inf \{c(x, y) | y \in \mathbb{R}^d \}$ is bounded.

(A.2) $T(P_0, P_1)$ is finite.

(A.3) P_0 is absolutely continuous with respect to the Lebesgue measure dx.

We give a simple proof to the following which can be obtained from the known result (see [5] and also [9, 10]).

Theorem 2.1 (Duality Theorem) Suppose that (A.1)-(A.3) hold. Then (1.2)-(1.3) holds.
(Proof) We prove (1.2), where the supremum is taken over all \(\psi(t, \cdot) \in C_b(\mathbb{R}^d) \) \((t = 0, 1)\) for which (1.3) holds. This implies the duality theorem for \(T(P_0, P_1) \) since (1.2)-(1.3) with “=” replaced by “\(\geq \)” holds and since \(C_b(\mathbb{R}^d) \subset L^1(P_t) \) \((t = 0, 1)\).

The proof is divided into the following (2.1)-(2.3):

\[T(P_0, P_1) = \sup_{f \in C_b(\mathbb{R}^d)} \left\{ \int_{\mathbb{R}^d} f(y) P_1(dy) - T_{P_0}^*(f) \right\}, \quad (2.1) \]

where for \(f \in C_b(\mathbb{R}^d) \),

\[T_{P_0}^*(f) := \sup_{P \in \mathcal{M}_1(\mathbb{R}^d)} \left\{ \int_{\mathbb{R}^d} f(y) P(dy) - T(P_0, P) \right\}. \quad (2.2) \]

\[\varphi(x; f) := \sup_{y \in \mathbb{R}^d} \{ f(y) - c(x, y) \} \in C_b(\mathbb{R}^d), \quad (2.3) \]

We first prove (2.1). We only have to prove \(T(P_0, \cdot) : \mathcal{M}_1(\mathbb{R}^d) \mapsto [0, \infty) \) is lower semicontinuous and convex. Indeed, this and (A.2) implies (2.1) from [1, Theorem 2.2.15 and Lemma 3.2.3], by putting \(T(P_0, P) = \infty \) for \(P \notin \mathcal{M}_1(\mathbb{R}^d) \).

Suppose that \(Q_n \to Q \) weakly as \(n \to \infty \). Then it is easy to see that \(\bigcup_{n \geq 1} A(P_0, Q_n) \) is tight in \(\mathcal{M}_1(\mathbb{R}^d) \). Take \(\mu_n \in A(P_0, Q_n) \) \((n \geq 1)\) for which

\[T(P_0, Q_n) + \frac{1}{n} > \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) \mu_n(dx \, dy) \geq T(P_0, Q_n). \quad (2.4) \]

For any convergent subsequence \(\{ \mu_{k(n)} \}_{n \geq 1} \) of \(\{ \mu_n \}_{n \geq 1} \) and its weak limit \(\mu_0, \mu_0 \in A(P_0, Q) \) and

\[\liminf_{n \to \infty} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) \mu_{k(n)}(dx \, dy) \geq \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) \mu_0(dx \, dy) \quad (2.5) \]

since \(c \geq 0 \) from (A.1). Hence \(T(P_0, \cdot) : \mathcal{M}_1(\mathbb{R}^d) \mapsto [0, \infty) \) is lower semicontinuous. \(T(P_0, \cdot) : \mathcal{M}_1(\mathbb{R}^d) \mapsto [0, \infty) \) is also convex since for any \(P, Q \in \mathcal{M}_1(\mathbb{R}^d) \) and \(\lambda \in (0, 1) \),
\{\lambda \mu + (1 - \lambda)\nu | \mu \in \mathcal{A}(P_0, P), \nu \in \mathcal{A}(P_0, Q) \} \subset \mathcal{A}(P_0, \lambda P + (1 - \lambda)Q).

We next prove \((2.2)\). From \((A.1)\), for \(f \in C_b(\mathbb{R}^d)\) and \(x \in \mathbb{R}^d\),

\[-\infty < \inf_{y \in \mathbb{R}^d} f(y) - \sup_{y \in \mathbb{R}^d} \{ \inf_{y \in \mathbb{R}^d} c(x, y) \} \leq \varphi(x; f) \leq \sup_{y \in \mathbb{R}^d} f(y) < \infty, \quad (2.6)\]

which implies that \(\varphi(\cdot; f)\) is bounded.

From \((A.1)\), the following set is not empty for any \(x \in \mathbb{R}^d\) and is bounded on every bounded subset of \(\mathbb{R}^d\):

\[D_x := \{ y \in \mathbb{R}^d | \varphi(x; f) = f(y) - c(x, y) \}. \quad (2.7)\]

Suppose that \(x_n \to x\) as \(n \to \infty\). Take \(y_n \in D_{x_n}\) and \(y \in D_x\). Then there exist a convergent subsequence \(\{ y_{k(n)} \}_{n \geq 1}\) and \(\tilde{y}\) such that \(y_{k(n)} \to \tilde{y}\) as \(n \to \infty\) and such that

\[\limsup_{n \to \infty} \varphi(x_n; f) = \lim_{n \to \infty} \{ f(y_{k(n)}) - c(x_{k(n)}, y_{k(n)}) \} \]

\[= f(\tilde{y}) - c(x, \tilde{y}) \leq \varphi(x; f). \quad (2.8)\]

The following together with \((2.8)\) implies that \(\varphi(\cdot; f) \in C(\mathbb{R}^d)\):

\[\liminf_{n \to \infty} \varphi(x_n; f) \geq \lim_{n \to \infty} \{ f(y) - c(x_n, y) \} = \varphi(x; f). \quad (2.9)\]

We prove \((2.3)\) to complete the proof. For \(f \in C_b(\mathbb{R}^d)\),

\[T_{P_0}^*(f) \leq \int_{\mathbb{R}^d} \varphi(x; f) P_0(dx). \quad (2.10)\]

\((A.1)\) implies that the set \(\cup_{|x| \leq r} \{ x \} \times D_x\) is compact for any \(r > 0\). Indeed, this set is closed from \((2.2)\) and is bounded as we mentioned in \((2.7)\). Hence
there exists a measurable function $u : \mathbb{R}^d \to \mathbb{R}^d$ such that $u(x) \in D_x$, dx-a.e. by the selection lemma (see [3, p. 199]). In particular, from (A.3) and (2.10),

$$\mathcal{T}_h^*(f) \leq \int_{\mathbb{R}^d \times \mathbb{R}^d} \{f(y) - c(x,y)\} P_0(dx)\delta_{u(x)}(dy) \leq \mathcal{T}_h^*(f).$$

(2.11)

Q.E.D.

References

